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Proteomic profiling of peripheral
blood mononuclear cells reveals
immune dysregulation and
metabolic alterations in kidney
transplant recipients with
COVID-19
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The COVID-19 pandemic has significantly impacted global health, especially

in vulnerable populations like kidney transplant recipients (KTRs). Recently,

mass spectrometry-based proteomics has emerged as a powerful tool to

shed light on a broad spectrum of dysregulated biological processes in KTRs

with COVID-19. In this study, we prospectively collected blood samples from

17 COVID-19-positive KTRs and 10 non-infected KTRs between May and

September 2020. Using tandem mass tag-based quantitative proteomics, we

analyzed peripheral blood mononuclear cells (PBMCs), plasma protein

biomarkers, and lymphocyte counts, followed by bioinformatics analysis.

Our results revealed significant proteomic alterations in COVID-19-infected

KTRs, particularly in pathways related to glycolysis, glucose metabolism, and

neutrophil degranulation. Additionally, we observed an altered immune

response characterized by elevated cytokines and decreased lymphocyte

counts. Notably, KTRs with AKI exhibited worse clinical outcomes, including

higher rates of ICU admission and mechanical ventilation. Comparative

analysis of PBMC proteomic profiles between AKI and non-AKI patients

identified distinct immune-related pathways, with AKI patients showing

marked changes in innate immune responses, particularly neutrophil

degranulation. Furthermore, we observed a negative correlation between T

cell counts and neutrophil degranulation, suggesting a role for immune

dysregulation in COVID-19. Our findings provide critical insights into the

immune and metabolic responses in COVID-19-infected KTRs, especially
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those with AKI, highlighting the need for focused research and therapeutic

strategies targeting immune dysregulation in this high-risk population.
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Introduction

The Coronavirus disease 2019 (COVID-19) pandemic, which

emerged in 2020, rapidly became a global health crisis, profoundly

affecting healthcare systems, economies, and overall quality of life

(1, 2). Prior to the achievement of widespread vaccination coverage,

COVID-19 presented with a wide range of clinical manifestations,

from asymptomatic or presymptomatic states to varying degrees of

severity, including mild, moderate, severe, and, in some cases, life-

threatening complications (3).

Individuals with compromised immune systems, especially

those undergoing immunosuppressive therapy, were particularly

vulnerable. Among these high-risk groups, kidney transplant

recipients (KTRs) demonstrated notably higher case-fatality rates,

even after vaccination (4, 5), and exhibited lower seroconversion

rates following vaccination (6). This elevated risk underscores the

compounded vulnerabilities associated with immunosuppressive

treatments and the presence of multiple comorbidities in these

patients (7–9).

The cumulative number of comorbidities associated with an

immune system impairment has led to diverse responses to

COVID-19 among KTRs compared with non-transplanted

patients (7–9). Investigating a panel of circulating cytokines and

vascular mediators in sequential samples, we previously

demonstrated that both non-KTRs and KTRs infected with

COVID-19 exhibited a similar transition from admission to

convalescent samples. However, the key mediators differentiating

patients from their respective controls (i.e., healthy volunteers and

non-infected KTRs) were distinct. For non-KTRs, the top

differentiators were inflammatory cytokines, whereas for KTRs,

endothelial response patterns and levels of Neutrophil Gelatinase-

Associated Lipocalin (NGAL) (10), an early marker of acute kidney

injury (AKI), were the most significant. AKI, commonly observed in

numerous systemic conditions (11), has been linked to poor

outcomes, a trend that persisted in COVID-19 patients. A

multicenter study involving 1,680 KTRs with COVID-19 revealed

that the mortality rate was 36.0% in those with AKI, compared to
post-discharge); LDNs,

uppressor Cells; NES,

rphonuclear Myeloid-

Difference; ssPSEA,

andem Mass Tag.
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19.1% in patients maintaining normal renal function, highlighting

renal function as a key predictor of survival in this population (12).

Recently, mass spectrometry (MS)-based proteomics, primarily

focused on plasma, serum, and urine, has emerged as a powerful

tool to shed light on a broad spectrum of dysregulated biological

processes in KTRs with COVID-19 (13, 14). However, the influence

of SARS-CoV-2 infection on peripheral blood mononuclear cells

(PBMCs) in KTRs remains a subject of ongoing investigation.

In this study, we employed a tandem mass tag (TMT)-based

quantitative proteomic approach, coupled with bioinformatics

analyses, to investigate altered proteins associated with

dysregulated pathways and biological processes in kidney

transplant recipients (KTRs) with COVID-19. We focused on

patients with moderate to severe illness admitted to hospital

wards who presented with or without AKI, as well as patients

discharged from the hospital. Our aim was to provide insights into

proteomic changes during the early stages of the disease and their

association with AKI and post-clinical recovery.
Materials and methods

Study design and population

This prospective cohort study was conducted at Hospital Sao

Paulo, the University Hospital of the Federal University of Sao

Paulo, located in Sao Paulo, Brazil (15). The study was submitted to

and approved by the National Research Ethics Committee (Comitê

Nacional de Ética em Pesquisa – CONEP), Process number

3.978.709. All volunteers provided written informed consent prior

to enrolment. The study included adult patients (≥18 years old)

diagnosed with COVID-19 based on positive results from

quantitative reverse transcription polymerase chain reaction (RT-

qPCR) testing of nasopharyngeal swabs. These patients were

admitted to the hospital wards between May 10 and September

26, 2020. This period coincided with the first wave of the COVID-

19 pandemic in Brazil (February 25, 2020, to November 5, 2020)

(16), when the predominant variants observed were B.1.1.28 (20–

30%) and B.1.1.33 (10–35%) (16). Patients included in the cohort

had moderate to severe illness, as defined by guidelines from the

National Institutes of Health and the World Health Organization

(17, 18). Exclusion criteria encompassed patients referred to

outpatient clinics or admitted directly to the ICU. Among the
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initial 68 COVID-19 patients in the cohort, 17 KTRs were selected

for this study [for a comprehensive overview of the entire cohort,

please refer to Peçanha-Pietrobom et al. (15)]. Additionally, a

control group comprised 10 KTR volunteers without COVID-19

symptoms (KTR controls), matched to the patient group for time

since transplantation, immunosuppressive therapy, sex, and age.

None of the participants in this study were vaccinated due to the

unavailability of vaccines at the time of enrolment.

AKI was prospectively defined according to the Kidney Disease

Improving Global Outcomes (KDIGO) criteria (19, 20). Baseline

graft function was assessed using creatinine levels recorded three

months prior to COVID-19 diagnosis, and AKI was identified based

on creatinine levels at hospital admission.
Sample collection

Blood samples were collected from both patients and KTR

controls into ethylenediaminetetraacetic acid (EDTA)-treated

tubes (BD Biosciences, San Diego, CA, USA). Plasma and

peripheral blood mononuclear cells (PBMCs) were separated

using a Ficoll gradient method (Ficoll-Paque PLUS, GE

Healthcare Biosciences, Uppsala, Sweden). Plasma samples were

stored at –80°C, and PBMCs were preserved in liquid nitrogen for

subsequent use.
Measurements

For detailed information on the proteomics experiments, data

processing protocols, plasma biomarker assays, and the

corresponding analys is methods , please refer to the

supplementary methods in Supplementary Material 1.
Statistical analysis

Statistical analyses were performed using R (version 4.3.0).

Normality of data was assessed using the Shapiro–Wilk test and

Quantile–Quantile (Q-Q) plots. Non-normally distributed data

were analyzed using the Mann–Whitney U test or the Kruskal–

Wallis test, while normally distributed data were analyzed using

Welch’s t-test or analysis of variance (ANOVA). For post hoc testing

of non-normally distributed data, Dunn’s test of multiple

comparisons using rank sums was employed; for normally

distributed continuous data, Tukey’s post hoc test was conducted.

Categorical variables were compared using the chi-square test or

Fisher’s exact test, as appropriate. Biomarker data were log-

transformed to normalize their distribution. To visualize the

overall differences among plasma biomarkers, principal

component analysis (PCA) was conducted following previously

established method (21, 22). Correlation analyses were performed

using Spearman’s rank correlation coefficient (Rho). Differences

between groups were quantified using standardized mean

differences (SMD) (23).
Frontiers in Immunology 03
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Differential protein abundance analysis was performed using

the R/Bioconductor package limma. The model was adjusted for

additional covariates: age, sex, time after transplantation (months),

maintenance immunosuppressive therapy (class), and donor status

(deceased or living). Differences in PBMC proteome profiling

between the two groups were detected using the empirical Bayes

moderated t-statistics, and Benjamini-Hochberg corrections were

applied to all p-values to calculate the false discovery rates (FDR).

Protein set enrichment analysis (PSEA) was performed using the

fgsea package, with annotation information from the Reactome

pathway database and hallmark gene sets from MSigDB.

Additionally, single-sample PSEA (ssPSEA) was performed using

the hacksig package and the Reactome pathway database. We

focused on Reactome-defined immune-related pathways

implicated in the host response to infection: innate immune

system, adaptive immune system, cytokine signaling in the

immune system, hemostasis , programmed cel l death,

and metabolism.
Results

Clinical and epidemiological features of the
study participants

Seventeen kidney transplant recipients (KTRs) with COVID-19, a

subset of a hospital-admitted cohort with diverse clinical outcomes

(15) were analyzed in this study (Table 1). According to the KDIGO

criteria for staging AKI, we observed that six patients (35%) did not

present with AKI (stage 0), while five (29%) were classified as stage 1,

three (17%) as stage 2, and three (17%) as stage 3. The mean age was

54.0 years, and most were male (n = 10, 59%). The time between

COVID-19 symptom onset and hospital admission was 7.5 ± 4.6 days.

Primary symptoms included dyspnea (n = 12, 71%), cough (n = 12,

71%), fever (n = 7, 41%), diarrhea (n = 7, 41%), and nausea/vomiting

(n = 7, 41%). Arterial hypertension was the most prevalent

comorbidity (n = 13, 76%). Additionally, 53% of patients required

ICU admission, 41% underwent mechanical ventilation, 29% required

renal replacement therapy, and 41% died. Among the survivors, six

participated in a clinical follow-up at an average of 29.3 ± 5.0 days after

hospital discharge (designated as Convalescent Sample 30 [CS30]). No

significant differences were observed in demographic data,

maintenance immunosuppressive therapy class, or donor status

when comparing KTRs with COVID-19 and KTR controls (Table 1).
Global COVID-19 perturbation of the
PBMC proteome, plasma proteins, and
lymphocyte counts in kidney
transplant recipients

A TMT-based quantitative proteomic approach combined

with liquid chromatography-tandem mass spectrometry (LC-MS/
frontiersin.org
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TABLE 1 Baseline characteristics and clinical outcomes of KTR COVID-19 patients at ward admission and KTR Controls.

D0-Wards (N = 17)1 KTR Controls (N = 10)1 p-value

Demographics

Age years 54.1 (11.1) 55.1 (6.3) 0.91

Male sex 10 (59%) 6 (60%) 0.96

Time after transplantation (months) 89.6 (90.6) 118.2 (119.4) 0.72

BMI 25.6 (4.1)

Admission type, wards 17 (100%)

Maintenance immunosuppressive therapy (class) 0.09

Aza/MPA+Pred 2 (12%) 0 (0%)

CNI+Aza/MPA+Pred 15 (88%) 8 (80%)

CNI+mTORi+Pred 0 (0%) 2 (20%)

Donor information >0.99

Deceased donor 12 (71%) 7 (70%)

Living donor 5 (29%) 3 (30%)

AKI stages (KDIGO criteria)

0 6 (35%)

1 5 (29%)

2 3 (17%)

3 3 (17%)

Comorbidity

Charlson Index 3.9 (1.5)

Renal Disease Moderate or Severe 17 (100%)

Diabetes 6 (35%)

Hypertension 13 (76%)

Obesity 1 (5.9%)

Disease severity on admission

SOFA score 2.9 (1.8)

Temperature °C 36.8 (0.9)

Heart rate 85.6 (13.4)

Respiratory rate 23.2 (3.7)

Saturation O2 92.9 (3.2)

Respiratory support

No 10 (59%)

Non‐rebreather masks 2 (12%)

Supplemental oxygen 5 (29%)

Symptoms on admission

Symptoms to wards (days) 7.5 (4.6)

Fever 7 (41%)

Cough 12 (71%)

(Continued)
F
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MS) was employed to quantify differentially abundant proteins

(DAPs) among KTRs. The cohort was categorized based on the

timing of blood sampling: patients sampled during their hospital

stay (D0-wards) and those sampled approximately 30 days after

discharge (CS30). These groups were compared with KTRs non-

COVID-19 (KTR controls). Across seven TMT batches, a total

of 2,330 proteins were identified. Focusing on proteins quantified

in at least 50% of samples reduced this number to 1,403 proteins,

with an average of 1,242 proteins per sample (Supplementary

Material 1: Supplementary Figure S1). Among these 1,403

proteins, 363 were differentially abundant between D0-wards and

KTR controls (Supplementary Material 1: Supplementary Figure

S2A and Supplementary Material 2), while 111 showed differential

abundance between CS30 and KTR controls (Supplementary
Frontiers in Immunology 05
Material 1: Supplementary Figure S2B and Supplementary

Material 3).

Reactome pathway enrichment analysis revealed that D0-wards

patients exhibited alterations in 15 pathways compared with KTR

controls, characterized by positive normalized enrichment scores

(NES) in pathways associated with interferon response, innate

immune system, and neutrophil degranulation. Conversely,

pathways related to glycolysis and glucose metabolism exhibited

negative NES. Similar NES patterns were observed in hallmark gene

set enrichment analysis, with positive NES in pathways related to

interferon response and inflammatory processes, and negative NES

in metabolism-related pathways (Figure 1A). Notably, only

metabolism-related pathways remained altered in CS30

patients (Figure 1A).
TABLE 1 Continued

D0-Wards (N = 17)1 KTR Controls (N = 10)1 p-value

Symptoms on admission

Myalgia 6 (35%)

Fatigue/Anxiety 2 (12%)

Dyspnea 12 (71%)

Headache 4 (24%)

Nausea/Vomiting 7 (41%)

Anosmia 3 (18%)

Dysgeusia 3 (18%)

Diarrhea 7 (41%)

Laboratory on admission

Hemoglobin, g/dL 12.3 (1.5)

Hematocrit (%) 37.6 (3.9)

Red Cell Distribution Width, (%) 13.9 (1.4)

Neutrophils, cells/µl 5,120.1 (2,128.5)

Lymphocytes, cells/µl 765.2 (456.3)

Monocytes, cells/µl 392.6 (263.9)

Platelets, cells/µl 196,705.9 (69,058.6)

Creatinine, mg/dL 2.1 (1.4)

C-Reactive Protein, mg/L 103.2 (50.7)

D-dimer, µg/mL FEU 1.2 (0.7)

Outcomes

Transferred to ICU 9 (53%)

Mechanical ventilation 7 (41%)

Renal replacement therapy 5 (29%)

Days in ICU 19.6 (13.3)

Death in ICU (30‐day mortality) 7 (41%)
1Continuous variables are shown as mean ± SD. Categorical variables are shown as absolute numbers (percentages). Aza, azathioprine; CNI, Calcineurin inhibitors; MPS, mycophenolate acid;
Pred, prednisone; mTORi, mammalian target of rapamycin inhibitors.
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Plasma biomarker levels indicative of cytokine/inflammation

and endothelial cell activation were significantly elevated in D0-

wards patients (Figure 1B, Supplementary Material 1:

Supplementary Figure S3). Additionally, two proteins, NGAL and

myeloperoxidase (MPO), were identified in both plasma and

PBMCs (proteomics), demonstrating a positive moderate

correlation (Figure 1C). Furthermore, the absolute number of

lymphocytes, specifically T lymphocytes (CD3+CD45+), T

cytotoxic (CD3+CD8+), and T helper (CD3+CD4+) were lower in

D0-wards compared to KTR controls (Figure 1D). In contrast to

admission samples, all plasma biomarkers (Supplementary Material

1: Supplementary Table S1) and absolute lymphocyte counts were

comparable between CS30 and KTR controls (Supplementary

Material 1: Supplementary Table S2), suggesting a potential

return to a homeostatic state approximately 30 days after

hospital discharge.
Host response associated with acute
kidney injury in KTR COVID-19 patients

We compared KTR COVID-19 patients who presented with AKI

(n = 6) to those who did not (n = 11) during ward admission (Table 2).

Patients with AKI presented with higher Sequential Organ Failure

Assessment (SOFA) scores (SMD: 0.90), increased C-Reactive Protein
Frontiers in Immunology 06
(CRP) levels (SMD: 0.60), and elevated creatinine levels (SMD: 1.40)

upon ward admission. The AKI group experienced worse outcomes,

including a higher rate of ICU transfers (SMD: 0.64), increased need

for mechanical ventilation (SMD: 0.86), and greater hospital mortality

(SMD: 0.86). Interestingly, creatinine showed a strong positive

correlation with CRP (Rho = 0.50, p-values < 0.05) and SOFA

respiratory subscores (Rho = 0.68, p-values = 0.002) (Supplementary

Material 1: Supplementary Figure S4).

We compared the PBMC proteomic alterations in AKI and

non-AKI COVID-19 patients using ssPSEA for Reactome-defined

immune-related pathways. Our analysis revealed alterations in

seven innate immune-related pathways, three adaptive immune

system pathways, and five cytokine signaling pathways in the

immune system. Additionally, no alterations were observed in

hemostasis, while four metabolic pathways and one programmed

cell death pathway showed alterations (Figure 2A). Indeed, the

innate immune-related pathways exhibited the most differences

when comparing patients with AKI and non-AKI; these pathways

also demonstrated a pattern of positive correlation with creatinine,

SOFA, and CRP levels (Figure 2B).

Next, we explored the differences between KTR COVID-19

patients with AKI and non-AKI based on 15 host response

biomarkers reflective of two key pathophysiological domains

(cytokine/inflammatory response and endothelial cell activation/

procoagulant responses) in plasma obtained on admission to the
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TABLE 2 Demography, comorbidities, clinical and laboratory admission data, and outcomes stratified according to the presence of acute
kidney injury.

Characteristic AKI (n = 11)1 non-AKI (n = 6)1 SMD

Demographics

Age years 51.7 (12.4) 58.2 (7.4) -0.56

Male sex 7 (64%) 3 (50%) 0.13

BMI 24.8 (4.4) 26.9 (3.7) -0.53

Comorbidity

Charlson Index 3.8 (1.7) 4.0 (1.4) -0.12

Diabetes 3 (27%) 3 (50%) -0.48

Hypertension 7 (64%) 6 (100%) -1.07

Obesity 0 (0%) 1 (17%) -0.63

Disease severity on admission

SOFA score 3.5 (1.8) 2.0 (1.4) 0.90

Temperature °C 36.9 (1.0) 36.6 (0.6) 0.42

Heart rate 83.8 (15.1) 88.8 (9.9) -0.39

Respiratory rate 22.9 (4.6) 23.8 (1.3) 0.27

Saturation O2 92.8 (3.6) 93.0 (2.5) -0.06

Respiratory support 4 (36.4%) 3 (50.0%) 0.28

Symptoms on admission

Symptoms to wards (days) 8.1 (5.5) 6.5 (2.1) 0.38

Fever 5 (45%) 2 (33%) 0.25

Cough 7 (64%) 5 (83%) -0.46

Myalgia 5 (45%) 1 (17%) 0.66

Fatigue/Anxiety 1 (9.1%) 1 (17%) -0.23

Dyspnea 7 (64%) 5 (83%) 0.46

Headache 2 (18%) 2 (33%) 0.35

Vomiting/nausea 4 (36%) 3 (50%) 0.28

Anosmia 1 (9.1%) 2 (33%) 0.62

Dysgeusia 1 (9.1%) 2 (33%) 0.62

Diarrhea 4 (36%) 3 (50%) 0.28

Laboratory on admission

Hemoglobin, g/dL 12.1 (1.5) 12.8 (1.4) -0.46

Hematocrit (%) 37.1 (4.0) 38.7 (3.9) -0.40

RDW, (%) 14.0 (1.7) 13.6 (0.8) 0.35

Neutrophils, cells/µl 4,846.5 (1,646.6) 5,621.5 (2,934.0) -0.33

Lymphocytes, cells/µl 677.3 (448.4) 926.5 (464.8) -0.55

Monocytes, cells/µl 393.8 (295.1) 390.3 (220.7) 0.01

Platelets, cells/µl 206,090.9 (75,525.4) 179,500.0 (57,479.6) 0.40

Creatinine, mg/dL 2.6 (1.5) 1.2 (0.3) 1.40

C-Reactive Protein, mg/L 112.4 (46.6) 86.4 (57.9) 0.60

(Continued)
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wards. First, we generated domain-specific PCA plots to compare

the groups (Figure 3). There were significant differences in plasma

biomarkers grouped in the cytokine/inflammatory response

domain between patients with AKI and non-AKI. We also

identified a substantial overlap in the endothelial cell activation/

procoagulant responses between the AKI and non-AKI groups

(Figure 3A). The complete contribution of each biomarker to a
Frontiers in Immunology 08
principal component (PC) score is depicted in Supplementary

Material 1: Supplementary Table S3.

When comparing the magnitude of individual biomarker

differences expressed as Hedges’ g, we observed moderate to large

increases in cytokine/inflammatory markers among AKI patients,

while endothelial cell activation/procoagulant markers showed

small or negligible differences (Figure 3B). Subsequently, we
TABLE 2 Continued

Characteristic AKI (n = 11)1 non-AKI (n = 6)1 SMD

Laboratory on admission

D-dimer, µg/mL FEU 1.3 (0.7) 1.1 (0.9) 0.23

Outcomes

Transferred to ICU 7 (64%) 2 (33%) 0.64

Mechanical ventilation 6 (55%) 1 (17%) 0.86

Renal replacement therapy 3 (27.3%) 2 (33.3%) -0.13

Days in ICU 22.1 (13.3) 10.5 (12.0) 0.92

Hospital mortality 6 (55%) 1 (17%) 0.86
1Continuous variables are shown as mean ± SD. Categorical variables are shown as absolute numbers (percentages). SMD, standardized mean differences.
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evaluated the absolute number of total lymphocytes, which showed

statistical differences when comparing the KTR control and

COVID-19 AKI groups (Figure 3C). We also observed differences

between the control and COVID-19 AKI groups for T helper cells.

For T lymphocytes and T cytotoxic cells, differences were found in

both comparisons between the KTR control vs. COVID-19 AKI

groups, as well as between the KTR control vs. non-AKI groups. No

differences were found in the comparison between the groups for

the helper/cytotoxic ratio, B lymphocytes, and NK cells.

Interestingly, for total lymphocytes, T lymphocytes, T cytotoxic

cells, and T helper cells, the AKI group consistently showed lower

absolute values than the non-AKI group, but with no statistical

difference in the pairwise comparison.

Previous studies suggest an increase in immature cells, such as

l ow -d en s i t y n eu t r oph i l s ( LDNs ) o r g r anu l o c y t i c /

polymorphonuclear myeloid-derived suppressor cells (PMN-

MDSCs), in COVID-19 patients, which correlate with T cell

suppression (24, 25). LDNs commonly co-purify with PBMCs in

various infections, enriching pathways like “neutrophil

degranulation” in omics studies (25–30). Therefore, we tested the

correlation between the absolute values of T lymphocytes and the

“neutrophil degranulation” ssPSEA scores, which showed a
Frontiers in Immunology 09
moderate negative correlation between T lymphocytes (Rho = –

0.43, p-values = 0.02), T helper cells (Rho = –0.45, p = 0.03), and the

“neutrophil degranulation” score (Supplementary Material 1:

Supplementary Figure S5). A weak negative and not statistically

significant correlation was found between T cytotoxic cells and the

“neutrophil degranulation” score (Rho = –0.35, p-values = 0.08).
Discussion

In this study, we investigated KTRs infected with SARS-CoV-2

during the initial wave of the COVID-19 pandemic in São Paulo,

Brazil. Based on the reported increased severity of COVID-19 in

KTRs (4, 5, 7–9), we aimed to investigate the changes in proteomics

within PBMCs in this specific population. Additionally, we explored

the reported immune dysregulation and endothelial cell activation/

procoagulant alterations in COVID-19 (10, 31, 32), particularly

emphasizing the early stages of hospitalization while patients are in

the ward. Furthermore, we investigated the reported reductions in

absolute counts of lymphocytes, especially T lymphocytes and their

subsets, during the acute phase of COVID-19 (33, 34), with a

specific focus on KTRs.
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The proteomic response during the acute phase of COVID-19 has

been widely explored (28–30, 35), while the proteomic alterations

within PBMCs of KTRs were negligible. Our study revealed proteomic

alterations linked to inflammatory/immune response pathways,

indicated by positive NES. Interestingly, the majority of these

pathways reverted to a status similar to that of non-COVID-19

KTRs after 30 days. This pattern aligns with findings from our

previous cohort of non-KTR COVID-19 patients (28) and is

consistent with other omics studies (25, 29, 30), particularly the

immune-related pathways such as neutrophil degranulation, a

finding that has been well documented in studies of PBMCs during

infection (36).

Notably, the glycolysis and glucose metabolism pathways

exhibited a negative NES and remained altered after 30 days. This

metabolic alteration may affect immune cell function in pathogen

recognition, as glycolysis plays a pivotal role in this process (37).

This dysfunctional glycolysis profile shares similarities with findings

from proteomic studies of PBMCs from critically ill COVID-19

patients (28), transcriptomic/metabolic profiling of CD14+

monocytes from patients with moderate COVID-19 (38), and

single-cell RNA sequencing in monocytes and macrophages from

severe patients with COVID-19-associated pulmonary aspergillosis

(39). The impaired glycolysis observed in this context may serve as

an indicator of the dysfunctional host response, potentially

contributing to heightened morbidity and mortality rates

among KTRs.

Next, we investigated the proteomic alterations based on the

presence of AKI, a prevalent condition in systemic illnesses affecting

a significant portion of hospitalized COVID-19 patients (40).

Analysis of immune-related pathways revealed increased NES in

the innate immune system, complement cascade, regulated

necrosis, antimicrobial peptides, and neutrophil degranulation in

COVID-19 AKI patients. These results are in line with studies

discussing the pathophysiology of COVID-19–associated AKI,

which is believed to be multifaceted (40), involving factors such

as local and systemic inflammatory/immune response, and

activation of coagulation cascades (41, 42). This is further

evidenced when examining host response biomarkers, where the

PCA corresponding to this cytokine/inflammatory response

domain clearly separates patients with AKI from those without, a

distinction not observed in the endothelial domain. Plasma

biomarker levels, such as NGAL, were significantly elevated in

AKI patients. The identification of this protein in both plasma

and PBMCs, with a moderate positive correlation, underscores its

central role in immune activation and systemic inflammation

during COVID-19. Plasma proteomic profiling has further

demonstrated that AKI in COVID-19 involves tubular injury,

hemodynamic perturbation, neutrophil activation, and

inflammatory responses, as evidenced by elevated NGAL and

other markers (43).

The observed inflammatory responses were accompanied by

immune cell dysregulation, particularly affecting lymphocyte

populations. Although lymphocyte counts did not show

statistically significant differences between the AKI and non-AKI
Frontiers in Immunology 10
groups, it is likely that these disturbances were more severe in the

AKI group, as illustrated by the finding that absolute counts of total

lymphocytes and T helper cells were lower in the AKI group but not

in the non-Aki group compared to the controls. T lymphocytes,

which play a critical role in viral clearance (44, 45), are known to

decrease during acute COVID-19 (33, 34, 46). Interestingly, the

increase in LDNs/PMN-MDSCs may directly correlate with the

decrease in T cell numbers (24, 25).

Despite their immunosuppressive properties, LDNs/PMN-

MDSCs have also been associated with a pro-inflammatory

phenotype, characterized by elevated levels of cytokine secretion

and formation of neutrophil extracellular traps (27, 47, 48). The

presence of LDNs has been observed in previous studies (25, 26, 28),

and may be linked to the severity of infectious diseases (25, 29, 36).

Overall, our results are consistent with transcriptomic evidence of

enhanced neutrophil activation and cytokine signaling, alongside

downregulated adaptive and T cell responses in KTRs with

increasing COVID-19 severity (49).

In fact, the AKI group is more severe than the non-AKI,

showing higher SOFA scores, CRP levels, and worse outcomes.

This may be associated with high scores for LDNs, as well as

inflammatory/immune responses. Our findings suggest a

relationship between T-cell suppression and elevated levels of

LDN-related proteins in PBMCs during COVID-19, particularly

in patients with AKI. This association may carry important

therapeutic implications for managing immune dysregulation in

KTRs, highlighting the need for targeted interventions aimed at

mitigating these immune alterations.

This study has some limitations. First, the sample size was

relatively small, and all patients were enrolled at a single center.

Additionally, the absence of a validation cohort from another

hospital in a different geographical region limits the

generalizability of our findings. Moreover, we did not investigate

the influence of viral load or the roles of virus variants on the results

obtained. Our study was conducted in 2020, so the relevance to

current variants is less clear, since SARS-CoV2 variants exhibit

increasing fitness, and declining pathogenicity and induced-

inflammatory response (50). Furthermore, functional assays to

validate glycolysis metabolism changes and/or the potential

contribution of LDNs in AKI were not conducted, which could

have provided further insight into our results. Despite these

limitations, our study also has notable strengths. We investigated

PBMCs, a cell type that is not often explored in COVID-19

proteomics research. Our study of KTRs infected with SARS-

CoV-2, along with a well-established cohort of controls, provides

valuable insights and is relatively unexplored. Additionally, all

individuals were unvaccinated, allowing for a clearer assessment

of proteomic alterations in the absence of vaccination. Furthermore,

the samples obtained in the wards and after discharge provided a

comprehensive understanding of cellular proteomic changes

throughout the initial symptoms of the disease and convalescence.

Future studies with larger, more diverse cohorts are needed to

validate our findings and evaluate their long-term clinical

implications. As a next step, we aim to explore patients with
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community-acquired infections, including both KTRs and non

KTRs, to investigate broader mechanisms of immune

dysregulation. These insights lay the groundwork for the

development of targeted therapeutic interventions to address

immune dysregulation in vulnerable populations, particularly

kidney transplant recipients.

In summary (Figure 4), our study offers preliminary insights

into the proteomic alterations within PBMCs of KTRs infected with

SARS-CoV-2 during the early phase of the COVID-19 pandemic.

We identified significant dysregulation in key biological pathways,

particularly those involved in glycolysis, glucose metabolism, and

neutrophil degranulation, which may reflect the heightened

inflammatory state associated with COVID-19 in this vulnerable

population. While our findings suggest an altered immune response

—characterized by elevated cytokines, inflammatory mediators, and

decreased lymphocyte counts—these results must be interpreted

cautiously due to the small sample size. The observed association

between T-cell suppression and increased levels of LDN-related

proteins in AKI patients warrants further investigation, as it may

hold therapeutic implications for mitigating immune dysregulation

in COVID-19-infected KTRs.
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