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Lung cancer remains the primary cause of cancer-related mortality, with factors

such as postoperative tumor recurrence, metastasis, and therapeutic drug

resistance exacerbating patient outcomes. Immunotherapy has emerged as a

transformative approach, challenging conventional treatment paradigms for lung

cancer. Consequently, advancing research in lung cancer immunotherapy is

imperative. Recent studies indicate that numerous regulators within the tumor

microenvironment (TME) drive tumor angiogenesis and epithelial-mesenchymal

transition (EMT); these processes are interdependent, reciprocal, and collectively

contribute to tumor progression. Tumor angiogenesis not only supplies

adequate oxygen and nutrients for cellular proliferation but also establishes

pathways facilitating tumor metastasis and creating hypoxic regions that foster

drug resistance. Concurrently, EMT enhances metastatic potential and reinforces

drug-resistance genes within tumor cells, creating a reciprocal relationship with

angiogenesis. This interplay ultimately results in tumor invasion, metastasis, and

therapeutic resistance. This paper reviews key regulators of angiogenesis and

EMT, examining their impact on lung cancer immunotherapy and progression,

and investigates whether newly identified regulators could influence lung

cancer treatment, thus offering valuable insights for developing future

therapeutic strategies.
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1 Background

Lung cancer ranks as the second most prevalent cancer globally, leading in incidence

among men and following breast cancer among women (1). Non-small cell lung cancer

(NSCLC), the predominant form, is a highly malignant subtype with a poor prognosis,

encompassing adenocarcinoma, large cell carcinoma, and squamous cell carcinoma, which
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together constitute approximately 80%-85% of all lung cancers (2,

3). While early-stage cancers are often managed effectively with

surgical resection or radiotherapy, advanced cancers can only be

treated by chemotherapy (4), which becomes progressively less

effective as resistance develops and the disease worsens (5).

Recent advancements in cancer immunotherapy, particularly

immune checkpoint inhibitors (ICIs), have introduced promising

alternatives for lung cancer management. ICIs, effective in treating

unresectable advanced lung cancer as well as in perioperative

settings, target PD-1 or PD-L1 pathways (6) to mitigate treatment

side effects and improve survival rates. Nevertheless, achieving a

definitive cure for lung cancer remains a distant goal (7). Research

into molecular mechanisms underlying lung cancer progression is

essential for identifying potential therapeutic targets, offering

significant insights for future treatment modalities.

The tumor microenvironment (TME) plays a pivotal role in

tumor cell proliferation and invasion, constituting a complex

system composed of cellular components such as tumor, immune,

and stromal cells, and non-cellular elements including tumor-

associated fibroblasts, adjacent mesenchymal tissues, vascular

networks, and various chemokines (8, 9). Within the TME,

immune cells contribute to cancer progression through

mechanisms that support tumor proliferation and metastasis,

such as immune evasion, epithelial-mesenchymal transition

(EMT), angiogenesis, and immunosuppression (10). In recent

years, strategies targeting TME regulation have gained significant

interest in cancer immunotherapy. Despite the initial efficacy of

immunotherapeutic agents, therapeutic success is frequently

compromised by emerging drug resistance within the host (11).

Continued research on angiogenesis and EMT regulatory

mechanisms offers potential pathways to address these challenges,

advancing the effectiveness of lung cancer therapies.

The development of the human vascular system is an intricately

orchestrated process, necessitating precise temporal and spatial

coordination among various cell types to form functional blood

vessels. Angiogenesis, the formation of new vasculature from pre-

existing vessels, is fundamental to both physiological and pathological

processes, such as wound healing, organ development, ischemic

conditions, inflammatory diseases, fibrosis, and cancer (12). This

multistep process initiates new capillary growth frommultifunctional

pre-existing vessels, which significantly contributes to tumor

recurrence and metastasis (13). Tumor expansion demands

substantial nutrients and oxygen, necessitating an adequate blood

supply within the TME. This supply is facilitated through

angiogenesis, where the recruitment of new vessels from existing

ones provides tumors with essential resources, a process driven by a

complex signaling network of growth factors (14). Recently, anti-

angiogenesis has emerged as a promising immunotherapeutic

strategy, aiming to normalize abnormal vasculature, inhibit tumor

growth and metastasis, and restrict tumor blood supply through anti-

angiogenic agents (15). This approach is now applied in treating

various solid tumor types (16).

EMT is a form of cellular reprogramming that allows epithelial

cells to acquire a mesenchymal phenotype, essential for embryonic

development and adult tissue maintenance. This process triggers

cytoskeletal remodeling and mitochondrial division to meet the
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high energy demands of EMT, fueling further transition. EMT plays

a pivotal role in tumor progression, endowing cancer cells with

enhanced invasiveness and relative drug resistance (17, 18).

Emerging experimental data increasingly demonstrate that the

interaction between angiogenesis and EMT in tumors significantly

enhances tumor invasion, metastasis, and drug resistance. For

instance, hypoxic conditions stimulate EMT through hypoxia-

inducible factors (HIFs), which mediate diverse signaling

pathways pivotal to angiogenesis (19). Hypoxia or HIF

overexpression alone can induce EMT and promote invasiveness

across various cell types. The HIF pathway indirectly drives EMT

via multiple cellular signaling pathways, including Notch, TGF-b,
integrin-linked kinases, tyrosine kinase receptors, Wnt, and

Hedgehog (20). In hypoxic environments, HIF-1a upregulates

anti-apoptotic genes and activates PD-L1 in tumor cells, enabling

immune evasion and enhancing invasion and migration (21).

Angiogenesis is frequently accompanied by an inflammatory

response, with pro-inflammatory chemokines like IL-8 prompting

EMT in tumor cells (22). This review consolidates current research

on key regulatory factors in lung cancer, examining various

pathways that drive tumor angiogenesis and EMT, ultimately

contributing to tumor growth, metastasis, drug resistance, and

advancements in immunotherapy.
2 Angiogenesis-related
regulatory factors

Angiogenesis, the formation of new capillaries from preexisting

blood vessels, is crucial for the growth and metastasis of many solid

tumors. Tumor-derived angiogenic factors drive endothelial cell

migration and proliferation, establishing new capillaries that

support tumor expansion, invasion, and metastasis. This process

initiates when pro-angiogenic molecules outweigh anti-angiogenic

counterparts (23, 24). Key angiogenic regulators, such as vascular

endothelial growth factor (VEGF), platelet-derived growth factor

(PDGF), fibroblast growth factor (FGF), HIF, and angiopoietin, are

vital in hypoxia-induced angiogenesis (Table 1) (25). Under hypoxic

conditions, signaling pathways activate relevant receptors, and HIF

directly promotes transcription of angiogenesis-related genes (e.g.,

VEGF), upregulating these regulators to advance angiogenesis and

mitigate tissue hypoxia (26). Investigating these regulatory and

signaling pathways may provide insights for enhancing therapeutic

drug development for lung cancer (Figure 1).
2.1 Vascular endothelial growth factor

Angiogenesis is a critical driver of lung cancer cell growth,

invasion, and metastasis, with VEGF serving as a key mediator in

this process. In NSCLC, elevated levels of angiogenic markers,

including VEGF, correlate with poorer prognoses (27),

underscoring VEGF’s central role in tumor neovascularization

(28). The VEGF family, comprising VEGF-A, VEGF-B, VEGF-C,

VEGF-D, and placental growth factor (PlGF), exhibits specific
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FIGURE 1

Angiogenesis-related regulatory factor signaling pathway.
TABLE 1 Regulators of angiogenesis.

Regulatory
factor

Family Signaling pathway Type of Cancer Targeted drug

VEGF VEGF-A
VEGF-B
VEGF-C
VEGF-D
PlGF

MAPK/ERK、PI3K/AKT、
PKC/FAK

NSCLC, colorectal cancer, breast cancer, renal
cell carcinoma, gastric cancer, hepatocellular
carcinoma, ovarian cancer, pancreatic cancer

Monoclonal antibodies (mAb) and
tyrosine kinase inhibitors (TKI) such as

bevacizumab, ramucirumab,
and axitinib

PDGF PDGF-A
PDGF-B
PDGF-C
PDGF-D

PI3K/AKT、Ras/MAPK、PLC-
g/DAG/PKC and

JAK/STAT

NSCLC, GIST, pancreatic, breast, ovarian,
hepatocellular and neuroendocrine tumors

Anrotinib, imatinib, sunitinib,
pazopanib, sorafenib

HIF HIF-1
HIF-2
HIF-3

HIF-VEGF, HIF-glycolysis, HIF-
cell survival, HIF-EMT, HIF-

erythropoiesis, HIF-
oxidative stress

NSCLC, RCC, HCC,
Breast Cancer,
Prostate Cancer,
Gastric Cancer,

Colorectal Cancer,
Ovarian Cancer

HIF inhibitor: bedaquiline.
VEGF inhibitor: bevacizumab.

FGF FGF-1, FGF-4,
FGF-7, FGF-8,
FGF-9, FGF-19,

FGF11-14

Ras/MAPK
PI3K/AKT
PLC-g

JAK/STAT

NSCLC, HCC,
Bladder Cancer,
Bile Duct Cancer,
Breast Cancer,
Prostate Cancer,
Stomach Cancer

Erdatinib,
Panitinib,
Romatinib,
Inritinib

ANGPT ANGPT-1
ANGPT-2
ANGPT-3
ANGPT-4

PI3K/AKT
MAPK/ERK

Rhoa

NSCLC, Breast Cancer, Pancreatic Cancer,
Colorectal Cancer, RCC, Stomach Cancer,

Ovarian Cancer, Melanoma

Trebananib,
CVX-060,
MEDI3617,
REGN910,
BAY75762
F
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functions within various tissues. VEGF-A, the most potent

angiogenic factor, is essential for regulating endothelial cell

sprouting, mitogenesis, migration, vasodilation, and vascular

permeability (29, 30). In the heart, VEGF-B supports neuronal

survival and cardiovascular growth through angiogenesis. It

regulates cardiac angiogenesis and sympathetic innervation by

inducing tissue-specific angiogenic responses in the myocardium,

upregulating nerve ciliary protein (Nrp-1) expression, and

mediating VEGFR-1 and Nrp-1 to promote nerve growth and

protection. This mechanism contributes to alleviating ischemic

heart disease (31), thereby aiding ischemic heart disease recovery

(32). VEGF-C and VEGF-D facilitate tumor growth and metastasis

through VEGFR-3-mediated lymphangiogenesis and lymphatic

metastasis (33). Upon binding to its receptor, VEGF activates

downstream signaling pathways such as MAPK/ERK, PI3K/AKT,

PKC, and FAK, which collectively support angiogenesis. Although

VEGF/VEGFR is not the sole regulatory axis, it plays an

indispensable role in angiogenic signaling (34). Consequently,

antivascular drugs targeting VEGF or VEGFR have emerged as

promising therapeutic options, primarily including monoclonal

antibodies (mAb) and tyrosine kinase inhibitors (TKIs), such as

bevacizumab, ramucirumab, and acitretinib. Monoclonal antibodies

exhibit high specificity by binding directly to VEGF or VEGFR,

preventing receptor interaction and thereby exerting anti-

angiogenic effects through receptor blockade. Tyrosine kinase

inhibitors, conversely, bind to receptor tyrosine kinases, inhibiting

their kinase activity and thus impeding downstream signaling (35,

36). Research confirms that VEGF and VEGFR are key regulators in

lung cancer angiogenesis, serving as primary therapeutic targets for

antivascular drug development to inhibit tumor growth, metastasis,

and drug resistance. However, tumors often develop multiple drug

resistance (MDR) through mechanisms such as decreased

intracellular drug concentrations, altered drug targets, and

imbalances in metabolic detoxification and DNA repair.

Overexpression of transporter proteins in tumor cells further

limits drug efficacy by blocking drug entry and actively expelling

intracellular drugs. These transporters expel lipophilic

chemotherapeutic agents, reducing their effective intracellular

concentrations and establishing resistance (37). To counteract

drug resistance, current treatments employ sequential maximal

dose-density regimens to maximize cell destruction and minimize

resistance onset (38). Dual targeting of the VEGF and ANG2

pathways has proven more effective than single-target approaches,

enhancing antiangiogenic therapy outcomes (39). Despite progress,

many molecular mechanisms underlying VEGF-targeted

antivascular therapies remain to be elucidated, necessitating

further investigation (40).
2.2 Platelet-derived growth factor

PDGF, a fundamental protein stored in platelet a-granules (41),
along with its receptors (PDGFRa and PDGFRb), is expressed in

numerous malignant cells and tissues, including NSCLC,

gastrointestinal stromal tumors (GIST), and pancreatic, breast,

ovarian, hepatocellular, and neuroendocrine cancers (42). In
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NSCLC, overexpression of PDGFRa/b and PDGF-A/B correlates

with poor prognosis; PDGF-AA, for instance, regulates VEGF

expression via autocrine signaling, advancing the transformation

of precancerous lesions into aggressive malignancies (43).

Additionally, mutations in the PDGFR-a gene enhance PDGFRa
expression, triggering ligand-independent PDGF signaling that

fosters tumor growth in NSCLC (44). In GIST, PDGF ligand

binding to PDGFRa and PDGFRb activates the STAT pathway,

influencing disease progression (45). In breast cancer, high PDGF-C

expression correlates with lymph node metastasis, HER2

amplification, and elevated Ki-67 proliferation, driving

progression via autocrine and paracrine signaling (46). In

cholangiocarcinoma, hypoxia-induced PDGF-D upregulation in

cholangiocarcinoma (CAA) cells activates a paracrine loop in the

tumor-associated stroma, coordinating lymphangiogenesis and

accelerating regional lymph node metastasis (47). PDGF activates

signaling through PDGFR-mediated cellular pathways, where

receptor binding initiates dimerization and phosphorylation,

creating sites for downstream signaling molecule attachment and

activating pathways such as PI3K/AKT, Ras/MAPK, PLC-g, DAG,
PKC, and JAK/STAT (48). Studies reveal that inhibiting the PDGF/

PDGFR pathway effectively hinders tumor cell proliferation and

angiogenesis (49). TKIs, which neutralize PDGFR antibodies and

antagonize PDGFR kinase activity (50), have shown promise in

targeted therapies, notably improving the outcomes of patients with

NSCLC. Anlotinib, for example, is utilized as a third-line treatment

for advanced NSCLC, targeting VEGFR to inhibit angiogenesis and

lung cancer cell proliferation, demonstrating efficacy in advanced

cases (51, 52). However, TKI-related toxicity and resistance present

significant challenges in prolonged therapy, necessitating further in-

depth research to optimize efficacy and mitigate these issues (53).
2.3 Hypoxia-inducible factor

Hypoxia is often indicative of solid tumor presence, activating

the HIF family to modulate gene expression in both tumor cells and

immune cells within the TME, thereby influencing tumor

progression and therapeutic response (54). The HIF family

consists of isoforms HIF-1, HIF-2, and HIF-3, each with distinct

functions and transcriptional activities (55). Among these, HIF-1

has been widely identified across various cancers and plays a pivotal

role in cancer development, acting as a key transcription factor (TF)

that drives cancer progression and serves as a target for therapeutic

intervention. HIF-1 promotes cancer cell growth, survival,

angiogenesis, metastasis, and treatment resistance (56). In the

hypoxic TME, rapid tumor cell proliferation outpaces the oxygen

supply from surrounding blood vessels, creating an imbalance that

triggers a cellular adaptive response coordinated by HIF-1 (57).

HIF-1 itself is a heterodimer of a and b subunits, with HIF-1a
particularly induced under hypoxia to regulate genes related to

cancer cell proliferation and angiogenesis (58). HIF-1a
transcriptionally activates several pro-angiogenic molecules by

binding directly to promoter regions. Specifically, HIF-1a binds

to the hypoxia response element (HRE) on VEGF and VEGFR1

gene promoters, inducing VEGFA and VEGFR1 expression, which
frontiersin.org
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promotes tumor angiogenesis through VEGF and ANGPTL4 (59).

Under hypoxic conditions, HIF-1a stabilizes and initiates the

expression of multiple genes through a gene expression cascade

involving the MAPK pathway and VEGF signaling (60). In this

process, HIF-1a binds to the hypoxia-responsive element (HRE)

within the VEGF promoter, forming an HIF-1a/HRE complex that

directly upregulates VEGFR-1 expression in tumor cells. This

amplification of VEGF signaling promotes both solid tumor

angiogenesis and pathological angiogenesis (61). Ropivacaine, a

local anesthetic, has been shown to inhibit HIF-1a signaling in lung

cancer cells, along with downstream VEGF signaling, thus reducing

angiogenesis in malignant lung cancers (62). Additionally, HIF-1a
activation of the Hippo-YAP pathway accelerates malignant

progression in NSCLC, while silencing HIF-1a induces

ferroptosis and inhibits NSCLC invasion (63). These findings

underscore the extensive interplay of HIF-1 signaling pathways in

lung cancer development, suggesting that targeting HIF-1 could

open new avenues for the development of effective HIF inhibitors

and therapeutic strategies (64).
2.4 Other angiogenesis regulators

Among the various regulators of angiogenesis, basic fibroblast

growth factor (FGF2) is considered the first identified pro-

angiogenic molecule, promoting angiogenesis by activating FGF

receptor 1 (FGFR1) signaling in endothelial cells (65). To

counteract the effects of the highly expressed FGF2/FGFR1

pathway, research indicates that VEGF-B can act as a unique

angiogenic factor; although it typically has limited angiogenic

activity, it can inhibit tumor growth and angiogenesis under

specific conditions by suppressing FGF2-induced Erk

phosphorylation and thus reducing FGF2-driven angiogenesis

(66, 67). This mechanism offers a potential therapeutic strategy

for controlling excessive angiogenesis, contributing to targeted

therapies aimed at preventing lung cancer cell metastasis and

dissemination. In the context of advancing lung cancer

immunotherapy research, miRNAs, a subset of non-coding RNAs,

have emerged as key regulators of cancer cell growth, metastasis,

angiogenesis, and apoptosis. For instance, miR-937-3p, often highly

expressed in patients with lung adenocarcinoma (LUAD), activates

the PI3K/AKT pathway by targeting the downstream gene SOX11,

thereby enhancing NSCLC angiogenesis and facilitating metastasis

(68, 69). Additionally, dietary compounds such as flavonoids,

retinoids, triterpenoids, omega fatty acids, and carotenoids have

demonstrated promising roles in anti-angiogenic therapy within

current cancer immunotherapy approaches (70).
3 EMT-related regulators

EMT is a process in which epithelial cells lose their connectivity

and polarity while gaining mesenchymal characteristics and

invasive potential. EMT progresses through distinct states—fully

epithelial, partial EMT, partial MET, and fully mesenchymal (full

EMT)—each with unique functional traits, plasticity, and
Frontiers in Immunology 05
heterogeneity that contribute to cancer invasion, recurrence, and

drug resistance (71, 72). EMT is generally mediated by multiple

signaling pathways, including the TGF-b, bone morphogenetic

protein (BMP), receptor tyrosine kinase (RTK), STAT3,

extracellular matrix (ECM)-mediated, and hypoxia signaling

pathways. These pathways regulate TFs, influencing gene

expression to increase EMT-related markers (73). Consequently,

targeting EMT presents a promising therapeutic strategy,

potentially offering improved recovery opportunities for patients

with cancer.
3.1 Transforming growth factor b

TGF-b is widely recognized as a central driver of cancer cell

plasticity through EMT. The TGF-b family includes 33

evolutionarily conserved proteins, such as TGF-b1, TGF-b2,
TGF-b3, activins, bone morphogenetic proteins (BMPs), inhibins,

growth and differentiation factors (GDFs), and mullerian inhibitory

substances (MISs) (74). TGF-b, particularly prominent in advanced

cancers, is closely linked to metastasis and chemotherapy resistance.

During EMT, TGF-b activates the SMAD pathway following

ligand-induced receptor activation, where SMAD proteins

transmit signals to the nucleus to regulate target gene expression

(75). TGF-b signaling begins with the activation of membrane-

bound type I (TGFbRI) and type II (TGFbRII) receptors, leading to
SMAD2 and SMAD3 activation. These form a complex with

SMAD4, translocating to the nucleus to interact with DNA-

binding TFs and co-regulators, modulating gene expression (76).

Additionally, the TGF-b receptor complex activates non-SMAD

pathways, including RAS/MAPK, TAK1/JNK/p38MAPK/IKK, and

PI3K/Akt (77) (Figure 2). Given its overexpression and pro-

tumorigenic effects across many tumor types, TGF-b is

a promising therapeutic target. Combining TGF-b inhibitors

with immune checkpoint blockade or chemotherapy

can effectively reduce cancer cell plasticity (78). Neferine, a

bisbenzylisoquinoline alkaloid, has been found to downregulate

TGF-b in NSCLC, modulating MST1 to induce ROS formation,

thereby promoting apoptosis and preventing proliferation,

metastasis, and EMT (79). Additionally, TGFb1-induced
upregulation of PD-L1 in tumor cells has emerged as a novel

mechanism of immunosuppression in NSCLC. Bintrafusp alfa

(M7824), targeting both PD-L1 and TGF-b, has shown efficacy in

inhibiting tumor mesenchymalization, reducing PD-L1-dependent

immunosuppression, and overcoming chemoresistance in NSCLC

(80). These studies, along with the development of more potent and

specific TGF-b inhibitors, hold potential for treating tumors that

thrive in TGF-b-rich environments (81).
3.2 EMT-related transcription factors

EMT-TFs (Table 2) include the zinc finger proteins SNAI1

(Snail1) and SNAI2 (Snail2, or Slug), twist-related proteins 1 and 2

(Twist1/2), and the zinc finger e-box binding homology cassette 1/2

(ZEB1/2). Upregulation of these EMT-TFs drives cancer cells to
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transition from a differentiated epithelial state to a stem cell-like

state, enhancing metastatic potential (82). Among them, Snail1

plays a critical role, with its expression preceding other EMT-TFs.

Snail1 activates additional EMT-TFs and suppresses epithelial genes

like epithelial cadherin (E-cadherin), allowing tumors to adopt a

mesenchymal morphology and invasive capacity (83). Snail1 also

recruits chromatin-modifying enzymes to the E-cadherin promoter,

promoting DNA methylation and transcriptional repression of E-

cadherin, thereby driving EMT and promoting dedifferentiation of

cancer cells into cancer stem cell-like (CSC) phenotypes. Snail1

expression is linked to increased invasion and metastasis across

various cancer types, including lung cancer. Notably, reducing

Snail1 expression has been shown to enhance the efficacy of

numerous chemotherapies and immunotherapies. Although direct

chemical inhibitors targeting Snail1 are scarce, inhibitors targeting
Frontiers in Immunology 06
Snail1-induced EMT have demonstrated promising results (84, 85).

For instance, Entestat (ENT) can reverse Snail1-induced EMT,

leading to increased E-cadherin expression and decreased levels of

Twist, Snail, and other EMT-TFs, thereby reducing metastatic

potential (86). ZEB1 acts as a key regulator, functioning as both

an activator and repressor of target genes, depending on its

interaction with the CDH1 promoter, miR-190 promoter, and

TGF-b signaling intermediates like Smad, p300, and P/CAF (87).

Twist1 is recognized as a key regulator of oncogenesis and

metastasis. During EMT, Twist1 promotes the expression of

EMT-related genes, such as type I collagen and N-cadherin, by

directly binding to their promoters (88), enabling epithelial cells to

transition to a mesenchymal phenotype. Twist1 is also crucial in

regulating intercellular adhesion by influencing downstream targets

like E-cadherin. Twist1 promotes EMT by inhibiting E-cadherin
FIGURE 2

SMAD and non-SMAD pathways of TGF-b lead to EMT process.
TABLE 2 EMT-related transcription factors and their functions, targets, and roles played in cancer.

EMT-TF Functionality Target Role in Cancer

SNAIL1 (Snail) Inhibition of E-cadherin expression initiates EMT E-cadherin Promote cancer cell invasion and metastasis (e.g. breast
cancer, lung cancer)

SNAIL2 (Slug) Inhibits epithelial phenotypes and promotes
mesenchymal phenotypes,

E-cadherin Correlates with drug resistance, migration ability of
cancer cells

TWIST1 Regulates EMT and promotes N-cadherin expression E-cadherin、
N-cadherin,

Promote tumor cell migration, invasion (breast cancer,
prostate cancer)

TWIST2 functionally similar to TWIST1, regulates EMT E-cadherin Promote tumor cell metastasis and invasion

ZEB1 Inhibition of epithelial cell markers and activation of
mesenchymal markers

E-cadherin Promoting EMT and invasion in multiple cancers

ZEB2 (SIP1) Inhibits E-cadherin and promotes EMT E-cadherin Enhancement of cancer cell invasiveness and migration
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expression through Snail1 activity (89). In smokers, exposure to the

nicotine-derived carcinogen nitrosamine ketone (NNK) upregulates

Twist mRNA and protein expression, which correlates with

increased migration and invasion of lung cancer cells. This

underscores Twist’s role in regulating NNK-induced changes in

EMT marker expression in lung cancer (90).
3.3 New EMT regulators

With expanding research on EMT, numerous TFs have

emerged as novel EMT regulators, such as specificity protein 1

(SP1) and E2F1. Recent studies highlight E2F1 as a pivotal TF for

cell cycle progression in cancer, closely linked to metastasis. In

NSCLC tissues and cell lines, E2F1 is notably upregulated and

controls ZEB2 expression via an E2F1 binding site on the ZEB2

promoter, ultimately driving EMT and enhancing tumor invasion

and metastasis (91, 92). SP1, part of a TF family that includes Sp2,

Sp3, and Sp4, is critical for various biological functions such as cell

growth, differentiation, apoptosis, and carcinogenesis, activating

numerous cellular genes (93). In lung adenocarcinoma (LADC),

aberrant SP1 expression induces EMT (94). Specifically, SP1-

activated SGPP2 promotes LADC cell proliferation and invasion

while inhibiting apoptosis (95). SP1 also functions as a direct target

of miR-145-5p in NSCLC, where its overexpression decreases drug

sensitivity, promotes EMT, and heightens drug resistance in cancer

cells (96). As more EMT-related markers are identified, these

insights pave the way for improved therapeutic protocols for

cancer treatment.
4 Conclusion

This study investigated the pivotal roles of angiogenesis and

EMT regulators within the tumor microenvironment in lung cancer

progression. Key angiogenic regulators, including VEGF, PDGF,

and HIF, significantly contribute to promoting angiogenesis, tumor

growth, and metastasis in lung cancer. Concurrently, EMT

regulators such as TGF-b, Snail, and Twist intensify cancer

progression by enhancing the invasive and drug-resistant

characteristics of tumor cells. Together, these processes synergize

to drive tumor malignancy and facilitate immune evasion.

These findings lay a theoretical foundation for the potential

application of combined anti-angiogenic and EMT-targeted

therapies, particularly within immunotherapy. Targeting both

angiogenesis and EMT modulators may enable future therapeutic
Frontiers in Immunology 07
strategies to not only suppress tumor growth and metastasis but

also improve responsiveness to conventional treatments, offering

more effective options for patients with lung cancer.
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