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Innovative strategies to
optimise colorectal cancer
immunotherapy through
molecular mechanism insights
Quanjun Lin1†, Zhiqiang Wang1†, Jue Wang1, Ming Xu1,
Xinyi Zhang2*, Peng Sun1* and Yihang Yuan1*

1Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China, 2Clinical Medical College, Southwest Medical University, Luzhou, China
Background: Colorectal cancer (CRC) is a leading cause of cancer-related

deaths globally. The heterogeneity of the tumor microenvironment

significantly influences patient prognosis, while the diversity of tumor cells

shapes its unique characteristics. A comprehensive analysis of the molecular

profile of tumor cells is crucial for identifying novel molecular targets for drug

sensitivity analysis and for uncovering the pathophysiological mechanisms

underlying CRC.

Methods: We utilized single-cell RNA sequencing technology to analyze 13

tissue samples from 4 CRC patients, identifying key cell types within the tumor

microenvironment. Intercellular communication was assessed using CellChat,

and a risk score model was developed based on eight prognostic genes to

enhance patient stratification for immunotherapeutic approaches. Additionally,

in vitro experiments were performed on DLX2, a gene strongly associated with

poor prognosis, to validate its potential role as a therapeutic target in

CRC progression.

Results: Eight major cell types were identified across the tissue samples. Within

the tumor cell population, seven distinct subtypes were recognized, with the C0

FXYD5+ tumor cells subtype being significantly linked to cancer progression and

poor prognosis. CellChat analysis indicated extensive communication among

tumor cells, fibroblasts, and immune cells, underscoring the complexity of the

tumor microenvironment. The risk score model demonstrated high accuracy in

predicting 1-, 3-, and 5-year survival rates in CRC patients. Enrichment analysis

revealed that the C0 FXYD5+ tumor cell subtype exhibited increased energy

metabolism, protein synthesis, and oxidative phosphorylation, contributing to its

aggressive behavior. In vitro experiments confirmed DLX2 as a critical gene

associated with poor prognosis, suggesting its viability as a target for improving

drug sensitivity.

Conclusion: In summary, this study advances our understanding of CRC

progression by identifying critical tumor subtypes, molecular pathways, and
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prognostic markers that can inform innovative strategies for predicting and

enhancing drug sensitivity. These findings hold promise for optimizing

immunotherapeutic approaches and developing new targeted therapies,

ultimately aiming to improve patient outcomes in CRC.
KEYWORDS

colorectal cancer (CRC), single-cell RNA sequencing (scRNA-seq), tumor cell subtypes,
FXYD5+ Tumor Risk Score (FTRS), energy metabolism in cancer
GRAPHICAL ABSTRACT

Article Research Flowchart. Firstly, we downloaded the clinical data of 4 colorectal cancer patients from GEO. After a series of data processing, we
obtained the single-cell atlas of colorectal cancer. After that, we took TCs as the study object to obtain their complete single-cell atlas and per-
formed trajectory analysis, enrichment analysis, transcription factor analysis and communication network analysis in turn. In addition, we also per-
formed bulk analysis for colorectal cancer, classified high or low FTRS groups, and analysed the related prognosis, and also verified it with in vitro
experiments, and the obtained results were consistent with our study.
1 Introduction

CRC is one of the leading causes of cancer-related deaths globally

and poses a major global health burden; it is the third most common

malignant tumor and the second leading cause of cancer-related deaths

worldwide (1, 2). It arises from the epithelial cells of the colon or

rectum, often following a multi-step progression from normal tissue to

adenoma (a benign tumor) and ultimately to carcinoma (a malignant

tumor). This is a multi-step process that requires the accumulation of
02
genetic/epigenetic aberrations (3–5). From a molecular point of view,

CRC is caused by mutations in targeted oncogenes, tumor suppressor

genes, and genes associated with DNA repair mechanisms. CRC

originates from 3 main pathways: the adenoma-cancer sequence, the

serrated pathway, and the inflammatory pathway (6). Depending on

the origin of the mutation, colorectal cancer can be categorized as

sporadic, hereditary, and familial (7, 8). Disease progression is

influenced by a variety of genetic (9), environmental (10), and

lifestyle factors, of which dietary factors are the most critical, shaping
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the gut microbiota to modulate regulation of colonic epithelial cell

homeostasis and carcinogenesis, and preventing tumors in up to 50%

of cases by improving lifestyle (7, 11–13). People with CRC usually

present with breathlessness and fatigue. These are also common

symptoms in patients with chronic heart failure (14–17). Currently,

common treatments for CRC include a multimodal combination of

surgery, radiotherapy and chemotherapy (18). However, recurrence

and metastasis rates remain high. The combination of radiotherapy

and immunotherapy may provide a new solution to this problem and

has rapidly become the mainstay of treatment for many types of solid

cancers, including CRC, but its future remains uncertain (19–22).

CRC is characterized by the heterogeneity of the tumor

microenvironment (TME), with different types of cells playing

different roles at different stages of tumorigenesis (23, 24). A

comprehensive molecular characterization of human colon and

rectal cancers has been previously revealed by deep whole genome

sequencing (25). And as analytical tools continue to evolve, there are

now a large number of studies that map individual cells in the TME at

high resolution by scRNA-seq (26–28) and allow for clinical

stratification of CRC (29). These analyses have revealed key cellular

players, including epithelial cells, fibroblasts, immune cells such as T

and B lymphocytes and tumor-associated macrophages. The latest

emerging analytical technique, spatial transcriptomics analysis, has

also been applied in CRC, helping to further advance targeted

immunotherapy (30, 31).

In recent years, research has also focused on understanding the

molecular drivers of CRC. Tumor cells (TCs) undergo genetic

mutations that affect key signaling pathways, such as Wnt, Notch,

and p53, which regulate cell growth, differentiation, and apoptosis

(32–34). Furthermore, studies have shown that the epithelial-to-

mesenchymal transition (EMT) process and the stemness

properties of certain tumor subtypes play critical roles in CRC

metastasis and recurrence (35, 36). Despite advancements in early

detection and treatment (37), the prognosis for metastatic CRC

remains poor (38, 39). Therefore, continued research into the

molecular and cellular mechanisms driving CRC is essential for

developing more effective therapies and improving patient outcomes.

In this study, we aimed to identify and validate novel molecular

targets for drug sensitivity analysis by revealing the immune profile

of CRC through scRNA-seq data analysis. We explored the

functional roles and differentiation trajectories of tumor cell

subtypes, established a prognostic model based on genetic risk

scores, and identified relevant prognostic genes. Furthermore, we

validated DLX2, a gene strongly correlated with poor prognosis,

through in vitro experiments. This comprehensive approach

enhances our understanding of CRC progression and metastasis,

providing actionable strategies to optimize immunotherapeutic

approaches and improve patient outcomes.
2 Materials and methods

2.1 Data source

The CRC Single‐Cell RNA Sequencing (scRNA-seq) data were

obtained from the GEO website (https://www.ncbi.nlm.nih.gov/
Frontiers in Immunology 03
geo/), GSE number was GSE161277. The dataset includes patient-

matched blood, normal, para-cancer, polyp (adenoma), and cancer

tissue. As we used publicly available data from databases, we did not

need to assign an ethical approval number for this study.
2.2 scRNA-seq

Gene expression data was imported into the R software (version

4.2.0) and analyzed using the Seurat R package (version 4.3.0) (40).

Low-quality cells were rejected: (1) 300 < nFeature < 7,500; (2) 500 <

nCount < 100,000; (3) mitochondrial gene expression not exceeding

25% of the total number of genes in the cell; (4) erythrocyte gene

expression not exceeding 5% of the total number of genes in the cell.

The harmony R package (v.0.1.1) (41, 42) was used to eliminate

the batch effect between samples (43–45). The dimensionality

reduction parameter (dim value) was set to 30 and the resolution

parameter was set to 1.2. All gene expression data were normalized

and scaled using the NormalizeData and ScaleData functions in the

Seurat R package (v.3.1.4) (46). The “FindVariableFeautres”

function (47) was used to select the top 2,000 most variable genes

for PCA (48–51). Cells were divided into clusters based on the top

30 principal components (PCs) using FindClusters at a resolution of

1.0. The top 30 essential PCs were selected for uniform manifold

approximation and projection (UMAP) downscaling and gene

expression visualization (52, 53).
2.3 Cell type recognition

We conducted differential expression analysis of all genes in cell

clusters using Seurat’s FindAllMarkers function to identify the

marker genes in each cluster (54–56). An adjustment of P-value<

0.05, expression percentage > 0.25, and | log2 [fold change (FC)] | >

0.25 were taken as threshold standards for identifying marker genes.

Afterwards, different cell clusters were identified and annotated by

the singleR package based on the composition patterns of the

marker genes and were then manually confirmed and corrected

with the CellMarker database.
2.4 Cancer preferences analysis

To assess the predilection of TCs subtypes for cancer, odds

ratios (OR) were calculated using the following computational

methods (57).
2.5 Assessment of cell stemness

AUCell (58) is a method for identifying cells with active genes in

scRNA-seq data. It takes a gene set as input and outputs the “activity”

of that gene set in each cell. It was used in this paper to rate the

stemness of subtypes of TCs. Cell stemness was assessed through the

utilization of the CytoTRACE R package (version 0.3.3) (59), allowing

the temporal order of cell differentiation to be inferred (60, 61).
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2.6 Trajectory analysis of TCs subtypes

Single-cell pseudotime trajectories were constructed using the

Monocle 2 algorithm (53, 62), an R package designed for single-cell

trajectories by Qiu et al (63). This algorithm employs a machine

learning technique to narrow down the high-dimensional

expression spectrum to a low-dimensional space, visualized as a

UMAP plot. Single cells were cast into this space and sorted into a

trajectory with branching points. A dynamic expression heatmap

was constructed using the plot_pseudotime_heatmap function.

Furthermore, differential expression analysis between branches

was performed using the plot_genes_branched_heatmap function.

The slingshot R package (version 2.6.0) was used to infer cell

lineages and pseudotimes (64). It defined lineage structure using

clustering-based minimum spanning trees (MSTs) and applications

synchronized master curves to fit branching curves for these lineages.

The getCurves function was used to obtain smooth trajectory curves.
2.7 Enrichment analysis of cellular subtypes

Using the Gene Ontology (GO) (52, 65–67), Genome

Enrichment Analysis (GSEA) (http://software.broadinstitute.org/

gsea/msigdb) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) (68) tools in the ClusterProfiler R package (version 4.6.0)

(63), differentially expressed genes (DEGs) were enriched and

analyzed. Significance of GO terms was determined based on an

adjusted P < 0.05 (69, 70).
2.8 Gene regulatory network analysis

To investigate the top 5 transcription factors (TFs) with the most

prominent expression changes in each TCs subtypes, single-cell

regulatory network inference and clustering analyses were

performed using the pySCENIC R package (version 0.10.0) in

Python (version 3.7). Initially, GRNBoost was leveraged to identify

potential target genes for each TFs. Then, DNA-motif analysis helped

to determine potential direct binding targets. Lastly, the activity of

regulon in the cells was scored by AUCell, and the top 5 TFs with the

highest score were identified. The human gene-motif rankings were

derived from https://resources.aertslab.org/cistarget/. Regulon

modules were then identified according to the Connection

Specificity Index (CSI) to confirm specific associating partners

(71). Hierarchical clustering with Euclidean distance was then

conducted to identify different regulon modules. We then

constructed a regulator association network using 0.65 as a cutoff

to investigate the relationship between different regulators.
2.9 Cell communication analysis

The CellChat R package (version 1.6.1) was utilised to infer

sophisticated intercellular interactions and construct regulatory

networks based on ligand-receptor levels (72). It utilizes
Frontiers in Immunology 04
the “netVisualDiffInteraction” function to indicate differences

in the strength of intercellular communication and the

“IdentifyCommunicationPatterns” function to indicate an

estimate of the number of communication patterns. We used a

significance threshold setting with a P-value cutoff of 0.05 to predict

cell-cell interactions between different cell types.
2.10 Construction and validation of the
prognostic model

To elucidate the impact of CRC-associated TCs on predicting

patient survival, we employed marker genes of critical tumor cell

subtypes as predictive factors for the construction of a prognostic

model. Employing univariate Cox analysis and LASSO regression

analysis (73–75), we identified the most significant prognostic

genes. Multivariate Cox regression analysis was then conducted to

calculate the risk coefficients for each prognostic gene (76–78),

enabling the establishment of a risk score model:

Risk score =on
i Xi� Yi, where X represents the coefficient and

Y represents the gene expression level.

Patients were categorized into low-risk and high-risk groups

based on the optimal cutoff value calculated using the

“surv_cutpoint” function. To observe the prognostic outcomes in

different patient cohorts, we further utilized the R package “Survival”

(version 3.3.1) for survival analysis of the constructed risk score

model and visualized survival curves using the “ggsurvplot” function.

The accuracy and calibration of the predictive model were evaluated

and calibrated using the “timeROC” package (version 0.4.0) to plot

ROC curves. The AUC values for the time-dependent ROC curve

were computed at different time intervals to evaluate the model’s

predictive accuracy over time (79).

CIBERSORT R package is a machine learning approach, which

estimates the abundance of cell clusters in bulk RNA-seq data (80).

We used this tool to digitally purify the transcriptomes of individual

cell clusters from bulk data without isolating single cells. We

extracted the transcripts per million (TPM) normalization

datasets of selected cell types including CD8+ T cells, fibroblasts,

myeloid cells and epithelial cells to create the signature matrix in

1000 permutations and without batch correction. We then divided

the CRC patients available in the TCGA database into training and

testing cohorts at a 1:1 ratio using survival-based randomisation

and estimated the proportion of each cell cluster in the training and

testing cohorts, respectively, using CIBERSORT. Notably, the bulk

RNA-seq data from TCGA was initially normalized to TPM values.
2.11 Cell culture

NIC-H716 and SW837 cell lines were obtained from American

Type Culture Collection (ATCC). NIC-H716 cell line was cultured

in RPMI 1640 medium containing 10% fetal bovine serum (FBS)

and 1% penicillin-streptomycin under standard conditions (37°C,

5% CO2, 95% humidity). SW837 cell line was cultured in RPMI

1640 medium containing 10% fetal bovine serum (FBS), 1%
frontiersin.org
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penicillin-streptomycin under standard conditions (37°C, 5% CO2,

95% humidity) (81).
2.12 Cell transfection

DLX2 knockdown was achieved using small interfering RNA

(siRNA) constructs from GenePharma (Suzhou, China).

Transfection was performed following the manufacturer’s

instructions of Lipofectamine 3000 RNAiMAX (Invitrogen, USA).

Cells were seeded at 50% confluency in 6-well plates and transfected

with negative control (si-NC) and knockdown constructs (Si-DLX2-

1 and Si-DLX2-2). Lipofectamine 3000 RNAiMAX (Invitrogen,

USA) was used for each transfection.
2.13 Cell viability assay

Cell viability of transfected NIC-H716 and SW837 cells was

assessed using CCK-8 assay. Cells were seeded in 96-well plates at a

density of 5×10³ cells per well and cultured for 24 hours. After

adding 10mL of CCK-8 reagent (A311-01, Vazyme) per well, plates

were incubated at 37°C in the dark for 2 hours. Absorbance at

450nm was measured using a microplate reader (A33978, Thermo)

on days 1, 2, 3, and 4 post-transfection. Mean OD values were

calculated and plotted (82).
2.14 Wound-healing assay

Stably transfected cells were seeded in 6-well plates and grown

to confluence. A sterile 200mL pipette tip was used to scratch each

well, which was then washed with PBS to remove cell debris and

incubated in serum-free medium. Images of the scratches were

captured at 0 hours and 48 hours, and the width of the scratch was

measured using Image-J software (21).
2.15 Transwell assay

Cells were starved in serum-free medium for 24 hours prior to

the experiment. Following treatment with Matrigel (BD

Biosciences, USA), cell suspension was added to the upper

chamber of Costar plates, with serum-containing medium in the

lower chamber. Cells were incubated for 48 hours in a cell culture

incubator. Following cultivation, cells were fixed with 4%

paraformaldehyde and stained with crystal violet to assess their

invasive capacity.
2.16 5-Ethynyl-2’-deoxyuridine
proliferation assay

Transfected NIC-H716 and SW837 cells were seeded at 5×10³

cells per well in 6-well plates and cultured overnight. Subsequently,
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with serum-free medium. After a 2-hour incubation at 37°C, cells

were washed with PBS, fixed with 4% paraformaldehyde for 30

minutes, permeabilized with 2 mg/mL glycine and 0.5% Triton

X-100 for 15 minutes, and then stained with a mixture of 1X Apollo

and 1X Hoechst 33342 for 30 minutes at room temperature. Cell

proliferation was quantified using fluorescence microscopy.
3 Results

3.1 Single-cell mapping of CRC was
obtained by scRNA-seq, yielding 8
cell types

To identify the major cell types during CRC progression, we

collected 13 tissue samples containing adenoma, blood, carcinom,

normal and para-cancer from 4 CRC patients on GEO for scRNA-

seq. In addition, we checked the quality and completeness of the raw

data. We then excluded genes in the samples that did not reach the

minimum expression threshold. After initial quality control and

removal of batch effects, we maintained a total of 42,133 cells

(Figure 1A). We classified these 42,133 cells into 32 cell clusters by

dimensionality reduction clustering. Based on cellular genetic profiles

and typical markers, we finally identified the 32 cell clusters into 8 cell

types, including T and NK cells (CD3D), fibroblasts (DCN), mast cells

(MCs, TPSB2), epithelial cells (EPCs, PHGR1), B cells (CD74), plasma

cells (JCHAIN), proliferating cells (TUBA1B) and myeloid cells

(LYZ). From the UMAP plots and the bar plots we could learn that

from normal to para-cancer to adenoma and carcinoma, the

proportion of EPCs and proliferating cells roughly increases

gradually, in contrast to a gradual decrease in the proportion of T

and NK cells, and the proportion of B cells from normal to para-

cancer to adenoma was gradually increasing but decreased in

carcinoma; for cell cycle, most EPCs were in the G1 phase, which

was the pre-DNA synthesis period with active material metabolism,

aiming to prepare the material and energy for DNA replication in the

next stage, the S phase (83), whereas T and NK cells were evenly

distributed in all three periods, and proliferating cells were only

present in S and G2M phases, synthesizing DNA as well as making

sufficient preparations for mitosis, in line with their proliferative

properties (Figures 1B–D). The bubble plot showed us the first five

markers used to distinguish cell types, and the results were consistent

with immunology (Figure 1E). The bar graphs showed the expression

levels of nCount-RNA, nFeature-RNA, G2M.Score and S.Score for

different cell types, tissue sources and cell cycle, respectively. From the

results, it could be seen that proliferating cells had the highest

expression levels of all four items, while EPCs, fibroblasts and

plasma cells ranked behind them. In the tissue source, from normal

to para-cancer to adenoma to carcinoma, the expression of both

nCount-RNA and nFeature-RNA gradually increased, and there were

statistically significant differences between all groups (Figures 1F–I).

Among the above cell types, EPCs attracted our attention. EPCs

not only have relatively abundant RNA counts, but also tend to

aggregate gradually during the developmental stages of cancer,
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FIGURE 1

Single-cell analysis was carried out on CRC, including 32 cell populations, 8 cell types, and 5 tissue sources. (A) UMAP plot showed the 32 clusters of
cells in CRC patients (top left); UMAP plot showed the 8 major cell types obtained by dimensionality reduction clustering of cells in CRC (middle);
UMAP plot showed the distribution of sample sources (top right), cell phases (bottom left), and 5 tissue sources (bottom right) of all cells. Each point
corresponded to a single cell colored according to cell cluster or cell type. (B-D) The bar graphs showed the proportion of different cell types in
sample sources (B), tissue sources (C) and cell phases (D) respectively. (E) Bubble plot showed differential expression of top 5 marker genes in CRC
across 8 cell types. Bubble colors were based on normalized data (zscore), and sizes indicated the percentage of genes expressed in each cell type.
(F-I) Bar graphs revealed the expression levels of nCount-RNA, nFeature-RNA, G2M.Score, and S.Score in different cell types, tissue sources and cell
phases. ns stands for P>0.05 and the results are not statistically significant, * stands for P ≤ 0.05, ** stands for P ≤ 0.01, *** stands for P ≤ 0.001 and
**** represents P ≤ 0.0001, a statistically significant difference.
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whereas the tumor cells of CRC originate from the intestinal

epithelial cells of the colon and rectum (84). The tumor cells are

the most fundamental cause of tumors, so we next turned our

attention to the study of CRC’s tumor cells.
3.2 Single-cell sequencing of TCs in
the CRC

Next, we identified malignant tumor cells from epithelial cells

using inferCNV (Supplementary Figure S1). Due to the absence of

blood vessels in the epithelial tissues, we removed the blood tissues

and compiled scRNA-seq data from the remaining four tissues in

the CRC for further subclustering analysis against tumor cells. The

analysis yielded seven clusters, resulting in seven different tumor

cell subtypes: C0 FXYD5+ TCs, C1 APCDD1+ TCs, C2 MUC2+

TCs, C3 HEPACAM2+ TCs, C4 OTOP2+ TCs, C5 SLC26A3+ TCs,

and C6 AVIL+ TCs, and showed the distribution of the various

tissue origins and cellular period distribution in the subtypes

(Figure 2A). Ro/e preference plots combined with box line plots

showed that C6 AVIL+ TCs preferred the G2M phase, while C1

APCDD1+ TCs preferred the S phase, and were favored by adenoma

tissues, whereas in contrast, C2MUC2+ TCs, C4 OTOP2+ TCs, and

C5 SLC26A3+ TCs were found overwhelmingly in the normal tissue

and para-cancer tissues, whereas C0 FXYD5+ TCs preferred

carcinoma tissues (Figures 2B, C). The above tissue distribution

features suggested that C1 APCDD1+ TCs may be a watershed for

colorectal progression from adenoma to malignancy, whereas C0

FXYD5+ TCs was a subtype that had become cancerous. The top

five marker genes obtained by enrichment in different TCs subtypes

were next visualized by bubble plots. We could see that S100A11

was significantly enriched in C0 FXYD5+ TCs, whereas

overexpression of S100A11 in cytoplasmic and nuclear subcellular

compartments was associated with tumor metastasis and poor

prognosis in patients with CRC and meta-analyses demonstrated

that the expression level of S100A11 in CRC tissues significantly

elevated in CRC tissues, a marker gene for clinical use in identifying

CRC (85, 86). Meanwhile, SELENBP1 was also noteworthy, as it was

highly expressed in C1 APCDD1+ TCs, and studies had shown that

it was down-regulated in CRC but not in normal tissue or adenoma

tissue (87), a typical oncogene that inhibits colorectal cancer

progression by suppressing the EMT (88), whereas it was low-

expressed in C0 FXYD5+ TCs, reflecting its intermediary role in the

progression from C1 APCDD1+ TCs to C0 FXYD5+ TCs

(Figure 2D). From the UMAP plots and bar graphs, we could tell

that the C0 FXYD5+ TCs and C1 APCDD1+ TCs subtypes had an

abundant number of RNA, as well as a higher CNVscore for C0

FXYD5+ TCs and C2 MUC2+ TCs (Figures 2E–G).

Finally, the violin plots showed the marker genes of each TCs

subtype in turn (Figures 2H–N), which had shown corresponding

expression advantages in their respective subtypes. FXYD5 in C0

FXYD5+ TCs deserved our attention, as it had been shown to

activate TGF-b/SMAD signaling and drive EMT to promote

ovarian cancer progression, and to form a positive feedback loop

to drive EMT during the progression of ovarian cancer and to

promote tumor growth and metastasis (89); meanwhile, recent
Frontiers in Immunology 07
study also showed that FXYD5 was upregulated in various tumor

types and positively correlates with tumor progression (90).
3.3 Analysis of stemness genes in
TCs subtypes

To explore the expression of stemness genes in TCs subtypes and

to comprehend their proliferative differentiation potential, we used

bubble plot to illustrate the different expression of stemness genes in

TCs subtypes (Figure 3A). The differential expression analysis was

intended to provide a holistic view of stemness-related gene

expression, including both high and low-expression markers, to

fully capture the diversity of stemness-associated features across

tumor cell subtypes. Results showed the corresponding expression

of stemness genes KDM5B, EPAS1, CTNNB1, MYC, KLF4 and CD44

in TCs subtypes and different tissue sources, with MYC highly

expressed in C0 FXYD5+ TCs and PROM1 in C1 APCDD1+ TCs.

Following this, UMAP plot showed the AUC scores of cells stemness

in different tissue sources, which were significantly higher in

adenoma and carcinoma than in normal and para-cancer

(Figure 3B). Next, bar graphs showed the AUC scores of stemness

genes in different TCs subtypes and in the cell cycle, respectively

(Figures 3C, D). We next enumerated the stemness genes enriched in

different TCs subtypes and different tissue sources using bubble plots,

respectively, and the results remained that MYC was significantly

enriched in C0 FXYD5+ TCs, and for the tissues, PROM1, NOTCH1,

and CD44 were enriched in adenoma, whereas KDM5B and MYC

were enriched in carcinoma. Stemness genes were also enriched in

normal and para-cancer, but at lower levels, which suggested that

adenoma and carcinoma tissues had a higher proliferative potential

(Figure 3E). Finally, we visualized and compared the stemness genes

with higher expression in C0 FXYD5+ TCs and C1 APCDD1+ TCs

using box line plots, and the results further validated the previous

results, showing a stronger proliferative capacity in C0 FXYD5+ TCs

and C1 APCDD1+ TCs as well as adenoma and carcinoma

(Figures 3F–I).
3.4 Construction of single-cell trajectories
of TCs using Monocle and Slingshot for
pseudotime analysis

Based on the above results, in order to further clarify the

differentiation status of TCs subtypes, we first used CytoTRACE

to clustered all tumor cells, and obtained UMAP plots and box line

plots of cell stemness prediction ordering (Figures 4A, B). From

these three plots, we could learn that the C0 FXYD5+ TCs and C1

APCDD1+ TCs subtypes were in a high stemness and low

differentiation state, which was consistent with the above results

(Figure 3). Next, the bar graphs showed the genes that correlated

with the CytoTRACE results, where greater than 0 was a positive

correlation and vice versa was a negative correlation (Figure 4C).

We then performed Monocle analysis of tumor cells to obtain a

pseudotime atlas of tumor cell subtypes, colored by the order of

pseudotime, different subtypes, and different tissue sources
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FIGURE 2

7 TCs subtypes were identified by different markers. (A) UMAP plot demonstrated the 7 cell subtypes of TCs in CRC patients and the number of cells
in each cell subtype (top left); UMAP plot demonstrated the distribution of 7 clusters (top right), 4 tissue sources (bottom left) and cell phases
(bottom right) in the 7 TCs subtypes respectively. Each point corresponded to a single cell colored according to cell different groups. (B) Cell phases
(left) and tissue sources (right) preference of each TCs subtype estimated by Ro/e score. (C) The box line plots showed the proportion of different
tissue sources in each TCs subtype. (D) Bubble plot showed differential expression of top 5 maker genes in 7 TCs subtypes. Bubble colors were
based on normalized data (zscore) and sizes indicated the percentage of genes expressed in each subtype. (E-G) UMAP and bar plots revealed the
expression levels of nFeature-RNA, CNVscore and nCount-RNA in different TCs subtypes. (H-N) Violin plots showed the expression levels of named
gene in each of the TCs subtypes, in order of subtype nomenclature.
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(Figures 4D–G). First, the pseudotime order speculated that the

developmental trajectory started at the bottom left corner and

branches out to two more trajectories when it reached state 1.

Also in conjunction with the subtypes of TCs, C2 MUC2+ TCs, C4

OTOP2+ TCs, and C5 SLC26A3+ TCs subtypes were concentrated

in early developmental trajectories, whereas C1 APCDD1+ TCs, C3
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HEPACAM2+ TCs, and C6 AVIL+ TCs were concentrated in late

developmental trajectories, and unlike C0 FXYD5+ TCs subtype, it

was found in mid- to late-developmental trajectories; for the tissue

origin, normal and para-cancer tissues were present at the initial

developmental stage, which later i.e., developed into the adenoma

and carcinoma.
FIGURE 3

Analysis of cell stemness in TCs subtypes. (A) Bubble plot showed expression of stemness genes in 7 TCs subtypes. Bubble colors were based on
normalized data (zscore) and sizes indicated the percentage of genes expressed in each subtype. (B) The UMAP plots showed the cell stemness AUC
values for different tissue sources in TCs, respectively. (C, D) Bar graphs revealed the AUC values of TCs cell stemness in different subtypes (C) and
cell phases (D) ns stands for P>0.05 and the results are not statistically significant and **** represents P ≤ 0.0001, a statistically significant difference.
(E) Bubble plots demonstrated the expression of stemness genes in different cell subtypes (left) and tissue sources (right), where the colors indicated
high or low average expression levels and sizes indicated the percentage of genes expressed in each subtype and tissue source. (F-I) Box line plots
visualized the 4 stemness genes expressed in TCs tissue sources and subtypes. ns stands for P>0.05 and the results are not statistically significant,
** stands for P ≤ 0.01, *** stands for P ≤ 0.001 and **** represents P ≤ 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1509658
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2024.1509658
FIGURE 4

CytoTRACE and SlingShot analyses demonstrated the developmental trajectories of different subtypes of TCs. (A) The left panel demonstrated the
distribution of TCs CytoTRACE scores. The color represented high or low cell stemness. The right panel indicated the distribution of TCs subtypes.
The color represented different TCs subtypes. (B) Box line plot ranked the stemness of TCs subtypes according to CytoTRACE. (C) The bar graph
showed the correlation of different genes with CytoTRACE, where higher than 0 indicates a positive correlation and less than 0 indicates a negative
correlation. (D) Pseudotemporal trajectory plot demonstrated monocle-predicted differentiation trajectories of TCs. The distribution of pseudotime
order by Monocle were shown. (E) Violin plots demonstrated the pseudotime distribution and density of different subtypes of TCs. (F, G) The
pseudotime distribution of subtypes (F) and tissue sources (G) of TCs by Monocle were shown respectively. (H) Demonstration of the distribution of
slingshot-predicted TCs differentiation trajectories among all TCs by UMAP plot. Plotting each spectrum according to the pseudotime value to infer
the result, the color from blue to red indicates the pseudotime from naïve to mature. (I) Ridgeline plots demonstrated the pseudotime distribution
and density of different subtypes of TCs. (J) The distribution of differentiation trajectory of 3 states fitted by the pseudotime order in all tumor cells.
(K) The distribution of four differentiation trajectories of 7 TCs subtypes fitted by the pseudotime order in all tumor cells. (L) Dynamic trend plots
demonstrated the trajectories of named genes of 7 cell subtypes of tumor cells changing on four lineages obtained after slingshot visualization.
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Furthermore, we then performed Slingshot analysis on tumor

cells, which resulted in a pseudotime speculative map colored by

pseudotime order and based on the UMAP plot obtained earlier

(Figure 4H). Combined with the ridge plot, the analysis showed

that, again, C2 MUC2+ TCs, C4 OTOP2+ TCs, and C5 SLC26A3+

TCs subtypes were at the anterior end of the developmental

trajectory, while the rest of the subtypes were located in the

middle to posterior (Figure 4I). By observing how Slingshot’s

spectral differentiation trajectories were plotted, we could learn

that tumor cells go from state 1 to state 3 to state 2; at the same time,

this result yielded four spectral trajectories based on cell subtypes, as

follows: Lineage1: C5 to C2 to C1 to C0; Lineage2: C5 to C2 to C1 to

C3; Lineage3: C5 to C2 to C1 to C6; Lineage4: C5 to C2 to C4

(Figures 4J, K). The differences between the four trajectories were

mainly in the late stage, with lineage1 ending at C0, lineage2 at C3,

lineage3 at C6, and lineage4 at C4, where C0 not only had a

preference for, but also a high percentage of tumor tissue. Hence,

we predicted that lineage1 represented the lineage of differentiation

of TCs associated with CRC tumorigenesis. Furthermore, we noted

that lineage1 passed through C1, which was predominantly

organized as adenoma, a precancerous, benign tumor, and

previous studies had reported that participants with positive

diagnostic colonoscopy results and advanced adenomas had a

significantly increased risk of colorectal cancer compared to

participants without adenomas (91). Therefore, studying how C1

progresses to C0 and the key factors that drive the epithelium to

change from benign to malignant has important implications for

how to stop CRC from occurring and worsening. Finally, the

dynamic trends plots displayed the expression changes and

distribution of marker genes for TCs subtypes across the four

differentiation trajectories in pseudotime (Figure 4L).
3.5 All TCs subtypes were analyzed for
enrichment, especially C0 FXYD5+ TCs

Then, we performed GO-BP DEGs in TCs subtypes to reveal

their enrichment in biological processes. Heatmap displayed the

results of the top five enriched items in the seven TCs subtypes

(Figure 5A). The C0 subtype was mainly associated with pathways

such as cytoplasmic translation, aerobic respiration, oxidative

phosphorylation, cellular respiration and energy derivation by

oxidation of organic compounds; The C1 subtype was enriched in

pathways such as cytoplasmic translation, ribonucleoprotein complex

biogenesis, ribosome biogenesis, ribosome assembly and

ribonucleoprotein complex; The C2 subtype revealed their close

association with antigen processing and presentation of

endogenous antigen, endogenous peptide antigen or peptide

antigen; The C3 subtype showed enrichment in pathways such as

protein targeting to endoplasmic reticulum (ER), establishment of

protein localization to endoplasmic reticulum, cotranslational protein

targeting tomembrane and response to endoplasmic reticulum stress;

The C4 subtype was enriched in pathways related to stress response

to metal and copper ion, detoxification of copper ion and inorganic

compound and regulation of cell morphogenesis; The C5 subtype
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process, viral life cycle, negative regulation of response to external

stimulus, cellular hormone metabolic process and primary alcohol

metabolic process; The C6 subtype revealed pathways related to actin

filament organization, regulation of actin filament-based process,

supramolecular fiber organization and actin cytoskeleton

organization and mononuclear cell differentiation. The enrichment

items derived from the C0 subtype caught our attention, and the last

four items were all related to cellular energy metabolism, which

corresponds to the increased energy metabolism that occurred after

cancerous transformation, e.g., in order to maintain proliferative and

metastatic capacity, tumor cells increased their energy-producing

pathways (92), and which we conjecture mediate cytoplasmic and

mitochondrial translational homeostasis in order to modulate the

respiratory capacity of the mitochondria to provide the tumor cells to

provide energy to adapt to different environmental stresses and

growth demands (93). This implied that C0 subtype was strongly

correlated with tumor tissue development and progression. Next, we

utilized volcano plots to demonstrate the spectrum of DEGs among

TCs subtypes (Figure 5B). The results showed that the main DEGs

upregulated in C0 subtype were TMSB10, S100A10, CLIC1, GSTP1

and RPS21. Among them, TMSB10, S100A10, CLIC1 and GSTP1

have been shown in previous studies to have an oncogenic

mechanism in the colorectum as well as to contribute to the poor

prognosis of colorectal cancer, and TMSB10 could be used as a

minimally invasive serum tumor marker for the detection of CRC,

while CLIC1 and GSTP1 may be potential prognostic biomarkers for

patients with CRC (94–97).

In addition, the bubble plot showed the results of

GSEA (Figure 5C). The results showed that the C0 subtype

was significantly expressed in the pathways of translation,

peptide biosynthetic process, amide biosynthetic process and

ribonucleoprotein complex biogenesis. All these pathways

indicated that energy metabolism as well as ribose and protein

synthesis were actively taking place in the C0 subtype, providing a

material basis for the rapid proliferation of tumor cells. The word

cloud map showed the pathways enriched in DEGs in the TCs

subtypes (Figures 5D–J). Consistent with the above results, it

indicated that the C0 subtype was undergoing enriched metabolic

and oxidative reactions and substance synthesis. Finally, we

performed a GSEA of DEGs in the C0 subtype according to GO-

BP (Figure 5K). We observed that pathways associated with

cytoplasmic translation, amide biosynthetic process, peptide

biosynthetic process and ribonucleoprotein complex subunit

organization, which were consistent with the previous enrichment

items, were upregulated in the C0 subtype. While pathways

associated with defense response to gram-positive bacterium,

positive regulation of cyclase activity and lyase activity and

regulation of cyclase activity were down-regulated in the C0

subtype. Where for positive regulation of lyase activity decreases,

it may lead to increased levels of degradative enzymes, which in turn

are able to degrade proteoglycan basement membrane components,

promoting increased tumor cell detachment from the primary

tumor and local invasion, resulting in a poor prognosis (98).

Thus, the items enriched by various methods in the C0 subtype
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were suggestive that the C0 subtype might be transforming into

tumors with a more aggressive and poorer prognosis, and that

we could incorporate this feature into risk group of the

tumor population.
3.6 TFs regulate the oncogenesis of C0
FXYD5+ TCs subtype

TFs act directly on the genome to regulate gene transcription by

binding to specific nucleotide sequences upstream of genes, thereby

affecting the biological functions of cells. Here, we analyzed the gene

regulatory network of the C0 subtype using scenic analysis. First, we

performed a dimensionality reduction clustering of TCs based on
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the activities of regulatory factors and listed the results from

different tissue sources (Figures 6A, B). Among them, the C0

subtype still mainly consisted of carcinoma tissues. Next, we

observed the correlation between the TCs subtypes. Considering

that different TFs can co-regulate the expression of certain genes,

based on the connectivity specificity index (CSI), we categorized the

TCs subtypes into three modules of regulatory factors: M1, M2 and

M3 (Figure 6C). These three regulatory submodules showed TFs

that may be cooperative with each other in gene regulation. As

shown in the bar graphs, the M3 regulatory submodule may take a

major regulatory role in the biological functions of the C0, C1, and

C3 subtypes (Figure 6D). Meanwhile, the M3 regulatory submodule

was also the dominant regulatory module for the C0 subtype

(Figure 6E). By further analyzing the key regulators of different
FIGURE 5

Functional enrichment analysis results of differentially expressed genes in 7 TCs subtypes. (A) The heatmap showed the GO-BP enrichment term
scores. zscore > 0 was positive enrichment and < 0 was negative enrichment. (B) Volcano plots showed differentially expressed genes in 7 subtypes.
(C) GSEA analysis diagram of different pathways in each TCs subtype. NES > 0 was positive enrichment and < 0 was negative enrichment. NES, N
stands for standardization, and ES for enrichment scores. (D-J) Word cloud diagrams demonstrated the activity of different pathways in TCs
subtypes. (K) GSEA results among C0 FXYD5+ TCs.
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FIGURE 6

Identification of tumor cells Gene Regulatory Network. (A, B) UMAP plot visualization of all TCs based on regulator activity. Colored according to cell
subtype. Pie charts showed the proportion of different tissue sources in TCs subtypes. (C) Based on the CSI matrix, three regulatory modules of TCs
subtypes were identified. (D) Bar graphs illustrated the expression levels of different regulatory modules in subtypes of TCs. (E) In subtypes, the
ranking of regulators in different regulation modules based on fraction of variance. (F, G) Rank for regulons in different TCs subtypes based on
regulon specificity score (RSS). (H) C0 FXYD5+ TCs were highlighted in the UMAP plot (red). (I) Expression of key regulators CEBPB, ETV4, NR1H4
and XBP1 of C0 FXYD5+ TCs in all TCs.
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TCs subtypes, it was found that three of the five major regulators of

the C0 subtype, ETV4, MYC and XBP1, were present in the M3

regulatory submodule (Figures 6F, G). The expression of TFs in the

C0 subtype was labeled in the UMAP plot (Figures 6H, I). It is

worth noting that previous studies have indicated that CEBPB

regulates the bile acid receptor FXR to accelerate colon cancer

progression by modulating aerobic glycolysis (99), corresponding to

the analysis of its enrichment pathway; whereas, the expression of

ETV4 was significantly correlated with the depth of infiltration,

lymphovascular and venous infiltration, lymph node and distant

metastasis, and the stage of lymph node metastasis of the pathologic

tumors in terms of progression and recurrence, which suggests an

unfavorable prognosis (100); while the expression of XBP1 could

also promote the proliferation of colon cancer cells (101). These

were all factors of poor prognosis of CRC.
3.7 CellChat analyzes the communication
of all cells

In order to specifically elucidate complex cellular responses, we

intended to explore intercellular relationships and ligand-receptor

communication networks for a better understanding of intercellular

interactions. Through analyses via CellChat, we preliminarily

established intercellular communication networks involving a

variety of cells, such as proliferating cells, fibroblasts, T and NK

cells, and different subtypes of TCs (Figures 7A, B). We also

established a communication network with C0 FXYD5+ TCs as the

source cells and target cells (Figures 7C, D). After building the

intercellular communication network using CellChat analysis, we

accounted for the number of interactions (expressed in terms of the

thickness of the connecting lines between the two types of cells) and

the strength of the interactions (expressed in terms of the weight of

the connecting lines, with thicker lines indicating stronger

interactions). This method helped to quantify the complexity and

strength of the communication pathways between different cell types

in the network. From the intricate communication network diagram,

we could see that C0 FXYD5+ TCs sent positive communication

signals to almost all cells, while fibroblasts and proliferating cells are

the cell types that give it the most responses. Next, we used the gene

expression pattern analysis method provided by CellChat to examine

how cells and signaling pathways interact with each other

(Figures 7E, F). First, we assessed the relationship between the

inferred potential communication patterns and the population of

cells secreting signaling molecules to decipher the outgoing

communication patterns. Through our analysis, we identified three

distinct signaling patterns: pattern 1 (tumor cells and proliferating

cells), pattern 2 (fibroblasts), and pattern 3 (myeloid cells, B cells,

plasma cells, MCs, and T and NK cells). Whereas for the incoming

communication mode, the distinct signaling patterns: pattern 1 (C1

APCDD1+ TCs, proliferating cells, fibroblasts, C0 FXYD5+ TCs, C6

AVIL+ TCs and C3 HEPACAM2+ TCs), pattern 2 (myeloid cells, B

cells, T cells and NK cells, MCs and plasma cells), and pattern 3 (C2

MUC2+ TCs, C4 OTOP2+ TCs and C5 SLC26A3+ TCs). Next, the

heatmaps showed the signaling molecules of various types of cells

under outgoing signaling patterns and under incoming signaling
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patterns, respectively (Figure 7G). Finally, to identify the major

afferent and efferent signals associated with the seven TCs subtypes,

we quantified the ligand-receptor network using CellChat

(Figures 7H, I). With this approach, we could predict the major

outgoing signals from secretory cells (signal senders) that release

various cytokines or ligands. In addition, we evaluated on which cell

types act as target cells (signal receivers) and how ligand-receptor-

mediated communication between different cell types contributes to

the progression of CRC. This analysis helps to illustrate how

receptors on these cells are targeted by ligands released by the same

or other cell types. In summary, we visualized signaling molecules

between different cell types using multiple communication analyses

that provide support for describing cellular communication.
3.8 Construction of risk score profiles and
immune infiltration analysis

Since we focused on the C0 FXYD5+ TCs subtype, we identified 9

genes that could be used as prognostic features based on the top 100

marker genes of the FXYD5+ TCs subtype by univariate Cox regression

analysis (Figure 8A), of which ETS2 and ATOH1 were protective

factors (HR < 1), and the other genes were risk factors. To address the

problem of multicollinearity among these genes, we further screened

them using LASSO regression analysis and multivariate regression

analysis and finally identified 8 genes associated with prognosis

(Figures 8B–D). The one that caught our attention was DLX2, which

was the most dangerous prognostic factor among them with the largest

HR. To further investigate the impact of FXYD5 highly expressed TCs

on CRC patients, we categorized patients in the TCGA cohort into high

and low FTRS (FXYD5+ TCs risk score) groups based on the identified

8 prognostic genes. Subsequently, we created a Nomogram survival

predictionmodel for OS in CRC patients using autonomous prognostic

factors to predict the prognosis of CRC patients (Figure 8E). Themodel

was validated and performed well in predicting the OS C index

(Figure 8F). Subsequent prognostic gene versus risk correlation plots,

as well as ridge and box line plots, illustrated the clear correlation of

prognostic genes with risk and variability across risk groups

(Figures 8G–H). It could be seen that the difference between the two

groups for our gene of interest, DLX2, was statistically significant and

was expressed higher in the high FTRS group than in the low FTRS

group. Next, to assess the accuracy of risk scores in predicting 1-, 3- and

5-year survival in patients with CRC, we performed ROC curve

analyses on the three cohorts. The results showed high predictive

accuracy with AUC (1-year) = 0.641, AUC (3-years) = 0.658, and AUC

(5-years) = 0.691 (Figure 8I). Moreover, calibration curves were plotted

to show the consistency between predicted and observed values for 1-,

3- and 5-year OS in both the training and validation cohorts

(Figure 8J), which showed good agreement. The PCA plot also

provided further evidence of the discrete and differential character of

the high and low FTRS groups (Figure 8K). With definitive evidence,

we next analyzed the calculation of coefficient values for these

prognostic genes (Figure 8L). Using Kaplan-Meier survival curves,

we first confirmed the poor prognosis corresponding to high

expression of DLX2, and then we further concluded that the survival

outcome was worse in the high FTRS group (Figures 8M, N). DLX2
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was demonstrated to be associated with EMT in osteosarcoma in

previous studies and its increased expression was associated with

advanced gastric adenocarcinoma, but no article defining the

relationship between DLX2 and poor prognosis in colorectal cancer

could be found yet (102, 103).

The CIBERSORT analysis revealed the immune infiltration in the

tumor samples. With the heatmap, we could observe the estimated

proportion of immune cells in the high and low FTRS groups

(Figure 8O). From the box line plot, we could easily see that there
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was a statistically significant difference in immune cell expression

between the different groups (Figure 8P). Also, we were able to find

that the relatively high expression of immune cells in the high FTRS

group was positively correlated with the risk score (Figures 8Q, R).

For example, T cells regulatory (Treg) relatively high expression in

the high FTRS group and positive correlation with risk score

represented a poor prognosis. Tregs have been documented in

malignant tumors, where they promote tumor progression by

suppressing effective anti-tumor immunity and are associated with
FIGURE 7

Communication analysis of all cells in CRC. (A, B) Circle plots showed the number (A) and strength (B) of interactions between all cells. (C, D) Circle
plots of the number of cellular interactions with C0 FXYD5+ TCs as source (C) and target (D). (E, F) Heatmap showed pattern recognition of
outgoing cells (E), and incoming cells (F) among all cells. (G) Heatmap showed ligands and receptors related to the incoming and outgoing signals of
cell interactions. (H, I) Outgoing contribution bubble plot and incoming contribution bubble plot demonstrated the communication patterns
between the secreting cells and target cells of CRC, the color of the dots indicated different cells and the size of the dots indicated the contribution
of cells.
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a poor prognosis in various types of human cancers (104). In

addition, we used ESTIMATE to calculate the stromal score,

immune score, and ESTIMATE score for the high FTRS group and

low FTRS group, and found that all the scores of the high FTRS group

were significantly higher than those of the low FTRS group, which

indicated that the level of immune cell infiltration in the tumor

samples of the high FTRS group was higher (Figure 8S). In addition,

tumor purity was higher in the low FTRS group than in the high
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FTRS group (Figure 8T). Since low tumor purity was associated with

extensive infiltration of stromal and immune cells, it was

independently associated with shorter survival time and faster

recurrence, and significantly correlated with mesenchymal, invasive,

and metastatic phenotypes suggesting a poor prognosis that

corresponds to the prognostic curve. Finally, TIDE is a tool used to

comprehensively assess tumor immune escape mechanisms and

predict response to immune checkpoint inhibitor (ICI) therapy,
FIGURE 8 (Continued)
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FIGURE 8 (Continued)

Constructed risk score profiles and immune infiltration and survival prognostic analyses for CRC. (A) Forest plot from univariate Cox regression
analysis showcased statistically significant genes (P<0.05) with HR<1 indicating protective factors and HR>1 indicating risk factors. (B, C) Selection of
eight prognostic-related genes (non-zero regression coefficients) was made via LASSO regression analysis, LASSO coefficient curve determined by
optimal lambda (B), with optimal parameter (lambda) determined through cross-validation (C). (D) Forest plot of eight prognosis-related genes. (E)
Column line graphs were used to predict patients’ prognosis at 1 year, 3 years and 5 years. For categorical variables, the importance of each variable
was ranked according to the standard deviation of the column-line graph scale. To use a column line plot, individual patient-specific points are
located on each variable axis. Red lines and dots are plotted upward to identify the point at which each variable is received; the sum of these points
(280) is located on the Total Points axis, and a line is plotted downward to the Survival axis to identify the probability of overall survival.
(F) Box line plots depict the C-index of the AUC values of the risk scores for predicting 1-, 3-, and 5-year survival. (G) Four genes that showed a
significant correlation with the risk scores (DLX2, SOX12, ETS2 and ATOH1). (H) The ridge and box line plots showed that gene expression of these
four genes (DLX2, SOX12, MAFK, IRF7) was higher in the high-risk group compared to the low-risk group, while gene expression of these four genes
(ZNF580, RUNX3, ATOH1, ETS2) was lower in the high-risk group. (I) ROC curves depict the sensitivity and specificity of the risk scores for
predicting 1-, 3-, and 5-year survival. (J) Calibration curves for column charts predicting 1-, 3-, and 5-year overall survival. The OS predicted by the
line plot model is plotted on the x-axis and the actual OS is plotted on the y-axis. (K) The PCA plot demonstrated the difference in the distribution
of prognosis-related genes in the high FTRS and low FTRS groups. (L) Bar chart showed the coefficient (Coef) values of genes utilized for model
construction. (M) OS curve of DLX2, a highly expressed gene screened by LASSO. (N) OS curves for different scoring subgroups in a cohort (high
FTRS group and low FTRS group). (O) Proportion of each infiltrating immune cell type in the high- and low-FTRS groups were shown using
CIBERSOFT. (P) Statistically different infiltrating immune cell type in the high- and low-FTRS groups were demonstrated using CIBERSOFT. * stands
for P ≤ 0.05, ** stands for P ≤ 0.01 and **** represents P ≤ 0.0001. (Q) Lollipop chart of immune cell versus risk score. (R) Heatmap demonstrated
the difference in expression of different immune cells in the two risk groups. (S) Stromal score, immune score, and estimate score were calculated
for the high- and low-FTRS groups, respectively, using ESTIMATE. * stands for P ≤ 0.05, ** stands for P ≤ 0.01 and *** represents P ≤ 0.001. (T)
TumorPurity was calculated using ESTIMATE for the high- and low-FTRS groups, respectively. ** stands for P ≤ 0.01. (U) Violin plot demonstrating
the difference in Tumor Immune Dysfunction and Exclusion (TIDE) scores in the two risk groups. **** represents P ≤ 0.0001, a statistically
significant difference.
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with higher TIDE scores correlating with poorer immune checkpoint

inhibition therapy (105), and violin plot of high FTRS group scores

being significantly greater than lower groups (Figure 8U).
3.9 Identification of differentially expressed
genes and their enrichment analysis results
and drug sensitivity analysis

Immediately following the previous section, we proceeded to

show the differential expression patterns of the genes used to

construct the model using heatmap (Figure 9A). In addition, the

curve and scatter plots showed the differences in risk scores and

survival results between the two risk groups, suggesting that the

high FTRS group was associated with a poorer prognosis,

corresponding to the previous section (Figure 9B).

Next, volcano plot showed up- and down-regulated DEGs

(Figure 9C). The filtering criteria for fold change were based on a

log2 fold change threshold of 2, which meant that only genes with a

fold change greater than or equal to 4 (or less than or equal to -4) were

considered as differentially expressed. In addition to this fold change

criterion, a p-value cutoff of 0.05 was applied to further refine the

selection of significant DEGs. We then used these DEGs to gain insight

into the biological processes involved by employing various enrichment

methods. All GO enrichment results and their terms were shown, with

different colors representing different subclasses (Figure 9D). GO-CC

enrichment analysis showed that DEGs were predominantly enriched

in lamellar body and rough endoplasmic reticulum, the latter of which

suggested that there may be abundant protein synthesis in high-risk

groups (Figure 9E). In GO-MF enrichment analysis, we observed

enrichment in hormone and receptor ligand activity, suggesting that

there may be an abundance of communication (Figure 9F). As for GO-

BP enrichment analysis, the items mainly including regulation of lipid
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localization, intestinal lipid absorption and lipid transport (Figure 9G).

All of the above enriched items are associated with lipid metabolism,

and the former has been richly studied for its association with cancer.

Dysregulated lipid metabolism is one of the most prominent metabolic

alterations in cancer, and cancer cells utilize lipid metabolism for

energy, biofilm components, and signaling molecules required for

proliferation, survival, invasion, metastasis, and response to tumor

microenvironmental influences and cancer therapy (106, 107). For

another enrichmentmethod analysis KEGG, the pathways weremainly

AMPK, adipocytokine and PPAR signaling pathway (Figure 9H).

Among them, AMPK plays a crucial role in maintaining energy

homeostasis and metabolism, and its aberrant activation can lead to

pro-carcinogenic effects, which is a double-edged sword (108); recent

studies also show that AMPK signaling can also reversibly regulate

highly activeMAPK signaling in cancer cells by phosphorylating its key

component, the RAF/KSR family of kinases, which not only affects

carcinogenesis, but also the outcome of targeted cancer therapy against

MAPK signaling. And there was an experiment showing that

adipocytokines were involved in the carcinogenesis process (109),

and an adipocytokine, LCN-2, has been reported to have the ability

to destroy the extracellular matrix, which may lead to cancer

progression and metastatic spread (110). At the same time, previous

article had shown that PPAR-d upregulation increases susceptibility to

colon tumorigenesis, which may impact the development of strategies

to molecularly target PPAR-d in cancer and non-cancer diseases (111).

Through the GSEA results we found that up-regulated DEGs were

mainly enriched in the processes of antigen processing and

presentation of exogenous peptide antigen, collagen fibril

organization, intermediate filament-based process and regulation of

intestinal absorption, while down-regulated DEGs were enriched in

xenobiotic glucuronidation, midgut development, regulation of

chromosome condensation and uronic acid metabolic

process (Figure 9I).
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Finally, in order to study the sensitivity of the high and low

FTRS groups to different drugs, we predicted the drug sensitivity of

each patient based on the drug sensitivity data in the GDSC

database using the “pRRophetic” R software package. The results
Frontiers in Immunology 18
showed that the drugs AZD6244, CGP.082996, and FTI.277 had

lower IC50 values and higher drug sensitivities in tumor cells of the

high FTRS group, whereas the other drugs had lower IC50 values in

tumor cells of the low FTRS group (Figures 9J–O).
FIGURE 9

Enrichment analysis and drug sensitivity analysis in different risk groups. (A) Heatmap displayed differential expression of model genes, with color
scale based on normalized data. (B) Curve chart illustrated the risk scores of high and low FTRS groups, and scatter plot depicted survival/death
events over time for both groups. (C) Volcano plot showed significantly differentially expressed genes. Each spot represents a gene. (D-H) Bar charts
separately presented the enrichment analysis results of differential genes in all of GO, GO-CC, GO-MF, GO-BP and KEGG pathways for high and low
FTRS groups. (I) Results of GSEA of differentially expressed genes. (J-O) Violin plots demonstrated the sensitivity of tumor cells in the high and low
FTRS risk groups to different drugs. *** represents P ≤ 0.001.
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3.10 In vitro experimental verifications
of DLX2

Through the previous construction of CRC prognostic model, we

obtained the prognostically strongly related gene DLX2. To further

investigate its role in CRC, we performed in vitro experiments using

NCI-H716 and SW837 cell lines. First, we knocked down DLX2 and

measured mRNA and protein expression levels before and after

knockdown. Compared with the control group, we observed a

significant decrease in both mRNA and protein expression levels in

both cell lines (Figure 10A). Subsequently, CCK-8 assay showed that

tumor cell viability was significantly decreased after DLX2

knockdown (Figure 10B). Colony formation assay confirmed that

DLX2 gene knockdown inhibited tumor cell aggregation

(Figure 10C). In addition, after DLX2 knockdown, the migratory

and invasive abilities of tumor cells were assessed using the scratch

and the transwell method, and the results showed that the levels of

migration and invasion were significantly reduced (Figures 10D, E).

Finally, EDU staining method also confirmed these results

(Figure 10F). Together, these results indicated that knockdown of

DLX2 inhibited tumor cell activity, proliferation, migration, and

invasion, thereby suppressing tumor growth.
4 Discussion

CRC is a highly heterogeneous disease with complex

interactions between tumor cells and the surrounding

microenvironment, making it difficult to fully understand the

mechanisms driving progression and drug resistance (112–114).

scRNA-seq has emerged as a powerful tool for revealing cellular

diversity and gene expression profiles within tumors, allowing a

more nuanced understanding of the cellular states and signaling

pathways that contribute to CRC pathogenesis (115). Recent studies

have shown that different tumor cell subtypes and the tumor

microenvironment play a role in influencing CRC progression,

immune evasion, and treatment response (116, 117). By utilizing

scRNA-seq data, we can identify key cellular subtypes and

regulatory networks that are critical for tumor growth, metastasis,

and treatment response. This study builds on existing research by

analyzing the cellular composition of CRC, identifying novel tumor

cell subtypes, and mapping developmental trajectories and

constructing prognostic models, ultimately providing new insights

into the molecular and cellular dynamics of CRC.

First, we identified 8 distinct cell types, highlighting the

complexity of the TME in CRC. Notably, as CRC progressed from

normal to adenoma and carcinoma, the abundance of epithelial cells

(EPCs), which have been considered a major driver of tumorigenesis

due to their origin in the intestinal epithelium, increased markedly,

and were transformed into tumor cells via EMT (118), an observation

that is consistent with previous findings that epithelial expansion and

transformation is associated with an increase in colorectal tumors

with increased malignancy (119). The immunosuppressive nature of

TME in CRC is highlighted by the progressive increase in

proliferating cells and decrease in immune cells such as T and NK
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cells and B cells as the cancer progresses. The decrease in

immunoreactivity at the stage of carcinogenesis suggests the

presence of an underlying immune evasion mechanism, a

phenomenon well documented in many types of solid tumors

(120–122). This immunosuppression may also explain why

immunotherapy has had limited success in patients with CRC,

especially those without high microsatellite instability (MSI) (123).

Subsequently, the identification of 7 TCs subtypes provided

important information for understanding the cellular basis of CRC

progression. The enrichment of C0 FXYD5+ TCs in cancer tissues

and their association with poor prognosis confirmed previous studies

that FXYD5 expression is associated with increased epithelial-

mesenchymal transition (EMT) and metastatic potential (89, 90).

The different tissue distribution patterns of these subtypes reinforce

the concept of CRC tumor heterogeneity. For example, C0 FXYD5+

TCs are abundantly present in cancerous tissues, whereas C2MUC2+

TCs and C4 OTOP2+ TCs are predominantly present in normal and

para-cancer tissues. This spatial and molecular heterogeneity

highlights the need for a precision medicine approach to treating

CRC, as different subtypes may respond differently to

therapeutic interventions.

Studies of stemness genes in various tumor subtypes have

revealed that MYC is significantly expressed in C0 FXYD5+ TCs,

suggesting that this subtype has a high proliferative potential and is

critical for tumor growth. Stemness has long been considered one of

the hallmarks of cancer, and higher levels of stem-like features are

associated with tumor aggressiveness and drug resistance (124–126).

Pseudotime analyses using Monocle and Slingshot suggest that TCs

follow distinct developmental trajectories. Lineage 1 appears to

represent the key lineage associated with CRC tumorigenesis. Our

findings also suggest that targeting key regulators on this trajectory,

such as those driving the transition from C1 APCDD1+ to C0 FXYD5

+ TCs, may provide novel strategies to prevent CRC progression.

GSEA showed that C0 FXYD5+ TCs subtypes were highly involved in

metabolic processes such as oxidative phosphorylation and aerobic

respiration. This is consistent with the established concept of

metabolic reprogramming in cancer cells, which enhances energy

production through processes such as glycolysis and oxidative

phosphorylation to support rapid cell proliferation (127–129). The

enrichment of ribosome biogenesis and protein synthesis pathways in

this subtype further emphasizes its role in maintaining the high

metabolic demands of cancer cells (130). The up-regulation of genes

such as TMSB10, S100A10, and GSTP1 in the C0 subtype suggests

that they are closely associated with the progression and poor

prognosis of CRC. These genes are associated with tumor

metastasis and chemotherapy resistance, and thus are potential

targets for therapeutic intervention (94, 96, 97). SCENIC analysis

identified several key TFs, including ETV4, MYC, and XBP1, which

are major regulators of C0 FXYD5+ TCs subtypes. In particular, the

role of ETV4 in promoting CRC invasion and metastasis through

activation of the EMT program highlights its potential as a

therapeutic target (100).

In the end, our analysis highlights several key genes and

pathways associated with poor CRC prognosis. A risk-scoring

model based on the expression of eight genes, including DLX2
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and SOX12, provides a reliable framework for predicting the overall

survival of CRC patients. Validation of this model in the TCGA

cohort emphasizes its potential clinical utility in stratifying patients

according to risk and adjusting treatment strategies accordingly. In

addition, immune infiltration analysis showed that higher

infiltration of regulatory T cells (Tregs) was associated with a

poorer prognosis, which is consistent with previous findings that

Tregs promote immune evasion in CRC by suppressing anti-tumor

immune responses (104, 131, 132). Tumors with high expression of
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FXYD5+ TCs have higher immune cell infiltration and lower tumor

purity, an observation that suggests that these tumors may be more

resistant to immune checkpoint blockade therapy. This finding has

important implications for the design of immunotherapies for the

treatment of CRC, especially for high-risk patients with FXYD5+

TCs subtypes.

In conclusion, the present study describes in detail the cellular

and molecular characteristics of CRC using scRNA-seq technology.

The identification of different tumor subtypes, their developmental
FIGURE 10

In vitro experiments confirmed the effects of DLX2 knockdown. (A) DLX2 knockdown significantly reduced the expression levels of mRNA and
protein in both experimental groups. ** stands for P ≤ 0.01 and *** represents P ≤ 0.001. (B) CCK-8 assay showed that tumor cell viability was
significantly decreased after DLX2 knockdown compared with the control group. *** represents P ≤ 0.001. (C) Colony formation assays revealed a
significant reduction in colony numbers after DLX2 knockdown. *** represents P ≤ 0.001. (D) The scratch assay indicated that DLX2 knockdown
inhibited tumor cell migration. Bar graphs showed a significant reduction in both tumor cell migration and proliferation capabilities post-DLX2
knockdown. *** represents P ≤ 0.001. (E) Transwell experiments indicated that DLX2 knockdown inhibited the migration and invasion capabilities of
tumor cells in the NIC-H716 and SW837 cell lines. ** stands for P ≤ 0.01 and *** represents P ≤ 0.001. (F) EDU staining assay confirmed that DLX2
knockdown inhibited the proliferation of tumor cells by DAPI staining for comparison.
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trajectories and key regulators provides new insights into the

progression of CRC. The findings highlight potential prognostic

markers and therapeutic targets, including FXYD5+ TCs, stem cell-

associated genes, and key TFs, which could guide future

interventions in CRC, and in vitro experiments were performed

to validate the strongly prognostic-related gene DLX2. Given the

complexity and heterogeneity of CRC, our study highlights

the importance of a personalized approach in CRC treatment

with the ultimate goal of improving patient prognosis.

However, our experiments still have shortcomings. First,

although the study identified several key tumor cell subtypes and

related markers, these findings were based only on bioinformatics

analysis and in vitro experiments. Experimental validation, such as

in vivo functional testing, is needed to confirm the role of these

markers and subtypes in CRC progression and their potential as

therapeutic targets. Second, although this study described immune

cell types such as T and NK cells, B cells, and Tregs, there is limited

understanding of the mechanisms of how these immune cells

interact with tumor cells. A more detailed analysis of immune

signaling pathways, immune cell function, and the potential for

immunotherapeutic interventions could enhance the impact of this

study, especially given the increasingly important role that

immunotherapy is playing in the treatment of CRC. In addition,

although the study identified several prognostic markers and

developed a risk score model, it lacked sufficient correlation with

clinical outcomes such as patient survival, response to treatment, or

relapse rate. The inclusion of longitudinal clinical data would help

validate the prognostic value of these markers and support their

potential application in clinical practice. In future studies, we will

address these limitations, improve the robustness of the findings,

and expand their application in the diagnosis and treatment

of CRC.
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