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Introduction: T-cell receptors (TCRs) play a critical role in the immune response

by recognizing specific ligand peptides presented by major histocompatibility

complex (MHC) molecules. Accurate prediction of peptide binding to TCRs is

essential for advancing immunotherapy, vaccine design, and understanding

mechanisms of autoimmune disorders.

Methods: This study presents a theoretical approach that explores the impact of

feature selection techniques on enhancing the predictive accuracy of peptide

binding models tailored for specific TCRs. To evaluate our approach across

different TCR systems, we utilized a dataset that includes peptide libraries tested

against three distinct murine TCRs. A broad range of physicochemical properties,

including amino acid composition, dipeptide composition, and tripeptide

features, were integrated into the machine learning-based feature selection

framework to identify key properties contributing to binding affinity.

Results: Our analysis reveals that leveraging optimized feature subsets not only

simplifies the model complexity but also enhances predictive performance,

enabling more precise identification of TCR peptide interactions. The results of

our feature selection method are consistent with findings from hybrid

approaches that utilize both sequence and structural data as input as well as

experimental data.

Discussion: Our theoretical approach highlights the role of feature selection in

peptide-TCR interactions, providing a quantitative tool for uncovering the

molecular mechanisms of the T-cell response and assisting in the design of

more advanced targeted therapeutics.
KEYWORDS

immune response, feature selection, physicochemical properties, TCR-peptide
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1 Introduction

The host adaptive immune response, primarily driven by the

activation of T-cells, orchestrates a precise and targeted defense by

recognizing and responding to specific antigens (1, 2). T-cell

receptors (TCRs) interact with peptide-major histocompatibility

complex (MHC) through low-affinity, transient contacts, allowing

them to identify the correct antigen while remaining sensitive to

subtle molecular differences (3, 4). This low-affinity binding also

allows for TCR cross-reactivity with diverse peptide sequences,

broadening their recognition potential (2, 5). Accurately

predicting peptide binding to specific TCRs is crucial for

advancing immunotherapy and vaccine development, and for

clarifying the underlying microscopic picture of immune response

(5–8). However, this task remains very complex due to the immense

variability of TCRs and peptides, in addition to the intricate nature

of molecular mechanisms governing their binding affinities (9–12).

There are multiple experimental techniques available for

investigating TCR-peptide interactions, including crystallography

(13), surface plasmon resonance (14), and yeast display systems (5,

15–17). Recent advances include immunopeptidomics, which

identifies naturally presented peptides on MHC complexes via

mass spectrometry (18). Compared to other methods, yeast display

offers a unique high-throughput advantage, allowing the screening of

a large number of peptide variants simultaneously, which enables the

rapid identification of high-affinity interactions. In a recent study, a

yeast surface display system was developed to screen highly diverse

libraries of peptides presented by MHC molecules, identifying those

capable of binding specific TCRs (5). By coupling this approach with

deep sequencing, the sequence diversity of peptides recognized by

different TCRs was mapped, which helped to uncover critical binding

motifs and interactions. After multiple rounds of selection, this

dataset was refined to identify hundreds of high-affinity TCR-

peptide interaction, which offers opportunities for identifying

pertinent molecular features of TCR-peptide interactions by

applying additional computational techniques.

The use of machine learningmethods for predicting TCR-peptide

interactions is a promising research direction that has the potential of

studies that has the potential to overcome the limitations of

traditional methods (19–24). Traditional experimental methods are

pivotal but limited by being time-intensive, low-throughput, and

reliant on structural data. In contrast, machine learning leverages

sequence-based and physicochemical features, enabling scalable,

high-throughput analyses and uncovering patterns in TCR binding

specificity and cross-reactivity that are difficult to capture

experimentally. By leveraging large datasets and incorporating

structural, physicochemical, and sequence information, these

models can learn the underlying principles that govern TCR

specificity and binding affinity (25). Developing machine learning

models to predict strong binder peptides for specific TCRs, however,

involves several key challenges (25), including TCR cross-reactivity,

wherein a single TCR can bind multiple peptides (25–27). This
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property complicates the identification of true strong binders

versus weaker ones, as a peptide that strongly binds to one TCR

may bind weakly to another. One initial step for addressing this issue

is to develop context-specific models to identify features that drive

specificity in distinct functional scenarios, such as TCRs restricted to

a common MHC allele that bind diverse peptide antigen sets.

Additionally, quantification of such features in the context of the

diversity to which strong binders are themselves identified, represents

an important quantification of cross-reactivity within a given

TCR system.

Recent computational frameworks (28–34), have made notable

advancements in predicting TCR-peptide binding affinities. The

Rapid Coarse-grained Epitope TCR (RACER) model is one

particular example of a hybrid structural and sequence-based

approach that uses a pairwise energy model trained on deep

sequencing and crystallographic data to identify strong and weak

TCR-peptide binders. RACER provides highly useful predictions by

leveraging a sparse yet diverse set of experimentally determined

TCR-peptide structures, enabling this model to generalize

effectively across a wide range of cases. Furthermore, RACER and

other similar predictive models aim to benefit from leveraging

biophysical features to subsequently require a reduced number of

positive (1) and negative (0) examples in training. These models are

trained on a collection of TCR-peptide systems and can handle

variations in either the TCR or peptide. In our study, RACER was

employed to analyze datasets restricted to the same (mouse IEK)

MHC-II allele, where it was previously used to resolve strong and

weak TCR binding profiles. However, these models do not

comprehensively evaluate all of the variability within a given

binding class when, for example, we have a fixed TCR and a large

number of confirmed strong and weak binding peptide sequences

corresponding to that single TCR. Incorporating an ML-based

classifier could complement models like RACER by extracting

more nuanced, context-specific features that confer binding

specificity. This synergistic approach could improve predictive

accuracy within specific binding classes, enhancing our

understanding of TCR-peptide interactions. Additionally, this

integration may reveal novel feature interactions that are critical

for binding specificity , offering valuable insights for

experimental validation.

Our study aims to apply machine learning techniques with feature

selection to improve the accuracy of TCR-peptide specificity prediction

to identify motifs that most highly resolve strong and weak binders

given available large-scale binding datasets. By identifying features

among a comprehensive set of physicochemical features that

determine binding interactions, our model effectively distinguishes

between strong binders and weak binders. We apply various feature

extraction techniques and examine the robustness of each approach. To

test our theoretical method, the analysis is applied to three distinct

peptide pools. The model’s ability to account for meaningful peptide

variations that drive specificity is evaluated for each case, based on

successful predictions of strong- and weak-binding TCR-peptide pairs.
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2 Materials and methods

2.1 Dataset and data preprocessing

We employed a highly diverse set of peptide-MHC complexes

derived from yeast-displayed peptide-MHC libraries, which

includes three distinct types of murine TCRs: 2B4, 226, and 5cc7

(5). These TCRs were selected due to their distinct mechanisms of

peptide recognition, which arise from variations in their structure,

cross-reactivity, and interactions with MHC molecules (35).

Specifically, the selected TCRs represent varying levels of cross-

reactivity, with 2B4 exhibiting high specificity, 226 demonstrating

broad cross-reactivity, and 5cc7 showing intermediate behavior.

This diversity enabled us to assess the performance of our feature

selection approach across different binding contexts. For each TCR,

antigen libraries comprised of peptides having fixed length (13-

amino acids) were subjected to multiple rounds of selection to

enrich for TCR-binding peptides, which were subsequently

analyzed using deep sequencing. The final dataset consisted of

hundreds of unique peptide sequences, each characterized by

specific TCR recognition motifs. In each dataset, each peptide

sequence is assigned a “Post-selection” enrichment score

following 5 rounds of affinity-driven selection. Highly enriched

post-selection peptides are the ones that bind most strongly to the

TCR in study. During each round of selection, the weaker binding

peptides are gradually filtered out, and the frequency of peptides

with stronger TCR affinities increases. Five rounds of affinity-based

selection ultimately yield a list of sequences with their

corresponding abundance, which indicates how many times that

particular peptide was detected during sequencing and is

proportional to their binding affinity.

Since the post-selection enrichment score gives a direct measure

of how strongly and frequently each peptide binds to the TCR, we

can classify peptides into strong binders (class 1) and weak binders

(class 0) based on post-selection enrichment by setting a threshold

value calculated from the RACER model. To calculate this

threshold, a subset of 500 cases was selected from each dataset

based on post-selection read counts. In this way, peptides with the

highest read counts were selected from each dataset. This subset was

chosen based on peptide quantities in Round 5, measured as ‘reads’

following the replication of yeast cells displaying the respective

pMHCs. Peptides with the highest reads were selected, ensuring

that all chosen peptides had high quantities, as these were likely to

contain the majority of strong binders. Specifically, 140 instances

with the highest reads were designated as strong binders for

training, while the remaining 360 cases, which also had high but

slightly lower reads, were used for testing. Peptides outside this

subset were excluded because their reads were either zero or one,

making them less relevant for separating strong and weak binders.

For each strong binder, we generated a set of 1,000 decoy sequences

by randomizing the peptide sequence and pairing it with the

corresponding TCR structure. This approach created a

comprehensive negative dataset to balance the strong binders, as

previously established in (29). The inclusion of 1,000 decoys for

each strong binder ensures robust statistical differentiation between
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strong and weak binders, addressing challenges like global sparsity

and enhancing the model’s predictive accuracy. This process

resulted in a total of 140,000 decoy binders. The remaining cases

were allocated for testing. We then applied RACER to compute

thresholds that effectively separate the distributions of strong and

weak binders for each TCR-pMHC case. The RACER model

calculates binding energies by integrating high-throughput data

from previously confirmed TCR-peptide interactions and crystal

structures to train a residue-specific energy matrix. Key to this

optimized energy matrix is in RACER’s training on confirmed

strong and weak binding TCR-antigen pairs. We apply the

RACER framework previously constructed in describing antigen-

specific responses for 2B4, 226, and 5cc7 TCRs as demonstrated

previously (28). This energy matrix, combined with available

structural templates, is used to quantify TCR-peptide binding

affinities. For our peptides of interest, we utilized crystal

structures with PDB IDs 3QIB, 3QIU, and 4P2R corresponding to

2B4, 226, and 5cc7 TCRs, respectively.

We predicted the binding energies and corresponding Z-scores

for training and testing cases. To determine a partition threshold

separating strong and weak binders, we analyzed histograms of the

Z-scores for all 500 cases to identify the peaks of the distributions

for both classes (Figure 1). Supplementary Figure S1 presents the

histograms for peptide libraries targeting 2B4, 226, and 5cc7 TCRs.

The threshold was defined as the midpoint between the peaks of the

strong and weak binder distributions. Finally, we ranked all 500

cases in the dataset based on their Z-score values which are obtained

by the RACER model, mapped each partition threshold to the

corresponding post-selection enrichment score (5). The specific

thresholds for each case are listed in Table 1. Using the calculated

partition threshold values for each dataset, all peptides were

partitioned into class 1 (strong binder) and class 0 (weak binder)

cases. Since the dataset was highly imbalanced, with far more weak

binders than strong binders, we performed controlled

undersampling of the weak binders, which consisted of randomly

selecting a subset of weak binders equal in size to the number of

strong binders. This method helped mitigate the effects of class

imbalance to improve the performance of the machine learning

classifiers (36).
2.2 Extraction of physicochemical features
for peptides

To capture the physicochemical properties of peptides that are

crucial for their interaction with TCRs, we extracted multiple

features using primary amino acid sequence information. This is

a critical step for implementing machine learning models. To

evaluate the robustness of our feature selection technique, we

employed three different methods for extracting physicochemical

features from the sequence data.

2.2.1 Propy package
First, we extracted a comprehensive set of physicochemical

features from the amino acid sequence of each peptide using the
frontiersin.org
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propy package (37). These features are broadly categorized into

different groups, including charge, amino acid composition,

dipeptide composition, autocorrelations, chemical composition

features, and sequence order information. The physicochemical

features generated using propy package have been utilized in a wide
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range of machine learning models, including classification of

antimicrobial peptides (38, 39) and predicting protein-protein

interactions (40).

Among the features extracted by propy, amino acid composition

and dipeptide composition are particularly important for

understanding the interactions between TCRs and various

peptides, as they provide insights into how specific residues and

their combinations influence binding affinity (25). For a peptide of L

residues, amino acid composition, which represents the fraction of

each amino acid type, reads as

fi =
Ni

L
, i = 1, 2, 3,…, 20 (1)

where Ni is the number of amino acids of type i. Since there are 20

amino acids, the amino acid composition comprises 20 features

among the propy features.
FIGURE 1

Schematic summary of the feature selection process for predicting peptide binding to T-cell receptors (TCR).
TABLE 1 Summary of selected peptide datasets associated with
each TCR.

TCR Threshold Peptides (0/1)

2B4 13 98/98

226 6 987/987

5cc7 23 234/234
Data obtained from Ref (5). Partition thresholds used to distinguish strong into strong (1) and
weak (0) binders after five rounds of affinity-based selection were obtained using the RACER
model (28) (see text for details).
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Similarly, the dipeptide composition represents the fraction of

each possible dipeptide within the peptide, calculated as:

fi,j =
Ni,j

L − 1
, i, j = 1, 2, 3,…, 20 (2)

where Ni,j is the number of dipeptides consisting of amino acids of

type i, j. Consequently, the dipeptide composition contributes 202 =

400 distinct features to the set of propy features.

2.2.2 Tripeptide composition
Tripeptide composition represents the fraction of each possible

tripeptide (formed by three consecutive amino acids) within a

peptide sequence. The tripeptide composition is calculated as:

fi,j,k =
Ni,j,k

L − 2
, i, j, k = 1, 2, 3,…, 20 (3)

Where Ni,j,k is the number of tripeptides containing amino acids of

type i, j, k. Tripeptide composition, which comprises 203 = 8000

features, provides deeper insight into the peptide’s structure by

capturing the frequency of every unique combination of three

consecutive amino acids. Since the propy package does not provide

tripeptide composition features by default, we extracted these features

separately. Tripeptide motifs were calculated by iterating through

peptide sequences to count the occurrences of all 8000 possible

tripeptides. These counts were subsequently normalized to generate

relative frequencies, as detailed in Equation 3.

2.2.3 N-gram language model
A sequence of amino acids, whether forming a short peptide or a

large protein, can be viewed as a text document, where amino acids

function as the fundamental units, analogous to words (41). Text

mining and natural language processing have been previously

employed for bioinformatics applications such as protein clustering

and classification, protein-protein interaction (PPI) prediction, protein

folding analysis, and non-coding RNA identification (42, 43).

To analyze amino acid sequences using natural language

processing methods, we can use the N-gram language model,

which is a probabilistic model used to predict the next item in a

sequence based on the preceding items. An N-gram is a contiguous

sequence of N items from a given sequence of text. In our context,

each amino acid represents an item (analogous to a word), and each

N-gram represents a sequence of N-amino acids (analogous to a

sentence). While propy can efficiently compute the frequency of

single amino acids and dipeptides, the resulting dipeptide

frequencies tend to be sparse, as many dipeptides may not appear

in a given peptide. By incorporating common N-grams including

unigrams (single amino acids), bigrams (pairs of amino acids), and

trigrams (triplets), the model goes beyond mere composition

analysis and captures the sequential order and local motifs within

peptides (44). Moreover, the robustness of the overall predictive

model can be enhanced by combining different types of amino acid

composition, including unigrams, bigrams, and trigrams. This

approach ensures that if one feature set fails to capture critical

patterns, the other can compensate, leading to a more

comprehensive and accurate analysis of TCR-peptide interactions.
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Since all peptides are composed of 20 standard amino acids, the

maximum vocabulary sizes for unigrams, bigrams, and trigrams are

20, 202 = 400, and 203 = 8000, respectively. This creates a fixed-size

vocabulary that can be represented as a numerical feature vector,

where each element corresponds to the frequency or presence of a

specific N-gram in the sequence. The process of vectorizing a

peptide sequence using the N-gram approach begins by breaking

down each peptide into unigrams, bigrams, and trigrams, which

serve as the fundamental building blocks of the sequence. Next, a

complete vocabulary is composed of all possible N-grams that can

occur within the sequence. Once the vocabulary is established, the

sequence is vectorized by converting the frequency of each N-gram

into a numeric vector. The resulting vectorized transformation,

which has lower sparsity compared to features generated by propy,

enables efficient processing of peptide sequences by machine

learning algorithms.
2.3 Data normalization

For each peptide, the quantitative values of the physicochemical

properties extracted from the methods described above have

different numerical scales. It is important to initially re-scale all

these values to fall between 0 and 1 so that every property is

considered with a similar weight. To normalize this quantity to be in

the range 0 and 1, we use the following re-scaling expression,

ẑ =
(z  −   zmin)

(zmax  −   zmin)
, (4)

where z is the original value of the physicochemical property, zmin

and zmax are limiting values for this property for all considered

proteins, and ẑ is the normalized one that is specifically utilized in

the analysis. It is important to note that to prevent leakage from the

training set to the test set, we performed data normalization only

after splitting the datasets into training and test sets.
2.4 Feature selection

In studying TCR-peptide interactions, our primary goal is to

identify which specific physicochemical features – such as amino

acid properties or sequence motifs – are most important for

distinguishing between strong and weak binders. However, the

extracted feature set often consists of high-dimensional data,

meaning the number of features may exceed the available data,

with some being irrelevant or highly correlated. Using all these

features without selection can result in overfitting, where the model

learns noise rather than meaningful correlations, reducing its

predictive performance (38). To mitigate this issue, we employ

LASSO (The Least Absolute Shrinkage and Selection Operator)

techniques that mathematically assign zero weights to irrelevant or

redundant features (38, 45). We note that features with non-zero

weights are considered relevant, and the magnitude of these weights

provides a measure of their relative importance in the predictive

model. This property enables the identification of key features
frontiersin.org
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contributing to TCR-peptide binding interactions. We note that

while propy and N-gram features are less sparse, tripeptide-based

features often include rare motifs that can introduce significant

sparsity into the dataset. LASSO’s L1-norm regularization effectively

mitigates this sparsity by shrinking the coefficients of low-impact

features, such as rare motifs, to zero. The natural exclusion of rare

motifs simplifies the feature set without the need for explicit

preprocessing steps, ensuring that the selected features are both

robust and interpretable. Furthermore in datasets with complex

feature sets, collinearity among motifs can reduce model

interpretability and introduce redundancy. Again, LASSO’s L1-

norm regularization effectively addresses this by selecting one

representative feature from groups of highly correlated features

while shrinking the coefficients of others to zero. This property

ensures that redundant features are excluded, simplifying the final

model and enhancing interpretability. Additionally, because propy

features focus on dipeptides and exclude tripeptides, the potential

for correlated motifs is inherently reduced in our analysis. The

overview of our feature selection procedure is presented in Figure 1.

As part of the LASSO feature selection process, we optimized the

regularization parameter l using cross-validation. For each fold, the

model was trained on the training set and evaluated on the held-out

test set using mean squared error (MSE). The average MSE across

all folds was computed for each l (Supplementary Figure S6).
3 Results

The relative significance of various physicochemical features

distinguishing strong binders from weak binders in 2B4, 226, and
Frontiers in Immunology 06
5cc7 peptide libraries are presented in Figures 2–4, respectively. We

performed feature selection using three categories of properties:

propy features, tripeptide composition, and N-gram language model

(unigram, bigram, and trigram). This multi-faceted feature

generation approach enabled us to extract key patterns and

properties that significantly influence TCR binding behavior.
3.1 Features selection for 2B4 data

Our feature selection method for 2B4 data yields different but in

many aspects overlapping selected features that contribute to strong

binder peptides. Among features generated from the propy tool, the

most important dipeptide compositions such as ‘AF’, ‘FF’, ‘TK’, and

‘LK’ likely represent amino acid pairs that significantly enhance

peptide stability or affinity to the TCR [see Figure 2A]. Similar

motifs are predicted when tripeptide compositions are utilized in

the feature selection method, as shown in Figure 2B. Specifically, the

tripeptide motif ‘AFF’ can be broken down into two dipeptides ‘AF’

and ‘FF’, both of which are captured by the propy method. The N-

gram method also yields similar results, although selected features

do not fully overlap with the results of other methods

[see Figure 2B].

This observation is strongly supported by the experimental

data, which highlights the amino acid preferences at key TCR

contact positions (P3, P5, and P8) during peptide-MHC

interactions (5). Notably, positions like P3 show a clear

preference for aromatic residues such as phenylalanine (F) and

tyrosine (Y), aligning with the dipeptides ‘AF’ and ‘FF’, and the

tripeptide ‘AFF’, identified in our study. The overlap between motifs
FIGURE 2

Comparative significance of various physicochemical features in differentiating strong and weak peptide binders of the 2B4 TCR. LASSO feature
selection was performed using features generated using (A) propy (including dipeptide composition), (B) tripeptides composition, (C) N-gram
language model (incorporating unigram, bigram, and trigram). In each case, the LASSO hyperparameters were set to be l = 0.005.
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such as dipeptides ‘AF’, ‘FF’ and tripeptides ‘AFF’, ‘AFL’ across

independent feature selection methods could be a positive indicator

of their relevance. Since feature selection for propy features and

tripeptides was performed independently, the consistent

identification of these motifs across models provides strong
Frontiers in Immunology 07
evidence of their importance for distinguishing strong binders.

This consistency is also reflected in the N-gram results, where

motifs such as ‘AF’ dominate, highlighting the key structural

patterns that underlie strong TCR-peptide interactions. To further

validate the significance of motifs identified through feature
FIGURE 4

Comparative significance of various physicochemical features in differentiating strong and weak peptide binders of 5cc7 TCR. LASSO feature
selection was performed using features generated using (A) propy (including dipeptide composition), (B) tripeptides composition, (C) N-gram
language model (incorporating unigram, bigram, and trigram). In each case, the LASSO hyperparameters were set to be l = 0.01 for all cases.
FIGURE 3

Comparative significance of various physicochemical features in differentiating strong binder and weak binder for peptides targeting 226 TCR. LASSO
feature selection was performed using features generated using (A) propy (including dipeptide composition), (B) tripeptides composition, (C) N-gram
language model (incorporating unigram, bigram, and trigram). For LASSO the hyperparameters were set to be l = 0.015, l = 0.015, and l =
0.01, respectively.
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selection, we generated sequence logos for strong binders

(Supplementary Figure S7), which provide a visual representation

of motif enrichment by highlighting the frequency and conservation

of amino acid patterns within the dataset.
3.2 Features selection for 226 data

For the 226 TCR dataset, our feature selection method also

identified several key physicochemical features that distinguish

strong binders from weak binders, as presented in Figure 3.

Among the features generated by the propy tool [see Figure 3A],

dipeptide compositions such as ‘TK’, ‘FF’, ‘AF’ emerged as the most

important contributors to TCR-peptide affinity. These motifs likely

play critical roles in stabilizing TCR-peptide interactions by

complementing specific amino acid residues on the TCR.

Structural analysis of the 226 TCR-pMHC (PDB ID:3QIU)

reveals that the ‘TK’ motif contributes to electrostatic interactions,

and ‘FF’ and ‘AF’ reinforce hydrophobic interactions that enhance

the stability of the peptide-MHC complex. Definitions of other

selected propy features, including PolarityD2075, GearyAuto

Hydrophobicity5, and QSOSW12 are presented in Supplementary

Table S1 in the Supplementary Information.

Specifically, in the ‘TK’ motif, the weakly acidic threonine

residue (‘T’ at P8) can interact via hydrogen bonding with

asparagine on the TCR’s CDR3b loop. This interaction is

identified through the contact map generated from the 3QIU

crystal structure with a maximum distance (rmax = 8.5Å)

(Supplementary Figures S5C, D). Moreover, for the ‘FF’ and ‘AF’

motifs, which do not exhibit these features in the original peptide,

the RACER-derived pairwise amino acid energy matrix

(Supplementary Figure S4B) predicts a favorable interaction

between phenylalanine (‘F’) and alanine (‘A’). Similarly, alanine is

predicted to favorably interact with proline (‘P’), methionine (‘M’),

and phenylalanine (‘F’). These findings suggest that the ‘F’ residues

in the peptide engage in favorable interactions with ‘A’ and other

hydrophobic residues on the TCR. These hydrophobic interactions

contribute to the stability of the TCR-peptide complex,

underscoring the importance of the ‘FF’ and ‘AF’ motifs in

facilitating binding through hydrophobic contacts.

Tripeptides such as ‘ATK’, ‘AFF’, and ‘FFK’ were identified as

highly significant for distinguishing strong binders (see Figure 3B).

These tripeptides can be deconstructed into dipeptides like ‘TK’,

‘FF’, and ‘AF’, which contain residues that are also prominent in the

dipeptide analysis. The similarity between the tripeptide and

dipeptide results reinforces the importance of these specific

motifs, suggesting that key residues such as lysine (‘K’) and

phenylalanine (‘F’) play central roles in facilitating hydrogen

bonding and electrostatic interactions with the TCR ’s

complementarity-determining regions (CDRs). For example,

lysine (‘K’) in the ‘ATK’ and ‘FFK’ motifs likely contributes to

salt bridge formation, enhancing electrostatic interactions between

the peptide and TCR. Similarly, phenylalanine (‘F’) in the ‘AFF’ and

‘FFK ’ motifs strengthens binding through hydrophobic
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interactions, which help stabilize the TCR-peptide complex within

the MHC groove.

Furthermore, feature selection based on the N-gram language

model [see Figure 3C] revealed a strong overlap with the amino acid

patterns identified in both the dipeptide and tripeptide analyses.

The most important features included ‘TK’, ‘ASK’, ‘AFF’, and

‘ATK’, which closely correspond to amino acids found at critical

TCR contact points. This consistency across different feature

selection methods reinforces the importance of these motifs in

contributing to strong TCR-peptide interactions. The recurrence of

‘TK’, in particular, highlights the role of lysine in driving strong

electrostatic interactions, while ‘AFF’ and ‘FFK’ emphasize the

contribution of hydrophobic residues like phenylalanine (F) in

maintaining binding affinity and structural stability.
3.3 Features selection for 5cc7 data

Our feature selection approach, trained using features generated

from propy tool, predicts that ‘PY’, ‘FL’, ‘FK’, and ‘FR’, are crucial in

determining peptide stability and TCR binding affinity [see

Figure 4A]. These dipeptides are likely involved in stabilizing

peptide-MHC interactions, with ‘FL’ and ‘FK’ contributing to

hydrophobic and polar interactions, respectively. Hydrophobic

residues such as phenylalanine (F) are known to form important

nonpolar contacts that help to stabilize the peptide in the TCR

binding groove, enhancing binding affinity. Definitions of the

acronyms for other selected propy features — QSOgrant5 and

NormalizedVDWVC2 — are presented in Supplementary Table

S1 of the Supplementary Information.

When the tripeptide compositions are considered [see Figure 4B],

motifs like ‘VAF’, ‘LKA’, and ‘FLK’ emerged as highly significant. These

tripeptides suggest a combination of hydrophobic, polar, and charged

interactions, which enhance the binding potential by promoting stable

contacts of different natures with the TCR. For instance, ‘LKA’ features

a combination of leucine (‘L’) and alanine (‘A’), hydrophobic residues,

and lysine (‘K’), a positively charged residue, both of which are known

to interact favorably with the TCR’s (PDB ID: 4P2R) binding pocket

through hydrophobic and electrostatic interactions. Notably, the ‘LKA’

motif does not appear in the original peptide contact map generated

with a maximum distance (rmax = 8.5Å) (Supplementary Figures S5E,

F). However, analysis of the energymatrix (Supplementary Figure S4C)

reveals that leucine (‘L’) has high affinity for proline (‘P’), alanine (‘A’),

and phenylalanine (‘F’), suggesting potential hydrophobic interactions

with these residues on the TCR. Similarly, lysine (‘K) shows high

affinity for tryptophan (‘W’), alanine (‘A’), phenylalanine (‘F’), and

leucine (‘L’), indicating possible favorable interactions with these

residues. Furthermore, alanine (‘A’), due to its small side chain,

provides structural flexibility, allowing optimal positioning of

neighboring residues for interaction. These findings suggest that the

‘LKA’ motif may enhance TCR-peptide interactions through

hydrophobic and electrostatic interactions, as indicated by the energy

matrix analysis, even though these interactions are not apparent in the

contact map.
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The N-gram language model (Figure 4C) further emphasized

the importance of these motifs by identifying similar patterns.

Features like ‘VAF’, ‘LKA’, ‘RS’, and ‘KA’ were among the most

important for distinguishing strong binders, reflecting the same key

interactions seen with the dipeptide and tripeptide compositions.

The prevalence of hydrophobic residues such as valine (V),

phenylalanine (F), and leucine (L) in these motifs highlight the

critical role in stabilizing the peptide-MHC-TCR complex.
3.4 Prediction of strong vs weak binders
using selected features

After selecting the essential physicochemical features from each

peptide dataset, we aim to leverage these attributes to accurately and

reliably predict strong and weak binders for each TCR type through

logistic regression models. Table 2 summarizes key performance

metrics, including Accuracy, Recall, F1 Score, Matthews Correlation

Coefficient (MCC), and AUC (Area Under the ROC Curve),

averaged over 10 cross-validation sets with an 80/20 train/test

split for each fold. We employed StratifiedShuffleSplit for cross-

validation to ensure that the equal class distribution achieved

through undersampling was preserved in both training and test

sets across all folds. By maintaining this balance, the model was

evaluated on data representative of the balanced dataset used for

training. While StratifiedShuffleSplit does not guarantee non-

overlapping test sets across folds, each fold ensures that the test

data is unseen during training for that specific fold.

For the 2B4 dataset, all three selected feature categories (propy,

tripeptide composition, and N-gram) performed exceptionally well,

with predictive accuracy ranging from 0.94 to 0.96 and an AUC

reaching up to 0.98. These findings indicate that for this dataset, the

selected features were highly informative, resulting in predictive

models that perform well in identifying strong binders with high

precision. The strong performance of the models for the 2B4 dataset

can be attributed to the lower cross-reactivity of 2B4 i.e. it binds to a

narrower range of peptides compared to more flexible TCRs,
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making the binding interactions easier to model and predict.

Furthermore, a smaller dataset (98 peptides) with clear sequence

patterns provides the machine-learning models with less variability

to account for, resulting in higher accuracy and AUC values.

In contrast, the 226 datasets demonstrated somewhat lower

overall performance across all feature methods. Accuracy and AUC

values were notably lower, with propy yielding the highest

performance at 0.77 accuracy and 0.78 AUC, while the tripeptide

and N-gram methods scored marginally lower. The relatively low

MCC values (0.55 for propy and below 0.50 for others) suggest that

the model’s predictions are less consistent for this dataset. This

result is likely due to the existence of more complex or less

distinguishable features between strong and weak binders. The

relatively lower performance of the models for the 226 dataset

can be attributed to several factors related to the biological

properties of the 226 TCR and the complexity of its dataset. The

226 TCR is known for its high degree of cross-reactivity (35),

meaning it can recognize and bind to a much wider range of peptide

sequences than more specific TCRs like 2B4. This broad recognition

profile introduces greater variability in the peptide sequences

classified as binders and non-binders, making it harder for

machine learning models to identify clear patterns that

distinguish strong from weak binders. Thus, the larger size of the

226 dataset, which includes 987 peptides, increases the diversity of

peptide sequences.

For the 5cc7 dataset, however, performance is intermediate,

with accuracy values ranging from 0.82 to 0.85 and an AUC as high

as 0.87 for the tripeptide method. Here, the MCC values indicate

that the models were relatively effective, with the N-gram method

achieving the highest MCC (0.79), suggesting that it provided a

more balanced prediction between strong and weak binders

compared to the other methods. The F1 scores consistently reflect

solid performance in identifying true strong binders, particularly

with the tripeptide method (F1 = 0.86). The moderate performance

of the models for the 5cc7 dataset can be explained by the balance

between specificity and cross-reactivity in the 5cc7 TCR and the size

of the dataset. Unlike the highly specific 2B4 TCR or the highly
TABLE 2 Performance comparison of feature selection methods for three TCR datasets.

TCR Data Feature
Category

Accuracy Recall F1 Score MCC AUC

2B4 propy 0.94 0.94 0.93 0.87 0.96

tripeptide 0.96 0.96 0.96 0.92 0.97

N-gram 0.96 0.96 0.96 0.93 0.98

226 propy 0.77 0.77 0.79 0.55 0.78

tripeptide 0.74 0.74 0.76 0.49 0.66

N-gram 0.73 0.73 0.76 0.48 0.7

5cc7 propy 0.82 0.82 0.83 0.65 0.83

tripeptide 0.85 0.85 0.86 0.71 0.87

N-gram 0.85 0.85 0.85 0.79 0.84
Metrics include Accuracy, Recall, Matthews Correlation Coefficient (MCC), F1 Score, and AUC for trained baseline models (Logistic Regression) using selected features from LASSO. Values
reflect the average across 10 cross-validation sets, with an 80/20 train/test split for each fold.
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cross-reactive 226 TCR, 5cc7 exhibits an intermediate level of

specificity. It binds to a moderately diverse set of peptides,

leading to less sequence variability than 226 but more than 2B4.

It is important to highlight that while our datasets include an

equal number of strong and weak binders, the overall peptide data

are highly imbalanced in favor of weak binders over strong ones.

Quantitatively, for a peptide of L residues, the total number of

possible peptide sequences are 20L, and an overwhelming majority

of these sequences are weak binders. This discrepancy presents

significant challenges in accurately predicting peptide specificity.

However, despite these challenges, the close alignment between our

F1 score and recall metrics (Table 2) indicates that the model

achieves balanced performance in handling false positives (FP) and

false negatives (FN). The balance between Recall and F1 score is

especially critical in this context, where accurately identifying

strong binders is essential, but misclassifying weak binders as

strong could lead to a false sense of antigen coverage by a

particular TCR, which can significantly affect T-cell based

immunotherapeutic strategies. The fact that both metrics are

comparable across datasets and feature selection methods

indicates that the models are balanced in their sensitivity and

specificity and are robustly selecting relevant features to resolve

strong and weak binders (40).
3.5 Comparison with the RACER model

Our feature selection-based approach for predicting TCR-

peptide binding, like several before it (31, 32, 34, 46–48), is purely

sequence-based, relying on the selection of key features derived

from amino acid sequences. By focusing on the sequence

characteristics of peptides, we identified key dipeptide and

tripeptide motifs that are enriched in strong binders. These

selected motifs, without relying on detailed structural

information, were essential for distinguishing between high- and

low-affinity peptide antigens for specific TCR. In contrast, the

RACER model adopts a hybrid approach by combining sequence

data with structural insights to predict TCR-peptide binding

affinities (22, 28, 29, 49, 50). RACER utilizes a pairwise energy

framework, integrating residue-specific energy matrices derived

from high-throughput data on experimentally confirmed TCR-

peptide interactions, along with crystal structures of these

complexes. The structural templates provided by crystal data

allow RACER to quantify the binding energy with greater

precision by modeling the physical interactions at atomic

resolution. After identifying motifs enriched in strong binders, we

then aimed to apply RACER’s pairwise energy framework to test

our sequence-based approach. This allowed us to pinpoint the

specific positions within the peptide sequence where these motifs

are predicted to have the most significant impact on binding energy.

To determine the positions of the selected features, we performed

in silico mutation in all two-adjacent (selected dipeptide motifs) and

three-adjacent (selected tripeptide motifs) amino acids at every

peptide amino acid position containing the selected features. We

then used RACER to estimate the binding energy for each mutant
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peptide. The binding energies for all possible mutant peptides are

plotted for selected dipeptides (Supplementary Figure S2) and

tripeptides (Supplementary Figure S3). We then compared the

binding energy of each oligopeptide motif located at each position

to the baseline binding energy of the wild-type (WT) TCR-peptide

(WT given by the black dashed line in Supplementary Figures S2, S3).

If a mutated TCR-peptide showed increased binding energy (above

the dashed line), it indicates that the mutation enhanced the binding

affinity above that of the WT (strong) binding peptide, suggesting

that the underlying importance of the selected dipeptide at that

specific position. On the other hand, mutation may also result in

significantly lower predicted affinities. This decrease indicates that

certain substitutions disrupt key interactions necessary for strong

binding, effectively identifying sequences that function as weak

binders. By recognizing these sequences, we not only validate the

specificity of our selected motifs but also enhance our understanding

of the structural and sequence determinants that diminish binding

affinity. This dual identification of both strong and weak binders

underscores the robustness of our approach in mapping the

landscape of TCR-peptide interactions.

For example, Supplementary Figure S2A shows that for 2B4,

dipeptide ‘AF’ at positions (2, 3), (3, 4), and (5, 6) increased binding

affinity, with a particularly significant increase at positions (5, 6).

Although all three TCRs retain a WT-like TCR recognition motif,

each TCR exhibits some variation in positional preference

(Figure 5). For instance, whereas 2B4 can recognize Lysine at

position P8 [P5 in (5)], 5cc7 accommodates Leucine and Arginine

at P8. The P6 [P3 in (5)] TCR contact position showed the least

variance across all three TCRs, with either Phenylalanine or Valine

being required for 2B4 and 5cc7, and Phenylalanine, Lysine, or

Arginine being required for 226. As previously reported (5), 226

demonstrated a greater degree of cross-reactivity, being able to

recognize 897 unique peptide sequences. The larger number of

peptides recognized was largely due to a higher tolerance for

substitutions at TCR-neutral and MHC-contacting residues, such

as position P9 (Figure 5B).

Combining the predictions identified in our feature selection

framework with RACER-predicted position-specific information

provides an opportunity to construct heatmaps (Figure 5)

enriched in beneficial dipeptide compositions that maximally

resolve strong and weak binding peptides. These results can be

directly compared to those from the original work by Birnbaum

et al. (5), which provided a similar description of binding motifs

acquired experimentally. Notably, while their work identified single

amino acid hotspots indicative of strong binders by analyzing the

abundance of amino acids in strong-binding peptides, our approach

focuses on dipeptide motifs, identifying them based on their

enrichment in strong binders relative to non-binders.

This methodological difference is evident when considering

anchor residues like P4 and P12, which are restricted to

isoleucine, leucine, valine, and lysine, respectively. While lysine is

ubiquitous among all strong binders, it is similarly present in weak

binders and thus does not emerge as a distinguishing amino acid at

P12 in our analysis (Figure 5). This underscores one way in which

conserved residues might mask a model’s discriminatory power
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were it to identify those features as important for strong binding. In

addition to this, in the experimental data from (5), heatmaps are

generated after three rounds of selection, whereas in our approach,

we generate heatmaps after five rounds of selection.

Despite these challenges, the key motifs identified through our

sequence-based feature selection are corroborated by RACER’s

binding energy predictions. Particularly in the case of the 2B4

TCR, where we predict the enrichment of specific motifs such as the

‘AFF’motif. RACER’s energy calculations confirm that these motifs

contribute significantly to binding affinity (as indicated by larger

interaction values with complementary amino acids ‘WSQ’ in the

2B4 TCR CDR3b domain, and ‘RA’ and ‘G’ in the CDR3a domain),

aligning with experimental observations. The 2B4 TCR seems well-

characterized by a single important motif, as evidenced by the

peptide position curves showing a single sharp peak corresponding

to a small number of features (Supplementary Figures S2A, S3A). In

contrast, the 226 and 5cc7 TCRs display different binding

characteristics, highlighting the unique specificity of each TCR.

For 5cc7, we observe lower intensity compared to 2B4, with a wide

and smooth peak across a larger number of features (Supplementary

Figures S2C, S3C). For 226, we observe sharp peaks at different

positions for a large number of features, which aligns well with the

high cross-reactivity we previously mentioned for 226

(Supplementary Figures S2B, S3B). In both 2B4 and 226, we

observe the importance of features containing phenylalanine (‘F’)

in the first part of the peptide across positions P3 to P7. This is

because the peaks for dipeptide and tripeptide motifs containing ‘F’
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are prominent in these positions. When considering dipeptide and

tripeptide motifs, ‘F’ appears in all positions P3–P7, whereas in

single amino acid analysis, ‘F’ does not appear in all positions since

only the best location is selected. This indicates that ‘F’ can be a very

important feature when combined with other amino acids in motifs.

Together, these findings underscore the power of our model in

identifying critical dipeptide and tripeptide motifs, which are more

informative than single amino acid motifs, thereby enhancing

predictive performance and providing deeper insights into TCR-

peptide interactions.
4 Discussion

The interaction between T-cell receptors (TCRs) and peptide-

MHC complexes is a critical component of the adaptive immune

system, enabling T-cells to detect and respond to specific antigens.

This process, however, is complicated by the TCR cross-reactivity,

where a single TCR can recognize multiple peptide sequences.

Understanding cross-reactivity is important as many TCRs are

known to confer coverage across distinct peptide systems. Cross-

reactivity also presents a major challenge for reliably predicting

TCR specificity, which is required for optimal vaccine design and

selection of T-cell-based immunotherapy. In this study, we

leveraged machine learning techniques with refined feature

selection to improve the accuracy and generalizability of TCR-

peptide interaction predictions. Our findings show that focusing on
FIGURE 5

Predicted heatmaps using RACER model for (A) 2B4, (B) 226, and (C) 5cc7 peptide libraries. The sequence for the peptide is represented via
outlined boxes.
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specific physicochemical features significantly enhances the model’s

ability to distinguish between strong and weak binders, offering new

insights into the molecular mechanism of TCR recognition.

The number of peptides in our final dataset reflected the varying

specificity and cross-reactivity of the TCRs, which in turn explained

the differences in model performance. The 2B4 dataset, with only 98

peptides, highlighted the high specificity of the 2B4 TCR, which lead

to clearer binding patterns and superior model performance. In

contrast, the 226 dataset, which includes 987 peptides, highlighted

the TCR’s greater cross-reactivity, thereby making binding patterns

more complex and harder to capture with our feature selection

methods, which resulted in lower performance metrics. The 5cc7

dataset, with 234 peptides, demonstrated intermediate specificity

and moderate cross-reactivity, aligning with its intermediate model

performance. This variation in dataset sizes reflects the inherent

biological properties of each TCR, with more specific TCRs

resulting in smaller datasets and higher model performance.

Undersampling is a common technique when dealing with class

imbalance in machine learning, and it can potentially impact both

feature selection and model performance. In our study, we resorted

to undersampling to balance the number of weak binders (class 0)

with the number strong binders (class 1). This may have resulted in

the loss of valuable information or features associated with weak

binders. However, as noted earlier, the closeness of F1 score and

recall demonstrated that undersampling did not affect the balance

between false positive (FP) and false negatives (FN). These metrics,

along with additional performance measures such as Accuracy,

MCC, and AUC, confirmed the robustness and reliability of our

feature selection approach despite the use of undersampling.

We employed the LASSO feature selection method to extract

meaningful physicochemical properties from the peptide sequences

to identify key features that contribute to binding affinity, including

amino acid composition, dipeptide frequency, and tripeptide motifs.

Among these, dipeptide compositions and tripeptide compositions

emerged as particularly important, consistently ranking among the

most predictive for distinguishing strong from weak binders across

the different TCR datasets. This finding suggests that the arrangement

of amino acids in short peptide sequences plays a crucial role in TCR

recognition, and our optimized feature set provides a robust

foundation for understanding TCR-peptide interactions and

highlighting the importance of tripeptide features.

Identified important tripeptides in TCR-peptide binding can be

further understood by examining the molecular interactions

between peptide residues and the CDR3a and CDR3b loops of

the TCR, as illustrated in Figure 1. It is known that a single amino

acid in the peptide can simultaneously interact with residues from

both the CDR3a and CDR3b regions (35). For example, if we

consider a symbolic tripeptide sequence like ‘LTP’ the first residue,

‘L’, may form contacts with both CDR3a and CDR3b, providing a
dual interaction site. In contrast, the second and third residues, ‘T’

and ‘P’, may predominantly interact with only CDR3b. This picture
highlights how specific residues within a tripeptide can influence

the binding strength by creating multiple interaction points, making

tripeptides like ‘LTP’ particularly important for determining

binding affinity. The ability of certain tripeptides to establish
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multiple points of contact contributes to the overall specificity

and affinity of TCR recognition.

MHC molecules, are known to play a critical role in immune

recognition by influencing peptide presentation to T-cell receptors

(51). In this study, however, the datasets utilized specific MHC

alleles [e.g., I-Ek in murine TCR experiments, as described in (5)],

effectively eliminating the influence of MHC polymorphism. This

approach allowed us to isolate the effects of peptide features on TCR

binding. Future studies could expand on this work by incorporating

data from multiple MHC alleles to explore how MHC

polymorphism shapes TCR-peptide interactions and the

generalizability of predictive models.

An improved quantitative understanding of the features that

derive TCR specificity remains a significant obstacle in the fields of

immunotherapy and vaccine design (9, 52). By identifying key

dipeptide and tripeptide motifs predictive of TCR-peptide

binding, our results contributes to a deeper understanding of the

sequence-level determinants of TCR specificity. These insights

could be leveraged to design peptides with optimized binding

profiles, enhancing immune responses in therapeutic contexts.

For example, the ability to predict TCR-peptide interactions could

aid in developing personalized TCR therapies, where T-cells are

designed (e.g., CAR T-cells) or identified (e.g., adoptive cell therapy)

to recognize tumor-associated antigens. Similarly, in vaccine design,

these motifs could help identify or engineer peptides that elicit

strong and targeted immune responses, improving the efficacy of

peptide-based vaccines.

While our sequence-based approach successfully identifies key

dipeptide and tripeptide motifs enriched in strong binders, it has

certain limitations. Our purely sequence-driven model may miss rare

or unconventional motifs and struggle in cases of extreme TCR cross-

reactivity. Additionally, our findings are derived from a relatively

limited set of TCR-peptide interactions, which may limit the

generalizability of the identified motifs across all TCRs, particularly

those with unique binding preferences. Moreover, certain TCRs may

prioritize interactions with MHC residues over peptides, a factor that

our current model does not fully address. To overcome these

limitations, future work will explore hybrid models that integrate

structural insights, allowing for more accurate predictions of TCR-

peptide dynamics. Despite these challenges, this approach is able to

extract meaningful motifs for resolving TCR specificity based on TCR

and peptide primary sequences. Future work will be directed at using

these learned features to train a classification model for identifying

strong binding pairs from a variety of possible TCR and peptide test

sequences. Moreover, advanced deep learning approaches, such as

attention mechanisms and transformer architectures, can further

investigate TCR-peptide binding specificity.
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