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Epigenetic profiling for
prognostic stratification and
personalized therapy in
breast cancer
Xiao Guo1, Chuanbo Feng1, Jiaying Xing1, Yuyan Cao1,
Tengda Liu1, Wenchuang Yang1, Runhong Mu2* and Tao Wang3*

1School of Pharmacy, Beihua University, Jilin, China, 2School of Basic Medical Sciences, Beihua
University, Jilin, China, 3Research Laboratory Center, Guizhou Provincial People’s Hospital, Guiyang,
Guizhou, China
Background: The rising incidence of breast cancer and its heterogeneity

necessitate precise tools for predicting patient prognosis and tailoring

personalized treatments. Epigenetic changes play a critical role in breast

cancer progression and therapy responses, providing a foundation for

prognostic model development.

Methods: We developed the Machine Learning-derived Epigenetic Model

(MLEM) to identify prognostic epigenetic gene patterns in breast cancer. Using

multi-cohort transcriptomic datasets, MLEM was constructed with rigorous

machine learning techniques and validated across independent datasets. The

model’s performance was further corroborated through immunohistochemical

validation on clinical samples.

Results:MLEM effectively stratified breast cancer patients into high- and low-risk

groups. Low-MLEM patients exhibited improved prognosis, characterized by

enhanced immune cel l infi l t rat ion and higher responsiveness to

immunotherapy. High-MLEM patients showed poorer prognosis but were

more responsive to chemotherapy, with vincristine identified as a promising

therapeutic option. The model demonstrated robust performance across

independent validation datasets.

Conclusion: MLEM is a powerful prognostic tool for predicting breast cancer

outcomes and tailoring personalized treatments. By integrating epigenetic

insights with machine learning, this model has the potential to improve clinical

decision-making and optimize therapeutic strategies for breast cancer patients.
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Introduction

Breast cancer (BC) is currently one of the most prevalent

cancers among women, exhibiting significant heterogeneity that

necessitates varying treatment approaches at different stages (1).

For instance, triple-negative BC can be subdivided into multiple

subtypes, each with distinct molecular characteristics and varying

sensitivities to different therapeutic agents (2). Despite substantial

advancements in understanding the pathogenesis of BC, morbidity

and mortality rates, especially post-metastasis, remain high. This

underscores the importance of accurate prognosis prediction and

personalized treatment strategies for BC patients, which hold

promising potential for improving outcomes.

Epigenetics, which involves heritable changes not affecting the

DNA sequence, plays a crucial role in tumor development through

mechanisms such as DNA methylation, histone modification,

chromatin remodeling, and alterations in non-coding RNA (3).

Studies have demonstrated the significant relationship between

epigenetics and tumor progression. For instance, abnormal DNA

methylation modifications can lead to poor prognosis and have

been used to construct prognostic models for BC (4). Similarly,

histone modifications, like aberrant acetylation, regulate the

expression of oncogenes and tumor suppressor genes and are

strongly correlated with poor outcomes in BC patients (5). Thus,

an in-depth analysis of epigenetic alterations in tumor development

could provide new insights and approaches for BC treatment.

Machine learning, a crucial branch of artificial intelligence,

offers potential solutions to issues of poor reproducibility in

current group learning methodologies (6). Recently, various

machine learning algorithms have been employed to develop

clinical prediction models, particularly for cancer diagnosis and

prognosis. For example, a multi-gene prognostic model for ovarian

cancer has proven effective in assessing patients’ conditions and

guiding clinical treatment (7). Individualized risk assessments are

essential for providing patients with accurate prognostic counseling

and tailored clinical treatment plans.

This study presents a groundbreaking predictive model rooted

in epigenetics, employing advanced machine learning techniques to

improve prognosis evaluations. By incorporating extensive

bioinformatics data, this research seeks to overcome the

limitations of conventional models and provide deeper insights

into the role of epigenetics in cancer progression. This advancement

marks a significant step towards creating patient-specific

therapeutic strategies.
Methods

Data acquisition

We aggregated data from 11 independent breast cancer cohorts

derived from four databases: The Cancer Genome Atlas (TCGA),

the Gene Expression Omnibus (GEO), and Metabric (8). For a

robust and comprehensive prognostic analysis, we focused on

samples with complete survival data. Detailed dataset
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characteristics, including platform usage and cohort breakdowns,

are summarized in Supplementary Table S1. Epigenetic regulators

were sourced from the EpiFactors database (9).
Machine learning-assisted
epigenetic signature

Utilizing the approach of Liu et al. (10), we incorporated 10

computational tools to construct a distinctive telomerase signature

for breast cancer: Random Survival Forest (RSF), Least Absolute

Shrinkage and Selection Operator (LASSO), Gradient Boosting

Machine (GBM), Survival Support Vector Machine (Survival-

SVM), Supervised Principal Component (SuperPC), Ridge

Regression, Partial Least Squares Cox Regression (plsRcox),

CoxBoost, Stepwise Cox Regression, and Elastic Net (Enet). RSF,

LASSO, CoxBoost, and Stepwise Cox played crucial roles in

dimensionality reduction and variable selection, resulting in 108

unique configurations to create a predictive signature. We assessed

all cohorts, including TCGA and eight external datasets, using the

average Concordance index (C-index) to determine the most

reliable prognostic model, thereby establishing a specific signature

for predicting breast cancer outcomes.

To further refine our model and ensure it included only the

most predictive genes, we employed an exhaustive search strategy.

After identifying 28 candidate genes using RSF and univariate Cox

proportional hazards regression, we evaluated all possible

combinations of these genes to identify the subset that provided

the best model performance. Performance was assessed using

predefined criteria, including the C-index and Akaike

Information Criterion (AIC). This process reduced the candidate

genes to nine, which demonstrated the highest prognostic value

across all training datasets.

A risk score for each patient was then calculated using the

expression levels of the selected genes weighted by their regression

coefficients from the Cox proportional hazards model. The final

nine-gene signature was validated across multiple independent

cohorts, demonstrating consistent predictive accuracy for breast

cancer outcomes.
Genomic alteration analysis in
MLEM groups

We analyzed genetic variations between two MLEM groups

using the TCGA-BRCA database, focusing on both mutation levels

and Copy Number Alterations (CNA). Tumor Mutation Burden

(TMB) for high- and low-MLEM breast cancer patients was derived

from raw mutation data, with the most frequently mutated genes

(mutation rate > 5%) visualized via maftools. Patient-specific

mutational signatures were identified using the deconstructSigs

tool (11), revealing four significant mutational signatures (SBS2,

SBS13, SBS7b, SBS7d) with elevated mutation frequencies.

Additionally, we identified the five most common regions of

amplification and deletion, particularly in genes located at

17q23.1 and 15q13.1.
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Single-cell RNA sequencing
data processing

To process single-cell RNA sequencing data, we utilized the

GSE161529 dataset with Seurat (v4.0) (12). Initially, we excluded

genes with zero expression, focusing only on those with detectable

expression levels. The expression matrix was normalized using

Seurat’s “SCTransform” function, followed by dimensionality

reduction via PCA and UMAP techniques. Cellular groupings

were identified using the “FindNeighbors” and “FindClusters”

functions. The DoubletFinder package was applied to remove

potential doublets, ensuring data integrity (13). Cells with over

15% mitochondrial genes or fewer than 500 genes were excluded.

Ultimately, 50,214 cells passed quality control and were categorized

by manually annotating cell types based on established

marker genes.
Adapting SCENIC for gene regulatory
network inference

In our study, we adapted the Single-Cell rEgulatory Network

Inference (SCENIC) methodology to construct gene regulatory

networks (GRNs) from single-cell RNA sequencing data (14).

SCENIC functions through a three-step process: identifying co-

expression modules between transcription factors (TFs) and

potential targets, pinpointing direct targets using enriched TF

motifs, and defining regulons composed of a TF and its direct

targets. We calculated the regulatory activity score (RAS) for each

cell using the area under the recovery curve. To address SCENIC’s

limitations with large datasets and sequencing depth variability, we

preprocessed data into metacells, enhancing scalability and

robustness, thereby significantly improving data handling and

computational efficiency (15).
Regulon clustering in regulatory
crosstalk analysis

Our study employs an advanced computational approach to

map the regulatory crosstalk among TFs and their target genes, with

a focus on TF clustering. The process starts by filtering TF-target

interaction data to concentrate on significant pairs (significance

threshold > 1), emphasizing the most relevant regulatory

interactions. Key regulatory TFs, termed hub genes, are identified

by quantifying their regulation of target genes. These interactions

are represented using an undirected graph model, spatially refined

by a force-directed algorithm to clearly illustrate the network

architecture and TF-target interactions. Additional structural

insights are obtained through the Leiden algorithm, which detects

community structures and groups TFs into clusters based on their

regulatory links, enhancing our understanding of the

regulatory landscape.
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Cell-cell communication analysis

We employed the “CellChat” R package to analyze cell-cell

communication (16), creating CellChat objects from UMI count

matrices and utilizing the “CellChatDB.human” database for

ligand-receptor interactions. The analysis was conducted with

default settings, merging objects via the “mergeCellChat”

function. Differences in interaction number and intensity across

cell types were visualized using “netVisual_diffInteraction.”

Changes in signaling pathways were assessed with “rankNet,”

while gene expression distributions were illustrated using

“netVisual_bubble” and “netVisual_aggregate.” Additionally, the

NicheNet package was used to explore ligand activity and the

regulated expression of downstream targets (17), providing

deeper insights into signaling dynamics and communication

pathways within the cellular microenvironment.
Evaluation of TME disparities and
immunotherapy response

To evaluate immune cell infiltration in the tumor

microenvironment (TME), we employed multiple algorithms:

MCPcounter, EPIC, xCell, CIBERSORT, quanTIseq, and TIMER

(18–23). These analyses enabled patient categorization by their

MLEM scores, offering a detailed view of the immune landscape. To

benchmark their consistency, we calculated Spearman’s correlation

coefficients between the outputs of these methods for major immune

cell populations. We also assessed the ESTIMATE and TIDE indices to

understand immunotherapy potential and prognostic implications for

breast cancer (24, 25). Quantification of immune checkpoints was

conducted to predict patient responsiveness to immune checkpoint

inhibitor (ICI) therapy, thereby supporting personalized medicine and

optimizing treatment strategies.
Therapeutic target and drug identification
for high-MLEM patients

To identify potential therapies for high-MLEM patients, we first

filtered out duplicate compounds from the Drug Repurposing Hub,

resulting in 6,125 unique compounds. We performed Spearman

correlation analysis to select genes associated with breast cancer

outcomes, targeting those with correlation coefficients above 0.15

(P < 0.05) and those indicating poor prognosis with coefficients

below -0.15 (P < 0.05). Gene significance was further evaluated

using CERES scores from the Cancer Cell Line Encyclopedia

(CCLE) in relation to breast cancer cell (26).

We also assessed drug responsiveness using data from the

Cancer Therapeutics Response Portal (CTRP) and the PRISM

project, which involve drug screening across various cancer cell

lines. The predictive accuracy of drug responses was enhanced using

the pRRophetic package’s ridge regression model, validated through

10-fold cross-validation (27).
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Furthermore, we explored potential drugs using Connectivity

Map (CMap) analysis by comparing gene expression profiles and

identifying compounds inversely related to CMap scores, indicating

higher therapeutic potential against breast cancer.
Patient stratification in breast
cancer research

For gene expression analysis in breast cancer samples, RNA was

extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA), and

cDNA synthesis was performed using GoScript reverse transcriptase

and Master Mix (Promega) according to the manufacturer’s

instructions. Quantitative expression was measured via qRT-PCR

on the CFX96 Touch Real-Time PCR Detection System (BioRad,

Hercules, CA, USA) utilizing the 2-DDCq method with GAPDH as a

normalization control. Patients were then stratified based on gene

expression levels calculated using a formula derived from the MLEM,

aiding in the identification of varying risk profiles and the

development of tailored treatment strategies.
Immunohistochemistry analysis

Breast cancer tissue samples were collected from 30 patients at

Guizhou Provincial People’s Hospital, and Hematoxylin and Eosin

(HE) staining was performed following standard protocols, with

diagnoses confirmed by two independent pathologists. For

immunohistochemistry (IHC) analysis on paraffin-embedded

samples, procedures and scoring systems from our previous

studies were followed (28, 29). Protein expression levels were

independently assessed by the same pathologists, ensuring

consistency with our earlier research (29).
Results

Construction of epigenetic model based
on machine learning

To assess the correlation between epigenetic regulation and BC

prognosis, we collected epigenetic regulators from the EpiFactors

database and applied them across nine independent cohorts. This

multi-platform dataset enabled the construction of a robust model

using machine learning techniques. The model’s performance was

evaluated by calculating the average C-index across the nine cohorts

using 10 machine learning algorithms in 108 combinations

(Figure 1A). The RSF model, which achieved the highest score, was

selected as the final model. Genes corresponding to the point with the

lowest error rate were chosen as candidate variables (Figures 1B, C).

Subsequently, a univariate Cox analysis was performed on these genes

to assess their impact on BC prognosis (Figure 1D). Ultimately, nine

genes were identified to construct a machine learning-based

epigenetic model (MLEM) (Figure 1E). The MLEM effectively

stratified BC patients into different risk groups with accurate

prognostic predictions (Supplementary Figure S1).
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Evaluation of MLEM with 68 published
BC models

Univariate and multivariate Cox analyses were utilized to compare

MLEM with other clinical indicators, revealing that MLEM possessed

strong predictive capability (Supplementary Figure S2A). A nomogram

incorporating MLEM, staging, and age was developed to predict the

overall survival (OS) of patients at 1, 3, and 5 years (Supplementary

Figure S2B). The analysis of calibration curves and Hosmer-Lemeshow

tests showed a high level of consistency with the standard curve

(Supplementary Figures S2C, D). Additionally, decision curve

analysis (DCA) suggested that MLEM holds significant potential for

clinical application (Supplementary Figure S2E). Compared to other

clinical factors, MLEM demonstrated superior discrimination

(Supplementary Figure S2F).

Subsequently, we manually curated 68 published BC models for

evaluation against MLEM. Univariate Cox analysis was conducted

on these models across 10 BC cohorts. MLEM exhibited the best

stability across all 10 datasets (Figure 2A). Furthermore, the

predictive ability was evaluated using the average C-index, where

MLEM consistently ranked high in all 10 cohorts, underscoring its

robustness and effectiveness in BC prognostication (Figure 2B).
Multi-omics analysis of genome variations
for MLEM

A multi-omics analysis was conducted on genes potentially

associated with the BC process in patients with varying MLEM. The

findings revealed that patients with high-MLEM group exhibited a

significantly higher tumor mutation burden (TMB) compared to

those with low-MLEM, which was accompanied by a higher rate of

multigene mutations (Figures 3A, C). When integrating mutation

data from ten oncogenic signaling pathways, it was observed that

the mutation rates of classic tumor suppressor genes such as TP53,

STK11, and AXIN1/2 were significantly elevated in the high-MLEM

group. Conversely, the mutation rates of classic oncogenic genes

such as PIK3CA/B and AKT1/2/3 were lower in the high-MLEM

group (Figures 3A, B). Additionally, a comparison of copy number

variations between the two MLEM groups indicated more

pronounced amplifications and deletions of chromosome arms in

the high-MLEM group. Notable amplifications included 4q13.3,

8q24.21, 17q12, 17q23.1, and 20q13.2, while significant deletions

were observed at 9p21.3, 9p23, 15q13.1, 18q23, and 19p13.3

(Figures 3A, D). High-MLEM patients exhibited a greater

prevalence of SBS13, which is associated with increased tumor

mutation burden and aggressive tumor phenotypes. This finding

aligns with the poorer prognosis observed in this group. SBS2 and

SBS13, indicative of APOBEC activity, have been shown to correlate

with heightened sensitivity to immune checkpoint inhibitors. This

may explain the differential therapy responses between MLEM

groups. Additionally, the presence of SBS7b and SBS7d suggests

potential vulnerabilities to therapies targeting nucleotide excision

repair pathways.
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Analysis of biological mechanisms of MLEM
at the single-cell level

Single-cell transcriptome analysis was conducted to evaluate the

biological signifi-cance of MLEM in 14 BC patients, comprising 6

normal tissues and 8 BC tissues (Supplementary Figures S3A, B).

Initially, 18 clusters were identified, and 8 cell types were further
Frontiers in Immunology 05
determined (Figures 4A, B). The proportions of these 8 cell types

were then analyzed, highlighting the differences between the

patient’s body and the 14 tissue samples (Supplementary Figures

S3C, D). Veri-fication of these cell types using representative

markers confirmed consistency with the original results

(Figure 4C; Supplementary Figure S3E). Analysis of the

distribution of these cell types revealed that epithelial cells,
FIGURE 1

Construction of epigenetic model based on AI. (A) Average C-index of 108 combination algorithms in nine BC cohorts. (B) Error rate of the RSF in
1000 iterations. (C) Importance of 28 epigenetic genes. (D) Kaplan-Meier survival analysis of 28 candidate genes across 9 BC cohorts, illustrating
their association with patient outcomes. Each gene’s hazard ratio and p-value are shown, highlighting their prognostic significance. (E) Correlation
coefficients of key genes used in model.
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plasma cells, macrophages, T cells, and B cells were more prevalent

in BC tissue, whereas pericytes and endothelial cells were more

abundant in normal tissue. Fibroblasts were found in similar

proportions in both BC and normal tissues (Figure 4D).

The previously established MLEM was integrated into the

single-cell analysis and categorized into high- and low-MLEM

groups based on the peak of epithelial cells (Figures 4E, F).

Differential gene expression between the MLEM groups was then

analyzed across these 8 cell types (Supplementary Figure S3F). For

instance, in epithelial tumor cells, genes related to rRNA binding,

translation regulatory factors, and nucleic acid binding were

significantly upregulated in high-MLEM cells, whereas genes

associated with histone binding were significantly upregulated in

low-MLEM cells (Supplementary Figure S3G). Additionally, the

copy number alteration of genes in epithelial cells was examined

using the CNA-based copyKat algorithm (Figure 4G), revealing that

aneuploid tumor cells were more prevalent than diploid normal

cells (Figure 4H).
Frontiers in Immunology 06
Exploring specific regulatory factors
for MLEM

To comprehensively construct GRNs, we utilized the SCENIC

pipeline to analyze single-cell RNA-seq data along with cis-

regulatory sequence information. This process transformed the

gene expression data into RAS for TFs (Figures 5A, B). We then

performed variance decomposition analysis using principal

component analysis (PCA) to identify specific regulons for

MLEM and different cell types. The results indicated that PC1

accounted for cell type-specific TFs, while PC2 was associated with

MLEM-specific TFs (Figures 5C, D).

In our investigation to identify key regulators of cell identity, we

evaluated the activity of each regulon across various cell types. We

assigned a regulon specificity score (RSS) based on Jensen-Shannon

divergence to measure each regulon’s association with specific cell

identities. By concentrating on regulons with the highest RSS values,

we analyzed their functional characteristics (Figure 5E). This
FIGURE 2

Evaluation of MLEM with 68 published BC models. (A) univariate Cox analysis of models in 10 BC cohorts. (B) Comparison of the average C-index of
models in 10 BC cohorts.
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analysis identified MESP1, SPDEF, and GATA3 as key regulons

uniquely associated with epithelial cells. UMAP plots further

highlighted the specificity of these regulons’ activities within

epithelial cells (Figure 5F). Additionally, we presented and

analyzed regulons specific to other cell types, underscoring the

distinct regulatory networks that define cell identities

(Supplementary Figure S4A).

Recognizing that TFs collaborate to regulate gene expression,

we systematically examined the combinatory patterns of these

regulatory elements. By assessing the similarity of RAS scores for

each regulon pair across the entire atlas using the Leiden algorithm,

we organized 343 regulons into 12 distinct modules, unveiling

complex regulatory patterns within the cellular landscape

(Figure 5G; Supplementary Figure S4B). Notably, modules A and

C were predominantly associated with MLEM (Figure 5H). We then

investigated the specific TFs driving transcriptomic changes in

epithelial cells influenced by MLEM. GSEA identified several

pathway alterations (Figure 5I), including the translation
Frontiers in Immunology 07
initiation in epithelial cells with high-MLEM (Figures 5I, J).

Further analysis identified the TFs contributing to this pathway

and their roles in MLEM progression (Figure 5K). A comprehensive

regulatory network is illustrated in Figure 5L.
Intercellular communication between
MLEM groups

The relationships of intercellular communication differences

between MLEM groups among 8 types of cells were analyzed using

CellChat. Although the type of cellular communication was more

diverse, the intensity of interactions was slightly lower in high-

MLEM cells (Figure 6A). Differences in intercel lular

communication revealed a significant decrease in the number of

interactions involving plasma cells with other cells, whereas

interactions among the other cells significantly increased in high-

MLEM cells (Figure 6B). Additionally, the analysis of intercellular
FIGURE 3

Multi-omics analysis of genome variations for MLEM. (A) Genomic alteration landscape of MLEM, from up to bottom: TMB, gene mutational
signatures, gene mutation frequency, CNAs (the red represents amplification, and the blue represents deletion), and the representative genes in
region 17q23.1 and 15q13.1. (B) Mutation frequency of 10 oncogenic pathways between MLEM groups. (C) Comparison of TMB between MLEM
groups. (D) Amplification or deletion of chromosomal arm. *p < 0.05, ***p < 0.001, ****p < 0.0001.
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signaling pathways showed that seven pathways were highly active

in low-MLEM cells, while 18 pathways were highly active in high-

MLEM cells (Figure 6C).

Further analysis assessed the strengths of outgoing and

incoming interactions to gauge cell-cell communication.

Compared to low-MLEM cells, macrophages and endothelial cells

showed a significant increase in their signal reception ability,

whereas plasma cells and T cells exhibited a significant decrease

in high-MLEM cells (Figure 6D). Several pathways in epithelial cells

were specific to MLEM, such as LAMININ (Figure 6E).

A deeper analysis was performed to summarize the expression

of receptor ligands in the most valuable signaling pathways

(Figure 6F). It was found that MDK-SDC4 and CCN1-SDC4

ligand-receptor pairs were highly expressed in fibroblasts

(Figure 6G). Finally, signaling communication pathways involving

MDK-SDC4 and CCN1-SDC4 ligand-receptors were analyzed,

identifying potential pathways (Figure 6H).
MLEM predicts immunotherapy response

Six algorithms were utilized to evaluate the immune

microenvironment, revealing that patients in the low-MLEM

group exhibited a higher degree of immune cell infiltration,

including CD4+ and CD8+ T cells (Figure 7A). The comparison

of immune checkpoint inhibitors (ICIs) indicated higher expression
Frontiers in Immunology 08
levels of ICIs in the low-MLEM group, further suggesting that

immunotherapy might be more suitable for these patients

(Figure 7B). Representative cell markers were evaluated using

IHC experiments (Figure 7C). Spearman’s correlation analysis

revealed a high degree of concordance between MCPcounter,

quanTIseq, and TIMER for key immune populations such as

CD8+ T cells (r > 0.75). In contrast, xCell exhibited lower

concordance with other methods, particularly for macrophages

and B cells (r < 0.50). Despite these differences, all methods

consistently showed higher immune infiltration levels in the low-

MLEM group compared to the high-MLEM group. This robustness

across algorithms supports the reliability of our findings.

Furthermore, patients in the low-MLEM group had superior

ESTIMATE scores, immune scores, and stromal scores, whereas

high-MLEM patients had higher tumor purity, suggesting that the

low-MLEM group might be more responsive to immunotherapy

(Figure 8A). Subsequently, TIDE analysis showed that TIDE,

Dysfunction, and Exclusion indicators were higher in the low-

MLEM group compared to the high-MLEM group (Figure 8B),

and patients in the low-MLEM and low-TIDE group demonstrated

significantly better outcomes (Figure 8C). Further analysis revealed

a significant correlation between immune signaling pathways, the

immune cycle, and MLEM in BC (Figure 8D). Finally, studies from

IMvigor210 (Figures 8E–H) and GSE78220 (Figures 8I–L) indicated

that patients in the low-MLEM group benefited more from PD-L1

and PD-1 administration, confirming that immunotherapy was

more suitable for patients in the low-MLEM group.
FIGURE 4

Analysis of biological mechanisms of MLEM at the single-cell level. (A) UMAP visuali-zation illustrates the distribution of cell clusters. (B) UMAP
visualization illustrates the distribu-tion of identified cell types. (C) Representative markers of each cell type. (D) Proportion of eight cell types of
between tumor and normal tissues. (E) UMAP visualization illustrates the distribution of MELM value. (F) Distribution of MLEM value across various
cell types. (G) Estimation of copy number using copyKAT algorithm. (H) MLEM variance between diploid and aneuploid cells in the epithelial cell.
****p < 0.0001.
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Screening drugs for high-MLEM
BC patients

Spearman correlation analysis was applied to investigate the

correlation between MLEM and gene expression (positive

correlation) as well as CERES (negative correlation). This
Frontiers in Immunology 09
analysis identified seven potential therapeutic targets for

patients with high MLEM: CYCS, SLC25AB, COX7B, NDUFB3,

NDUFA4, NDUFB6, and NDUFB9 (Figure 9A). These targets

were found to be closely related to various pathways of action of

breast cancer-related drugs, marking them as key therapeutic

targets for BC patients (Figure 9B).
FIGURE 5

Exploring specific regulatory factors for MLEM. (A) umapRAS visualization illustrates the distribution of cell clusters. (B) umapRAS visualization illustrates
the distribution of identified cell types. (C) Variance analysis plot highlights the PC1 impact of cell types. (D) Variance analysis plot highlights the PC2
impact of MLEM. (E) Regulons ranking for each cell type based on RSS. (F) Three top regulons focus on epithelial cells. (G) Interactions network of
regulons constructed using the Leiden algorithm. (H) Detail network of modules A and C. (I) Functional variations linked to MLEM in epithelial cells.
(J) Representative pathways activated or inhibited in the context of high-MLEM. (K) TFs involved in translation initiation. (L) Detailed regulatory network
of the interactions among TFs involved in translation initiation. ****p < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1510829
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guo et al. 10.3389/fimmu.2024.1510829
Subsequently, six potential compounds were identified from the

CTPR (SB-743921, paclitaxel) and PRISM datasets (deforlimus,

romidepsin, ispinesib, vincristine). The AUC values for these

compounds were compared between the two MLEM groups,

revealing lower AUC values in high-MLEM patients, which suggests

a better chemotherapy efficacy for these patients (Figures 9C, D).
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Amulti-perspective analysis was performed to identify the most

effective therapeutic drugs among the six candidates. This analysis

incorporated clinical status, experimental evidence, mRNA

expression levels, and CMap scores for each compound.

Vincristine emerged as the potential therapeutic drug for high-

MLEM patients, based on its CMap score (Figure 9E).
FIGURE 6

Intercellular communication between MLEM groups. (A) Comparison of the number and intensity of intercellular communication between MLEM
groups. (B) Network diagrams illustrate varied interaction strengths among each cell type. (C) Active communication pathways in MLEM groups.
(D) Scatter plots compare outgoing and incoming interaction strengths between cell types. (E) Pathway specificity in epithelial cells within
high-MLEM. (F) Potential ligand-receptor interactions, inferred through NicheNet analysis. (G) Circos plot summarizes top-predicted ligand-receptor
pairs in high MLEM cells. (H) The routes of MDK and CCN1 ligands to the target receptor SDC4.
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Discussion

The mortality of BC is increasing year by year, and the main

factor leading to it is the poor prognosis. Different disease courses

can greatly affect the accuracy of medication in BC patients, and
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experiments have demonstrated that BC patients have different

treatment options at different stages (2, 3). Epigenetics plays a role

by regulating the expression of DNA methylation, and abnormal

methylation can have varying degrees of impact on tumor

progression, thereby inducing or inhibiting cancer (7). But now
FIGURE 7

Differential expression and immunohistochemical analysis of immune markers in tumor microenvironments between MLEM subgroups. (A) Heatmap
provides a comparative view of immune cell infiltration in tumor samples with low and high-MLEM, utilizing various computational algorithms for
quantification. Each row represents a different type of immune cell, with the color intensity reflecting the level of infiltration. (B) Box plots illustrate
the distribution of gene expression levels for immune checkpoint inhibitors (ICIs) across low vs. high MLEM conditions, with statistical significance
denoted by ns for not significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. (C) Representative immunohistochemistry images showcase
the staining intensity of various immune markers between high and low expression conditions, visually depicting the differential expression of these
markers in correlation with MLEM levels.
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FIGURE 8

MLEM predicts immunotherapy response. (A) ESTIMATE scores, immune scores, stromal scores, and tumor purity between MLEM groups. (B) TIDE,
dysfunction, and exclusion variations between MLEM groups. (C) Survival probability of patients based on the combination of MLEM and TIDE.
(D) Correlation analysis of MLEM with immune pathways and tumor immune cycle. (E, I) Violin charts display the relationship between MLEM levels
and responses to anti-PDL1 (E) and anti-PD1 (I) therapies, detailing the differential immune responses. (F, J) Survival probabilities of low and high
MLEM patients in anti-PDL1 (F) and anti-PD1 (J) cohorts, respectively, illustrating the impact of MLEM on survival outcomes. (G, K) Analysis estimates
the predictive ability of MLEM via AUC values, considering TMB combinations, in anti-PDL1 (G) and anti-PD1 (K) cohorts, evaluating the efficacy of
MLEM as a biomarker. (H, L) The percentages of complete response/partial response (CR/PR) and stable disease/progressive disease (SD/PD) in
anti-PDL1 (H) and anti-PD1 (L) cohorts are shown, based on MLEM levels, to assess treatment effectiveness.
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there is a lack of models related to BC and epigenetics. Therefore, a

prognostic model for BC was established by using 9 epigenetic genes

and its mechanism in combination with biological changes in the

human body was further elucidated in this study.

The key epigenetic genes were identified using RSF algorithm.We

then constructed the epigenetic model based nine genes identified
Frontiers in Immunology 13
through RSF and Cox proportional hazards regression analyses.

These genes were selected for their prognostic significance across

multiple cohorts, with high hazard ratios indicating strong

associations with breast cancer outcomes. The nine genes were

integrated into the MLEM by assigning weights to their expression

levels based on regression coefficients, forming a composite risk score
FIGURE 9

Screening drugs for high-MLEM BC patients. (A) Spearman’s correlation illustrating the association between MLEM and the abundance of potential
therapeutic targets in breast cancer patients. (B) Network analysis highlights the intricate connections between these therapeutic targets and their
associated drug action pathways. (C) Box plots compare the AUC values of two compounds in the CTRP dataset. (D) Box plots compare the AUC
values of four compounds in the PRISM dataset. (E) Summary table outlines the multi-perspective analysis of the six candidate compounds, detailing
their clinical status, experimental evidence, mRNA expression levels, and CMap scores. ***p < 0.001.
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for patient stratification. UBE2A has been reported to be associated

with the proliferation of ovarian cancer, but the mechanism of action

is not yet clear (30), EXOSC4 has been demonstrated to have a

carcinogenic effect in diseases such as colorectal cancer, gastric

cancer, and lung cancer (31), and its activation can affect the

angiogenesis of tumor microenvironment to promote the

development of cancers (32), and EXOSC4 can cause cancer by the

abnormal methylation of promoter genes (33), improve the prognosis

of patients by inhibiting its gene expression and be used to construct

prognostic signatures for ovarian cancer (34). Moreover, PARP3,

have been found to be associated with BC and can exhibit anti-cancer

effects by inhibiting Akt dephosphorylation (35). Some studies have

shown that after activation, PAPR3 can improve cancer prognosis by

participating in chromosome rearrangement and double-stranded

broken strand repair (36). DAXX has been proved to play an anti-

tumor role in pancreatic cancer by inhibiting the expression of some

genes (37), and improving the repeated sequence and repairing DNA

in vivo (38).

It was found through the analysis of the mutation landscape of

MLEM that the TMB level was higher, the mutation characteristics

were more diverse, the gene mutation frequency was higher, and the

amplification and deletion of chromosome region were more

frequent in high-MLEM group, suggesting the poor prognosis of

these patients. Meanwhile, our analysis found that PVT1, MYC,

GSDMC, PTPRD, and MPDZ genes were related to the progression

of BC. Some studies have shown that PVT1 can interfere with the

proliferation and spreading of tumor cells and the angiogenesis in

tumor tissues by inhibiting miRNA (39). In the BC process, PVT1

can regulate the expression of some genes by binding to miR-145-

5p, resulting in a poor prognosis (40). MYC, as a typical tumor

suppressor gene, has a wide range of gene expression regulation

capabilities, and is currently used as a target for cancer treatment

(41). CCDC26 can regulate miRNA through multiple pathways in

thyroid cancer to promote the cancer occurrence (42). GSDMC is

also used in the establishment of prognostic models for pancreatic

cancer at this stage, indicating that it may be associated with the

poor prognosis of pancreatic cancer (43). In summary, the

amplification of the above genes suggests that the poor prognosis

of BCmay be related to it, and imply potential hidden targets for the

treatment of BC. PTPRD can inhibit liver cancer by promoting the

methylation of DNA in it (44). In addition, MPDZ has also been

reported to exert an inhibitory effect on lung cancer by inducing the

dephosphorylation of YAP, and its specific expression can also serve

as an independent predictive factor for the diagnosis of lung cancer

and other cancers (45). In summary, the amplification and deletion

of the above genes in the chromosome arm provide a more

reasonable explanation for MLEM in evaluating the prognosis of

BC patients.

The identification of mutational signatures, such as SBS2,

SBS13, SBS7b, and SBS7d, provides insight into the biological

underpinnings of breast cancer heterogeneity. These signatures

not only influence prognosis but also offer potential therapeutic

opportunities. For instance, the APOBEC-related signatures (SBS2,

SBS13) may predict responsiveness to immune-based therapies,

while UV-related signatures (SBS7b, SBS7d) highlight

vulnerabilities to DNA repair-targeting agents.
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The tumor immune microenvironment (TIME) includes tumor

cells, immune cells, cytokines, etc. These components interact with

each other to promote the proliferation of tumors and inhibit

tumors, which can also provide an opportunity for tumor escape

and are also used in the treatment of tumors now (46). In this study,

the levels of immune cell infiltration and ICIs expression in different

groups were evaluated. The consistency of immune cell population

estimates across different algorithms provides confidence in the

robustness of our findings. Notably, MCPcounter, quanTIseq, and

TIMER showed strong agreement in estimating CD8+ T cell

infiltration, aligning with our conclusion that low-MLEM patients

exhibit higher immune activity. However, discrepancies observed

with xCell, particularly for macrophages and B cells, may stem from

differences in algorithmic assumptions (e.g., expression

deconvolution versus signature matching). These variations

highlight the importance of using multiple approaches to ensure

comprehensive immune profiling. Future studies may benefit from

experimental validation to complement computational predictions.

In low-MLEM group, a significant immune cell infiltration was

observed in BC patients, accompanied by a higher ICIs activation.

Current studies have shown that the immune system plays an

important role in the development and remission of BC, and the

main treatment methods for various BC include tumor targeted

antibodies (bispecific antibodies), adoptive T cell therapy, vaccines,

and immune checkpoint blockade. Personalized immunotherapy

remains one of the key factors in improving the prognosis of BC

although immunotherapy has made great progress in treating BC.

The relationship between MLEM and immune microenvironment

not only indicates that immunotherapy has a good prospect in this

group, but also suggests that the personalized treatment can be

better implemented to improve the prognosis for BC patients based

on MLEM.

Chemotherapy is a conventional therapy for treating tumors at

present, and the main therapeutic drugs include estrogen

antagonists and monoclonal antibody antagonists. The selected

therapeutic drugs vary depending on the patient’s conditions. A

series of analyses on the sensitivity of BC patients in different groups

to chemotherapy were further conducted, and the analyses

indicated that patients in high-MLEM group were more suitable

for chemotherapy compared to those in low group. Seven potential

therapeutic targets and one potential therapeutic drug were

identified by the screening of targets and drugs, which may help

select personalized treatment plans more suitable for patients with

different conditions in clinical practice. Vincristine, a microtubule-

disrupting agent, primarily targets mitotic processes; however,

recent studies suggest it may influence gene expression indirectly

through stress response pathways or modulation of chromatin

accessibility (47). While no direct evidence links vincristine to

changes in the expression of the nine genes in our model,

pathways involving PARP3 and DAXX, both critical in DNA

damage response, may be affected by vincristine-induced cellular

stress (48, 49). Similarly, other proposed drugs, such as romidepsin

(an HDAC inhibitor), have known epigenetic effects that could alter

gene expression profiles relevant to breast cancer (50). Future

studies, including transcriptomic analyses in treated organoid or

in vivo models, will be essential to validate these hypotheses.
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While the MLEM classifier effectively stratifies patients into

high- and low-risk groups with distinct therapeutic sensitivities,

experimental validation is critical to confirm these computational

predictions. Future work could leverage organoid models derived

from patient tumor tissues to test the differential responses of high-

and low-MLEM groups to immunotherapy (e.g., PD-1/PD-L1

inhibitors) and chemotherapeutics (e.g., vincristine). Organoids,

which replicate the tumor microenvironment, offer a

physiologically relevant platform to assess drug efficacy and

resistance mechanisms. This approach could also facilitate the

development of combination therapies tailored to the molecular

profiles of these subgroups, ultimately enhancing the clinical

applicability of our findings.

Our study’s strength lies in its robust identification of epigenetic

markers and the development of a predictive model. However, the

sample size and geographic limitations necessitate further

validation across diverse populations to ensure generalizability.

Additionally, while the RSF algorithm provides a reliable method

for gene selection, the potential biases inherent in machine learning

approaches should be acknowledged and addressed in future

studies. Our results align with previous research on the

significance of epigenetic alterations in cancer prognosis and

therapy. Studies have shown that epigenetic modifications can

profoundly influence tumor behavior and treatment response.

However, our model’s specific focus on BC and the integration of

multiple data sources for drug efficacy analysis provide novel

insights that enhance its clinical applicability. Future research

should aim to validate our findings in larger, more diverse

cohorts. Exploring the mechanistic pathways of the identified

genes could uncover additional therapeutic targets. Furthermore,

integrating genomic, transcriptomic, and epigenomic data could

refine the prognostic model, enhancing its precision and utility in

personalized medicine.

The MLEM classifier offers a significant advancement in breast

cancer prognosis by integrating molecular data into patient

stratification, complementing traditional tumor staging. Unlike

staging systems that rely on anatomical and pathological features,

the MLEM provides molecular insights into tumor biology,

enabling more personalized treatment strategies. Low-MLEM

patients, characterized by higher immune infiltration, may benefit

from immune checkpoint inhibitors such as anti-PD-1/PD-L1

therapies, while high-MLEM patients, less immune-responsive but

more sensitive to chemotherapy agents like vincristine, can be

managed with tailored chemotherapeutic regimens. Additionally,

MLEM could facilitate molecularly stratified clinical trials,

improving the precision of therapeutic evaluation. However,

several limitations should be acknowledged. The MLEM was

developed and validated using retrospective datasets generated

from diverse platforms (e.g., HM450K, RNA-seq), which may

introduce variability in model performance. Prospective

validation in clinical cohorts is essential to confirm its utility.

Furthermore, while immunohistochemical validation on clinical

samples supports the robustness of the nine-gene signature,

additional experimental studies, such as organoid models or in

vivo experiments, are needed to explore its biological and

therapeutic relevance. Finally, the clinical benefit of MLEM
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compared to established molecular classifiers (e.g., PAM50)

warrants further evaluation to solidify its translational potential.
Conclusion

Nine key epigenetic genes were identified using advanced

machine learning techniques, leading to the development of a

prognostic model for breast cancer. This model effectively

stratified patients into low- and high-MLEM groups, each

demonstrating distinct prognostic outcomes and treatment

responses. The findings suggest that low-MLEM patients may

benefit more from immunotherapy, whereas high-MLEM patients

could respond better to chemotherapy, with vincristine showing

promise as a therapeutic option. These insights pave the way for

more personalized and effective treatment strategies in breast cancer

care. Further research is needed to validate these findings and

explore the underlying mechanisms.
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