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Background: This study aims to identify the hub genes and immune-related

pathways in acute myeloid leukemia (AML) to provide new theories

for immunotherapy.

Methods:We use bioinformatics methods to find and verify the hub gene. At the

same time, we use the results of GSEA enrichment analysis to find immune-

related mediators. Through Mendelian randomization(MR) analysis, on the one

hand, we look for related immune cells, and on the other hand, we use it to

determine the causal relationship among immune cells, immune mediators, and

AML. Finally, in vitro experiments are conducted to further verify and improve the

reliability and physiological functions of the hub gene and its immune-

related pathways.

Results: Complement Factor D(CFD) gene is identified as the highly expressed

hub gene and is positively correlated with IL-2. IL-2 is also positively correlated

with CD27 on CD24+CD27+B cells, JAK/STAT, and PI3K/Akt. The latter three are

positively correlated with the occurrence and development of AML.

Conclusion:We conclude that CFD gene uses IL-2 as a mediator to promote the

disease progression of AML by promoting the CD27 on CD24+CD27+B cells,

JAK-STAT, and PI3K-Akt pathways.
KEYWORDS
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1 Introduction

AML is a common acute leukemia that can occur in individuals

of all ages (1, 1). The diagnosis and treatment of AML often suffer

from a lack of sensitive and specific biomarkers, with most patients

diagnosed at intermediate or advanced stages (2). Furthermore,

there are limited treatment options for AML, and it is common for

drug resistance to develop (3, 4). Although treatment has been

administered, the recurrence rate of patients with AML remains

very high (5, 6), which leads to a very low overall survival rate (7, 8).

Therefore, identifying hub genes and associated mechanisms for

pathogenesis, proliferation, and recurrence is crucial for early

screening, accurate diagnosis, effective treatment strategies, and

prognosis assessment (9, 10).

The use of immune pathways to combat cancer cells has a history

of a hundred years (11). The first successful clinical application of

immunotherapy is the use of allogeneic hematopoietic stem cell

transplantation (12). In recent years, immunotherapies like chimeric

antigen receptor (CAR) have begun to gain people’s attention (3, 13,

14). Studies have shown that it is of crucial importance to improve the

immune efficacy and reduce toxic and side effects through immune

analysis related to AML (15–17). At present, there is still a great lack in

this aspect (14, 18). Therefore, studying AML-related hub genes (19)

and related immune pathways can provide valuable insights for AML

in the aspect of immunotherapy (20).

In this study, our aim is to first screen for hub genes. Through the

screening and validation of differential genes, the hub genes related to

the disease can be identified. And the GSEA analysis of all the co-

expressed genes of hub genes can discover the pathways they regulate.

By this means, in this study, we can identify the inflammatory factors

regulated by hub genes. The immune infiltration analysis is then used

to further confirm the immune association between hub genes and

the disease. Afterwards, bulk MR is utilized to screen for immune

cells, and mediation MR is employed to determine the relationship

among inflammatory factors, immune cells and AML. We can judge

that there is a positive correlation among them through this method,

which provides guidance for the subsequent in vitro validation.

Finally, through in vitro experiments, we verify the reliability of

hub genes and the impact of possible immune-related pathways on

cell proliferation. We aim to reveal that hub genes affect and regulate

the occurrence and development of AML through multiple immune-

related pathways, providing new inspiration for improving the

immunotherapy effect of AML.
2 Materials and methods

2.1 Bioinformatics analysis

2.1.1 Data sources
The datasets were obtained from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/). We searched the GEO database using

the keywords “acute myeloid leukemia “ [MeSH Terms] AND

“Homo sapiens” [porgn: txid9606] and “Expression profiling by

array” [All Fields]. The criteria for screening included the following:
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the microarray dataset referred to the genome-wide gene expression

profiles in blood. The microarray dataset contained samples from

AML and samples from healthy conditions. The included samples

were not associated with any other diseases. The number of AML

samples needed to be greater than 10. Based on the above

conditions, we screened GSE9476 (including 38 normal samples

and 26 AML samples) and GSE24395 (including 5 normal samples

and 12 AML samples). These datasets were merged to form a new

dataset which eliminated batch effects to form the experimental

dataset. GSE30029 (comprising 31 normal and 90 AML samples)

served as the validation dataset.

2.1.2 DEGs selection and functional
enrichment analysis

We used the “limma” package in R to identify DEGs, with a

threshold of P < 0.05 and |log2 FC| > 2. Subsequent analyses included

gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analyses, and immune-related gene set

enrichment analysis (GSEA). Statistical significance was defined by

a P value of 0.05, with a threshold of |log2 FC| > 1 applied for GSEA.

2.1.3 Weighted gene co-expression
network analysis

We clustered the samples and removed outliers. The optimal

power value was determined to be 11, which was used to assess the

fit index and average connectivity. Based on this optimal power

value, a scale-free network was constructed. The efficacy of this

construction was evaluated by plotting the topology of the scale-free

network, which allowed for the generation of a distance matrix for

gene clustering. Subsequently, dynamic module identification was

conducted, focusing on modules containing at least 30 genes.

Highly correlated modules were clustered and merged. Heatmaps

illustrating module-clinical trait relationships and gene significance

were generated to identify key modules, with parameters set at GS >

0.5 and MM > 0.8 to ultimately determine the hub genes.

2.1.4 Determination of hub genes
We further employed the JSVM-RFE algorithm for feature gene

selection. The results intersected with the genes from the key

modules identified in WGCNA and the DEGs, ultimately yielding

the hub genes.

2.1.5 Validation of hub genes
Firstly, we constructed a receiver operating characteristic

(ROC) curve to validate the hub genes. Gene expression was then

compared between the two groups using box plots for both

experimental and validation datasets. Additionally, LASSO

regression was utilized for cross-validation. We also utilized the

GEPIA database (http://gepia.cancer-pku.cn/) to perform survival

analysis, evaluating the diagnostic accuracy.

2.1.6 GSEA analysis
GSEA was performed using gene sets that synergistically

interact with the hub genes, allowing for the identification of

enriched pathways associated with these gene sets.
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2.1.7 Immune infiltration analysis
Immune-related single-sample GESA (ssGSEA) enrichment

analysis and CIBERSORT immune infiltration analysis were

conducted. These two methods provided complementary insights

into the immune landscape.
2.2 MR analysis

2.2.1 Data sources
The IEU database (https://gwas.mrcieu.ac.uk/) served as the source

for this portion of the data. The IL-2 dataset (GWAS ID: prot-c-

3070_1_2) include 501,428 SNPs from a European population. The

EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/) were source of

the data on AML and immune cells, with the AML accession

number GCST90435652. Immune cell data were collected

under accession numbers GCST90274758 to GCST90274848,

encompassing 728 immune cell types along with their

corresponding GWAS IDs (Supplementary Table S1), all derived

from a European population.

2.2.2 IVs selection and data harmonization
Genome-wide significant SNPs with a threshold of P < 5×10−8

were included. In the absence of such SNPs, we considered those

with P < 5×10−6 as potential instruments. We clustered SNPs based

on linkage disequilibrium (window size = 10,000 kb and r² < 0.001),

excluding weak instrumental variables (F-statistics < 10).

2.2.3 Primary analysis
We used inverse variance weighting (IVW) and MR-Egger

methods as the primary methods for assessing causal

relationships. Both methods needed to achieve a significance

threshold of P < 0.05, and if neither method achieved this level,

the IVW results were prioritized. IVW combines the causal effects

represented by the Wald ratio of each SNP through meta-analysis,

relying on the assumption that all SNPs are valid instruments.

Therefore, this approach could be applied only after excluding SNPs

exhibiting pleiotropy.

Firstly, the causal relationship between IL-2 and AML was

evaluated using a two-sample bidirectional MR. Directionality

was assessed using P values for either IVW or MR-Egger. If this

condition was not met, the direction of overall effect was derived

from the cumulative steps in the decomposition process, ensuring P

values remained below 0.05 in each step, while also calculating the

total utility.

2.2.4 Mediation analysis
Bulk MR analyses were performed using 728 immune cell types

as exposure and AML as the outcome, identifying immune cells that

yielded significant results. IL-2 was treated as the exposure, with the

selected immune cells as outcomes, identifying the double-positive

immune cells. Refer to the method in the literature (21). We

conducted a three-step MR analysis for mediation assessment. In

the first step, IL-2 was used as the exposure, with the AML as the

outcome to calculate the effect (beta_all). In the second step, IL-2
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was used as the exposure, with the identified double-positive

immune cells as the outcome to calculate the effect (beta1). In the

third step, these double-positive immune cells served as the

exposure, with AML as the outcome to calculate the effect

(beta2). Different SNPs were utilized in each step to investigate

whether immune cells mediate the association between IL-2 and

AML. The overall effect of IL-2 on AML included its direct effect on

AML and an indirect effect mediated through immune cells. The

mediation effect was assessed as the indirect effect divided by the

overall effect. Additionally, the delta method was employed to

calculate the 95% confidence intervals (CI).

2.2.5 Sensitivity analysis
We assessed heterogeneity and horizontal pleiotropy by

calculating P values. P > 0.05 indicated no significant

heterogeneity or pleiotropy. Outliers were removed when

detected, and causal estimates were recalculated. If significant

heterogeneity persists following removal, a random effects model

would be applied to assess result stability, as this model is less

sensitive to weak SNP-exposure associations. We also conducted a

leave-one-out analysis to evaluate the impact of each SNP on the

overall causal estimate.
2.3 Experimental validation

2.3.1 Cell culture
This study protocol was reviewed and approved by Ethics

Committee of Gaomi Maternity and Child Health Hospital,

approval number 20230206-09. For studies in which human

tissues, fluid, or cell lines were used, written informed consent

was obtained from the donors’ parents to participate in the study.

Donors’ parents signed an informed consent according to the

principles outlined in the Declaration of Helsinki.

The human myeloid leukemia cells (KG-1a) were obtained from

CELLCOOK (Guangzhou, Guangdong, China) and validated via

STR analysis (Supplementary Figure S1). The control group

consisted of human umbilical cord blood stem cells sourced from

children at our institution who had consent from their legal

guardians. A portion of these stem cells was sent to the Qilu Stem

Cell Bank for testing, while the remainder was stored in liquid

nitrogen in our laboratory. Successful testing by the Qilu Stem Cell

Bank indirectly confirms the usability of the stem cells stored in our

laboratory. The culture, cryopreservation, and passaging of KG-1a

cells were conducted according to the product manual

(Supplementary Figure S2). The cells (1 × 105) were cultivated in

each well of six-well plates. In the experiment, cells (mRECs) from

passages 3 to 6 are used.

2.3.2 Plasmid construction
The Homo sapiens CFD gene sequence was retrieved and

downloaded from NCBI (Supplementary Table S2). Primers were

designed using the coding sequence (CDS) of the target gene,

excluding the stop codon, and using XbaI and Eco53KI restriction

sites, at both ends. Perform double enzyme digestion using XbaI
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restriction endonuclease (Biosharp, Shanghai, China) and Eco53KI

restriction endonuclease (KALANG, Shanghai, China). Plasmids

were constructed by restriction‐enzyme double digestion and

ligation. Plasmid pBI121(HonorGene, Changsha, Hunan, China)

was selected as the expression vector (Supplementary Figure S3).

The digested fragments and vectors were ligated to construct

recombinant plasmids (Supplementary Figure S4). The ligation

product was then transformed into the competent Escherichia

coli DH5a cell (Whenzhou KeMiao Biological Technology Co.,

Ltd, Wenzhou, Zhejiang, China), and the competent bacterial strain

was revived on blasticidin-free media. A portion of the cells was

plated on plates with kanamycin (Eta Biology,Beijing,China)

resistance. After single colonies emerged, several were randomly

selected for qPCR analysis following plasmid transfection into

target cells. This process allowed for the assessment of hub gene

expression in the target cells and confirmed the successful

construction of the plasmids.
2.3.3 Cell grouping and plasmid transfection
A total of three groups of cells were analyzed, including the

normal group (human umbilical cord blood stem cells), the control

group (KG-1a cells), and the experimental group (human umbilical

cord blood stem cells transfected with plasmids). Each group had

three compound holes. All groups were supplemented with 4500 μL

of 20% DMEM culture medium (absin,Shanghai,China), 500 μL of

fetal bovine serum(opcel,Shanghai,China), and 200 μL of P/S

(penicillin and streptomycin) dual antibiotics (absin,Shanghai,

China). Cells in the logarithmic growth phase were selected and

transfected with plasmid DNA using Lipofectamine 2000

(Invitrogen,Hangzhou,Zhejiang,China),with three compound

holes for each group.
2.3.4 Real-time quantitative polymerase
chain reaction

We extracted the total RNA from each cell group, and reverse

transcription was performed to synthesize cDNA using specific

primers (Supplementary Table S3). Data were analyzed using the 2-

DDCt method for quantification. GAPDHwas the internal reference

gene. The detection was performed with the Gentier 96E

fluorescence quantitative PCR instrument made by TIANLONG,

a company in China.

2.3.5 Validation of hub gene
We used the RT-qPCR to compare the hub gene expression

between the normal and control groups. After culturing cells for

72h, we utilized RT-qPCR to assess the hub gene expression in both

the experimental group and the normal group. Subsequently, we

replaced the fetal bovine serum in the culture medium with human

serum, which was derived from residual blood collected post-

transfusion in neonates with coagulation disorders at our

institution. After an additional 72h, we performed RT-qPCR to

evaluate the hub gene expression and the associated JAK-STAT and

PI3K-Akt signaling pathways across all groups following induced

overexpression. The experiment was repeated twice. Moreover,

perform cell proliferation assays using the MTT Cell Proliferation
Frontiers in Immunology 04
and Cytotoxicity Detection Kit - 500T (Wanlei Biotechnology,

Shanghai, China) and the Multiskan™ FC microplate reader

(ThermoFisher, USA). Three parallel holes were set in each

group, and the experiment was repeated three times. Referring to

the literature (22), the concentration of MTT is 0.1 mg/mL; the

wavelength of transmitted light is 565 nm. In 96-well plates, 5000

cells are seeded in each well.
2.4 Statistical analysis

Statistical analyses were performed using SPSS 18.0 and R 4.1.1.

P<0.05 was considered statistically significant. Comparisons

between two groups were conducted using an independent

samples t-test, while pairwise comparisons among multiple

groups were conducted using the LSD-t test.
3 Results

3.1 Transcriptomic features

A total of 20 differentially expressed genes (DEGs) were identified

between the acute myeloid leukemia group (denoted as “treat”) and the

normal group (denoted as “con”). Specifically, 8 genes were found to be

upregulated (with log2 fold change (log2FC) > 2), namely CTSG,

CRIP1,AZU1,HOMER3,LGALS1,FLT3,CFD, and CCNA1.

Meanwhile, 12 genes were downregulated (log2FC < -2) (as shown

in Figures 1A, B), which included ALDH1A1, CLC, HBB, CRHBP,

KLF1, CYP4F3, SERPINE2, FHL2, PF4, IL7R, FCER1A, and SDPR.

The Gene Ontology (GO) enrichment analysis (depicted in Figures 1C,

E, G) revealed that these DEGs were associated with processes such as

“killing by host of symbiont”, “neutrophil - mediated killing”,

“leukocyte mediated immunity”, “immune receptor activity”, “platelet

activation”, “blood coagulation”, and “hemostasis”. This strongly

suggests a close and intricate relationship between these genes and

the immune system as well as blood coagulation. The Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis

(illustrated in Figures 1D, F, H) demonstrated that the DEGs were

related to pathways like “Acute myeloid leukemia”, “Complement and

coagulation cascades”, and “Hematopoietic cell lineage”. Evidently, this

indicates a significant connection with the blood system. Furthermore,

the immune-related Gene Set Enrichment Analysis (GSEA) uncovered

some interesting findings. In the control group (Figure 1I), there was an

upregulation associated with gene sets such as BCELL, MYELOID,

MYELOID, LUPUS, MONOCYTE, CD4_TCELL, CD8_TCELL, and

NEUTROPHIL. In contrast, in the AML group (Figure 1J), there was a

downregulation related to gene sets including NEUTROPHIL,

MONOCYTE, TREG, TCONV, IL4, BCELL, MDC, etc., along with

an upregulation related to gene sets like BTLA and CD8_TCELL.
3.2 Screening of hub gene

The scale-free topological network revealed a correlation

coefficient of 0.84 (Figure 2A), exceeding the threshold of 0.8,
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thereby confirming that the selected power value effectively

constructed a scale-free network. The results from WGCNA

module analysis are presented in Figure 2B. The correlation

analysis between modules and clinical traits (Figure 2C) revealed

that the grey and magenta modules had the smallest P-values,

indicating the highest correlations. The gene importance analysis

(Figure 2D) demonstrated that the magenta module was the most

significant one. After comprehensive evaluation, the magenta

module was finally determined to be the most relevant and

important module. The SVM-RFE method located the point with

the minimum cross-validation and marked it. This encompassed 13

characteristic genes (Figure 2E), suggesting that these 13 genes had

the highest importance for the classification task. Finally, the

common gene identified by taking the intersection of the 20

DEGs, the gene set of the magenta module, and the 13

characteristic genes was CFD (Figure 2F). WGCNA is a method

for analyzing gene expression patterns in multiple samples. It can

cluster genes based on similar gene expression patterns and form

modules, and then analyze the relationships between modules and

specific traits (such as patients’ clinical information) (23). Through

this method, we found the module and its gene set that were most

relevant to the disease. However, the gene set obtained by this

method could not effectively distinguish different disease types and

lacked gene specificity for disease diagnosis. On the other hand, the

Support Vector Machine - Recursive Feature Elimination (SVM-

RFE) analysis is a supervised machine learning technique used to

identify the optimal core genes by removing the feature vectors

generated by SVM (24). Through this method, we found the gene

set that was most important for disease classification and typing,

which had high sensitivity for classification and typing but lacked
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connections with biological processes. Finally, we took the

intersection of the gene sets obtained by multiple methods, which

compensated for their respective shortcomings and led to higher

accuracy of the obtained hub genes.
3.3 Validation of hub gene and GSEA
enrichment analysis of synergistic genes

We validated the gene from multiple perspectives. First, the

ROC curve of CFD gene was drawn (Figure 3A), and the area under

the curve (AUC) was greater than 0.8. Subsequently, we applied

Lasso regression in both the experimental and validation datasets

(Figures 3B–E), which identified a minimal subset of two genes

through cross-validation, including CFD. In terms of CFD gene

expression, the two sample groups showed a significant difference

based on boxplot analyses (Figures 3F, G). Survival analysis

indicated that CFD gene expression significantly influenced

survival outcomes in AML compared to normal samples

(Figure 3H). This had indicated that altering the gene expression

status of CFD was beneficial for improving the clinical prognosis

of patients.

Through GSEA analysis, we identified pathways that are

enriched with synergistic genes associated with the CFD gene

(Figure 3I), including INFLAMMATORY RESPONSE, TNFA

SIGNALING VIA NFKB, IL2 STAT5 SIGNALING, PI3K AKT

MTOR SIGNALING, and IL6 JAK STAT3 SIGNALING. The

results demonstrated that the high expression of CFD could

promote the inflammation response mediated by IL-2 and IL-6,

as well as the activation of PI3K/AKT and JAK/STAT3 signaling
FIGURE 1

Transcriptomics analyses. (A) The heatmap illustrating DEGs in CH and normal samples. The abscissa indicates different samples. Blue represents the
normal group (con) and red represents the CH group (Treat). The ordinate represents genes. High expression is indicated in red and low expression
is shown in deep blue. (B) The volcano plot displaying DEGs between CH samples and normal samples. Red points, green points, and black points
indicate genes that are up-regulated, down-regulated, or have no significant difference in CH compared with the normal group. (C, D) Bar plots for
GO and KEGG enrichment analyses. The redder the color, the more significant the difference, and the bluer the color, the lower the difference. The
length of the bars represents the number of enriched genes. (E, F) Bubble plots for GO and KEGG enrichment analyses. The redder the color, the
more significant the difference, and the bluer the color, the lower the difference. The size of the bubbles represents the number of enriched genes.
(G, H) Circle plots for GO and KEGG enrichment analyses. The outermost circle represents the GO IDs, and the next inner circle represents the
number of enriched genes. The following inner circle represents the number of differentially expressed genes, and the innermost circle represents
gene proportions. The color represents the second circle from outside to inside. The redder the color, the more significant the differential gene
enrichment is. (I, J) The active gene sets in normal and CH samples in GSEA analysis. The abscissa denotes gene ranking, while the ordinate
represents enrichment scores. Only the top five gene sets with the most significant enrichment are presented.
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transduction pathways. This suggests that CFD might affect the

clinical prognosis of AML by promoting these pathways such as IL-

2, PI3K/AKT, and JAK/STAT3.
3.4 Immune infiltration analysis

The bar charts revealed that the immune cell compositions

among samples are largely consistent (Figures 4A, B). However,

AML and normal groups exhibited significant differences in both

quantity and composition of immune cells (Figures 4C, D). The

correlation heatmaps provide insights into the association among

different immune cell types (Figures 4E, F). The violin plots

illustrate notable differences in proportions of various immune

cell types (Figures 4G, H), including activated B cells, activated

CD4 T cells, CD56 bright natural killer cells, type 1 T helper cells,

type 17 T helper cells, type 2 T helper cells, memory B cells, central

memory CD8 T cells, naive B cells, memory B cells, naive CD4 T

cells, resting NK cells, M0 macrophages, M1 macrophages, M2

macrophages, activated Dendritic cells, and eosinophils between the

normal and AML groups. Furthermore, the immune cell correlation

analyses indicated that, according to the ssGSEA method, CFD gene

was highly positively correlated with mast cells and macrophages,

while exhibiting a strong negative correlation with central memory

CD8 T cells and central memory CD4 T cells. In the CIBERSORT

method, CFD gene showed a high positive correlation with

monocytes and a strong negative correlation with activated NK

cells (Figures 4I, J). These analyses effectively evaluated the tumor

microenvironment of AML and indicated a significant

immunological difference between AML and normal cells,
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suggesting a correlation between AML cells and immune cells.

Meanwhile, our results also confirmed a strong association between

CFD and immune cells.
3.5 MR analysis

A Bulk MR analysis of 728 immune cell types identified 27

positive immune cells (Supplementary Table S4). IL-2 has been

determined to have a role in AML. The Bulk MR analysis of

immune cells identified CD27 on CD24+ CD27+ B cell (GWAS

ID: ebi-a-GCST900017983) as the dual-positive immune cell. Our

results demonstrated that 27 types of immune cells had an impact

on the occurrence and development of AML, but only CD27 on

CD24+ CD27+ B cell was regulated by IL-2.

The role of IL-2 in AML is a promoting effect (Figures 5A, G).

The overall effect estimate (beta_all) is 0.052, indicating no

significant heterogeneity (Mendelian randomization Egger test

method, P = 0.317; inverse variance weighted method, P =

0.385) or pleiotropy (P = 0.632).IL-2 exhibited a positive

correlation with the dual positive immune cell (Figures 5B, H),

with a beta estimate (beta1) of 0.090 (IVW method, OR=1.094;

[95% CI, 1.011-1.183], P=0.025), and no significant heterogeneity

(MR Egger method, P=0.827; IVW method, P=0.764) or

pleiotropy (P=0.267). The dual positive immune cell was also

positively associated with AML (Figures 5C, I), yielding a beta

estimate (beta2) of 0.160 (IVW method, OR=1.173; [95% CI,

1.012-1.360], P=0.034), and no significant heterogeneity (MR

Egger method, P=0.665; IVW method, P=0.685) or pleiotropy

(P=0.462) was observed.
FIGURE 2

Selection of hub gene. (A) Scale-free network topology. (B) Merged weighted gene co-expression network. (C) Heatmap illustrating the correlation between
modules and clinical traits. Red represents a positive correlation, while blue represents a negative correlation. For the values within the grids, the number
above stands for the correlation coefficient. A positive number indicates a positive correlation, and a negative number indicates a negative correlation. The
number below represents the P-value, and the smaller the P-value is, the higher the correlation. (D) Gene importance plot. The abscissa represents module
names, and the ordinate represents gene importance. The higher the value is, the more important the gene is. (E) SVM-RFE for predicting hub genes. The
abscissa shows the variation in the number of genes, and the ordinate shows the cross-validation error. (F) Venn diagram depicting the hub genes from
three gene sets.
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Further calculations revealed a mediating effect of 0.0144

(beta12 = beta1 x beta2) and a direct effect of 0.0376 (beta_dir =

beta_all - beta12), with the mediating effect contributing to 27.69%

of the total effect (beta12_p = beta12/beta_all). The funnel plots

displayed a symmetric distribution without apparent outliers,

suggesting minimal heterogeneity (Figures 5D–F). The leave-one-

out forest plots indicated the robustness of the results, with no

significant outliers detected (Figures 5J–L). Scatter plots and

corresponding odds ratios (OR) suggest that IL-2 influences AML

by acting on CD27 on CD24+ CD27+ B cells. Previously, we have

confirmed that CFD has a promoting effect on IL-2. The results here

further verified that IL-2 promotes the occurrence and development

of AML by acting on CD27 on CD24+ CD27+ B cell. This forms a

complete immunoregulatory pathway through which CFD

promotes the occurrence and development of AML, which is of

great value for guiding clinical immunotherapy in the future.
Frontiers in Immunology 07
Details regarding all exposure data SNPs involved in the above

steps can be found in Supplementary Table S5. Results of the five MR

methods were presented in Supplementary Table S6, and results of

individual SNP analyses were detailed in Supplementary Table S7.
3.6 Experimental validation

Consistent with the bioinformatics results, the expression of

CFD gene in AML had been confirmed to be significantly elevated

compared to the normal group (Table 1, Figure 6A). Successful

plasmid transfection led to an upregulation of CFD gene expression

in normal cells (Table 2, Figure 6B). In AML cells, both the PI3K/

Akt and JAK/STAT signaling pathways were relatively highly

expressed, showing a strong correlation with CFD. Following the

induction of high CFD gene expression, JAK/STAT and PI3K/Akt
FIGURE 3

Validation of hub gene and GSEA enrichment analyses of co-expressed genes. (A) ROC curve for hub gene. The abscissa represents the false
positive rate (1 - specificity) and the ordinate represents the true positive rate (sensitivity). (B, D) Lasso regression analyses for the experimental and
validation datasets. (C, E) Cross-validation plots for lasso regression in experimental and validation datasets. The abscissa indicates Log(l) values, and
the ordinate indicates cross-validation errors. (F, G) Box plots illustrating the differential expression of hub gene in experimental and validation
datasets. The abscissa represents the group classification, and the ordinate indicates the expression levels of hub gene. (H) Survival analysis for hub
gene. (I) Immune-related GSEA enrichment analysis of co-expressed hub gene. "***", "**", "*" correspond to 0.001, 0.01 and 0.05 respectively.
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pathways were simultaneously activated, with JAK/STAT exhibiting

a more pronounced increase (Table 3, Figure 6C). The MTT assay

for assessing cell proliferation revealed statistically significant

differences among the groups (Table 4, Figure 6D), suggesting a

potential role for CFD gene in regulating cell proliferation.

Although the induction of CFD gene in normal cells enhanced

their proliferative capacity, the extent of this enhancement was

limited and did not reach the level observed in AML cells.
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4 Discussion

The identification of genetic abnormalities plays a crucial role in

the diagnosis, prognosis and classification of AML (25, 26). The

inflammatory microenvironment has long been regarded as

promoting tumorigenesis in solid cancers (27, 28). However, it was

not until recently that the important role of inflammation and

immunity in hematological malignancies was discovered (26, 29).
FIGURE 4

Immune infiltration analyses. (A, B) Bar plots depicting immune-related enrichment analyses via ssGSEA and immune infiltration assessment using
CIBERSORT. The abscissa represents sample names, and the ordinate represents the percentage of immune cells. (C, D) Heatmaps generated from ssGSEA
and CIBERSORT analyses. The abscissa represents different samples. Blue represents the normal group (con) and red represents the CH group (Treat). The
ordinate represents various immune cell types. High expression is indicated in red and low expression is shown in deep blue. (E, F) Heatmaps illustrating the
correlation between immune cells based on ssGSEA and CIBERSORT. The red indicates a higher positive correlation, and the deeper blue reflects a higher
negative correlation between the two variables. (G, H) Violin plots of immune cell distributions for both ssGSEA and CIBERSORT analyses. The abscissa
represents immune cell types, while the ordinate indicates the percentage of immune cells. Blue represents the control group, and red represents the CH
group, and P-values indicate the statistical significance of differences between the two groups. (I, J) Heatmaps of immune cell correlation analysis. The
abscissa represents gene names, while the ordinate indicates immune cell types. The red indicates a higher positive correlation, and the deeper blue reflects
a higher negative correlation between the two variables.
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First, we screened out the hub gene as CFD gene. Through enrichment

analysis, it was determined that it has the effect of promoting IL-2.

With IL-2 as an intermediary, on the one hand, IL-2 can promote the

occurrence and development of AML by promoting CD27 on CD24

+CD27+ B cells. On the other hand, IL-2 can also promote the
Frontiers in Immunology 09
proliferation of AML cells by activating the JAK/STAT and PI3K/

Akt pathways.

The CFD gene we screened out in our research is a crucial

regulator of immune response, encoding a member of the serine

peptidase S1 family or the chymotrypsin-like protease family. These

proteins catalyze the cleavage of factor B, serving as a rate-limiting

step in the alternative pathway of complement activation (30).

Studies have shown that CFD can serve as a reliable prognostic

marker for AML (31). However, research on the mechanism by

which CFD gene acts on AML is insufficient.
TABLE 1 The expression of hub gene.

Normal Group Control group t P

CFD 1.001 ± 0.061 7.444 ± 0.574 -19.333 0.000
FIGURE 5

Mendelian randomization analyses. (A-C) Forest plots illustrating the results of each analytical step. (D-F) Funnel plots corresponding to each step of
the analysis. (G-I) Scatter plots displaying the relationships between variables. (J-L) Leave-one-out forest plots summarizing the robustness of the
findings. The following groups of exposure and outcomes: (1) Exposure to IL-2, outcome AML: (A, D G, J). (2) Exposure to IL-2, outcome CD27 on
CD24+ CD27+ B cell: (B, E, H, K). (3) Exposure to CD27 on CD24+ CD27+ B cell, outcome: AML: (C, F, I, L).
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We found that the CFD gene is primarily linked to

inflammation pathways associated with IL-2 and IL-6, as well as

to the PI3K/AKT and JAK/STAT3 signaling pathways. CFD

represents the bottleneck in convertase formation (32), and

convertase is the most important enzyme in regulating the

alternative pathway of complement activation (33), which will

ultimately lead to the production of molecules such as C3b, C3a,
Frontiers in Immunology 10
and C5a (34). C5a can induce mast cells (35) and neutrophils (36) to

secrete IL-6 and promote T lymphocytes (37) to produce IL-2,

which is consistent with the results of our study.

Immune infiltration analysis demonstrated a strong positive

correlation between CFD gene and mast cells, macrophages, and

monocytes, while revealing a strong negative correlation with

central memory CD8+ T cells, central memory CD4+ T cells, and

activated NK cells. This has some consistent points with the results

of previous studies which found that there is a close relationship

between IL-6, T cells, NK cells and AML (38, 39). Based on our

bioinformatics results, IL-6 and IL-2 are mediator factors worthy of

in-depth study in this research. However, using the MR method, we

only found a connection between IL-2 and AML. Moreover, IL-2 is
TABLE 2 Plasmid transfection.

Normal Group Experimental group t P

CFD 1.002 ± 0.069 11.146 ± 1.153 -15.211 0.000
FIGURE 6

Experimental Validation (A) The expression of CFD. (B) The expression status of CFD after transfection. (C) Changes of JAK/STAT and PI3K - AKT
Before and After Transfection. (D) Comparison of OD Values among Different Groups. "***", "**", "*" correspond to 0.001, 0.01 and 0.05 respectively.
TABLE 3 Changes in JAK-STAT and PI3K-Akt pathways after high expression of CFD.

Group Mean 1 Mean 2 S1 S2 P

JAK

Normal vs. Control 1.010 23.172 0.153 12.036 0.002

Normal vs. Experimenta 1.010 33.484 0.153 13.725 0.000

Control vs. Experimenta 23.172 33.484 12.036 13.725 0.111

STAT

Normal vs. Control 1.003 27.767 0.085 15.271 0.004

Normal vs. Experimenta 1.003 35.838 0.085 18.115 0.001

Control vs. Experimenta 27.767 35.838 15.271 18.115 0.323

PI3K

Normal vs. Control 1.005 12.754 0.115 1.678 0.000

Normal vs. Experimenta 1.005 7.691 0.115 1.007 0.000

Control vs. Experimenta 12.754 7.691 1.678 1.007 0.000

Akt

Normal vs. Control 0.904 9.807 0.207 2.975 0.000

Normal vs. Experimenta 0.904 5.307 0.207 1.592 0.001

Control vs. Experimenta 9.807 5.307 2.975 1.592 0.001
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often studied as an immunotherapeutic approach for treating AML

(40, 41). Therefore, we will focus on IL-2 as the key of our follow-

up research.

Our subsequent in-depth research shows that CFD gene

ultimately promotes the progression of AML by activating IL-2

and then activating CD27 on CD24+ CD27+ B cells.IL-2 can

regulate B cells, which is consistent with previous studies (42, 43).

However, our research goes further. We have found the type of B

cells most relevant to the development of AML. At the same time, in

vitro experiments show that IL-2 can play a promoting role such as

promoting AML proliferation through the JAK/STAT and PI3K/

Akt pathways. Multiple studies have shown that IL-2 mainly

activates three signaling pathways: JAK/STAT, ERK, and PI3K

(44–47). This is highly consistent with our research results. It

promotes the proliferation and activation of regulatory T cells

(Tregs), enhancing their immunosuppressive function, which

indirectly facilitates tumor cell growth by inhibiting effective anti-

tumor immune responses (48). Furthermore, IL-2 may stimulate

tumor cells to secrete certain angiogenic factors, promoting the

formation of new blood vessels within tumors. Adequate oxygen

and nutrients help tumor cells grow and spread (49). Some tumor

cells express IL-2 receptors, and upon binding with IL-2,

intracellular signaling pathways are activated, such as the PI3K/

Akt pathway, which promotes tumor cell survival and proliferation.
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All of these are theoretically consistent with our research result that

IL-2 has a promoting effect on AML. At the same time, combined

with these studies, we can reasonably infer that CFD gene realizes

the subsequent activation of the JAK/STAT and PI3K/Akt pathways

by first activating IL-2.

The JAK/STAT pathway is involved in various physiological

processes, including cell proliferation, differentiation, apoptosis,

immune regulation, and inflammatory responses. For instance, it

is crucial to the development and functional regulation of immune

cells, as well as in cellular responses to growth factors (50–53). The

PI3K/Akt pathway primarily responds to extracellular signals,

promoting metabolism, proliferation (54), cell survival (55),

growth, and angiogenesis, and has also been implicated in cancer

progression (56, 57). These characteristics of these two pathways are

consistent with the role of promoting the proliferation of AML cells

confirmed by our in vitro experiments.

Our study still has certain limitations. First, the results of the

MR analysis have not been experimentally verified. Second, the MR

data is from the European population and lacks data from

other populations.

Our study has confirmed the impact of the three subsequent

immune pathways dominated by CFD gene and mediated by IL-2

on AML. This is undoubtedly of great significance for enriching

the immune theory related to AML and improving its

related immunotherapy.
5 Conclusion

The abnormal high expression of CFD gene first activates IL-2,

and then promotes the occurrence and development of AML

through the positive effects on three pathways: CD27 on CD24+

CD27+ B cell, JAK/STAT, and PI3K/Akt (Figure 7).
TABLE 4 Cell OD statistics.

Group (OD) Mean 1 Mean 2 S1 S2 P

Normal vs. Control 0.362 0.650 0.042 0.071 0.000

Normal vs. Experimenta 0.362 0.462 0.042 0.051 0.001

Control vs. Experimenta 0.650 0.462 0.071 0.051 0.000
FIGURE 7

Action mechanism of hub gene.
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