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The innate immune system promptly detects and responds to invading

pathogens, with a key role played by the recognition of bacterial-derived DNA

through pattern recognition receptors. The Z-DNA binding protein 1 (ZBP1)

functions as a DNA sensor inducing type I interferon (IFN) production, innate

immune responses and also inflammatory cell death. ZBP1 interacts with

cytosolic DNA via its DNA-binding domains, crucial for its activation. Brucella

abortus is the etiologic agent of brucellosis in livestock and humans, leading to

significant economic losses and public health impact. Despite other innate

immune sensors that recognize B. abortus DNA, including Toll-like receptor 9

and the Stimulator of interferon genes (STING), here we evaluated the ZBP1

participation as a cytosolic receptor sensing Brucella infection. Using

macrophages derived from ZBP1 knockout (KO) mice we demonstrated that

ZBP1 partially contributes to IFN-b expression upon B. abortus infection or

Brucella DNA transfection. The knockdown of STING by siRNA decreased the

residual IFN-b signal elicited by B. abortus infection, demonstrating the presence

of a redundant cytosolic DNA-sensing mechanism driving type I IFN production.

Furthermore, ZBP1 is involved in type I IFN signaling inducing IRF-1 expression.

Additionally, ZBP1 also contributes to Unfolded Protein Response (UPR)

activation during infection. However, ZBP1 does not influence the production

of proinflammatory mediators, inflammasome activation and it is dispensable to

control bacterial infection in mice or replication in macrophages. This study

highlights the complex interactions of Brucella components with innate immune

receptors and identifies ZBP1 as a sensor for B. abortus DNA-induced IFN-

b response.
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1 Introduction

The innate immune system depends on its ability to promptly

recognize invading pathogenic microbes as foreign and then take

action to eliminate the threat (1). In that context, the detection of

bacterial-derived DNA is central to mount an effective immune

response against diverse pathogens (2). The Z-DNA binding

protein 1 (ZBP1), also named DAI (DNA-dependent activator of

interferon-regulatory factors), was identified as a DNA sensor

inducing type I interferon (IFN) production and innate immune

responses (3). Mechanistically, ZBP1 binds to cytosolic DNA

through interactions involving its DNA-binding domains, which

are required for its full activation (4). Subsequently, ZBP1 drives the

activation of interferon regulatory factor 3 (IRF3), promoting the

transcription of type I IFN (3). Similarly, activation of the cyclic

GMP-AMP synthase (cGAS)-stimulator of interferon genes

(STING) pathway also induces type I IFN production via IRF3

(5). This underscores the crosstalk between ZBP1 and cGAS-STING

signaling pathways (6). In addition to type I IFN production, the

induction of inflammatory cell death known as PANoptosis has also

been attributed to ZBP1 activation (7). Activation of ZBP1 enables

interaction with receptor-interacting serine/threonine-protein

kinase 1 (RIPK1) and 3 (RIPK3), which can promote pyroptosis,

necroptosis, and apoptosis (PANoptosis) by activating components

such as NLRP3 inflammasome, mixed lineage kinase domain-like

protein (MLKL), and caspase-8 (7–9). Several microorganisms are

detected by ZBP1 through recognition of pathogen-derived nucleic

acids, triggering the transcription of IFNs or the initiation of

PANoptosis (6).For instance, ZBP1 activation by murine

cytomegalovirus (MCMV) restricts viral replication by promoting

host cell death (10). In addition, ZBP1 detects influenza A virus

(IAV), triggering cell death and inflammation associated with IAV-

related mortality (11). In contrast to the well-established role of

ZBP1 as a viral sensor, its function during bacterial infection is less

understood. Although, ZBP1-dependent cell death has been

reported in infections with Francisella novicida (12) and

Mycobacterium tuberculosis (Mtb) (13).

The facultative intracellular Gram-negative bacterium Brucella

abortus is the causative agent of the global zoonotic disease

brucellosis (14). In livestock, B. abortus promotes abortion and

infertility, resulting in significant economic losses; in humans,

brucellosis can potentially cause undulant fever, endocarditis,

arthritis, and meningitis (15, 16). Brucellosis represents a major

public health concern, and treatment is often challenging, requiring

prolonged courses of multiple antibiotics (17). Thus, understanding

the complex host mechanisms that recognize components of

Brucella is crucial for developing effective treatments for brucellosis.

Over the past years, several receptors have been characterized as

innate immune sensors for components of B. abortus, particularly

host receptors that recognize pathogen-derived nucleic acids (18).

For instance, B. abortus-derived DNA activates Toll-like receptor 9

(TLR9) through sensing of unmethylated CpG motifs (19).

Moreover, the inflammasome receptor Absent in melanoma 2

(AIM2) senses cytosolic B. abortus DNA, promoting the

activation of caspase-1 and secretion of IL-1b (20). B. abortus-

derived DNA also activates the STING pathway, which induces the
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production of type I IFN, leading to an Interferon regulatory factor-

1 (IRF-1)-dependent signaling cascade (21). In addition, STING

activated by B. abortus infection triggers the Unfolded Protein

Response (UPR), which is a conserved stress response in the

endoplasmic reticulum (ER) initiated by the accumulation of

misfolded proteins (22). The common downstream targets of the

UPR pathway, such as binding immunoglobulin protein (BiP) and

spliced X-box binding protein 1 (XBP1), are detected upon B.

abortus infection through a STING-dependent mechanism, which

is linked to STING-dependent IFN-b production (22). Given this

complex interaction of Brucella components with a variety of innate

immune receptors, we aimed to determine the participation of

ZBP1 during Brucella infection. Here, we demonstrated that ZBP1

acts as a B. abortus DNA receptor driving IFN-b expression.

Moreover, IRF-1 signaling and the UPR response are partially

dependent on ZBP1 activation, although ZBP1 is not essential for

controlling B. abortus infection.
2 Materials and methods

2.1 Animals

Wild-type (WT) C57BL/6 mice were obtained from the Federal

University of Minas Gerais (UFMG) animal facility. ZBP1 knockout

(KO) mice were provided by Prof Shizuo Akira from Osaka

University (Japan). STING KO mice were described earlier (23).

All mice were housed in a pathogen-free laboratory facility. Male

and female mice aged 8-12 weeks were utilized for the study. All

experimental protocols were reviewed and approved by the Animal

Studies Committee (protocol CEUA/UFMG 69/2020).
2.2 Bacterial strains and growth conditions

Brucella abortus strain 2308 was acquired from our laboratory

collection. The bacterium was cultured in Brucella broth (BB)

medium (BD Pharmingen, San Diego, CA) for 3 days at 37°C

under constant agitation before use. The optical density (OD) of the

culture was measured at 600 nm using a spectrophotometer to

determine the bacterial number in the solution.
2.3 Cell culture and generation of bone
marrow-derived macrophages

BMDMs were generated and cultured as described previously

(24). Briefly, bone marrow cells from ZBP1 KO and C57BL/6 mice

were harvested from the tibias and femurs were differentiated into

macrophages using DMEM (Gibco/Thermo Fisher Scientific,

Waltham, MA) supplemented with 10% fetal bovine serum (FBS)

(Life Technologies, Carlsbad, CA), 20% L929-cell conditioned

medium (LCCM), 1% HEPES (Life Technologies) and 100 U/ml

penicillin-streptomycin (Life Technologies), at 37°C in 5% CO2. At

day 4 of culture, 10 mL of fresh medium was added. At day 7, cells

completely differentiated into macrophages were detached and
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1511949
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gomes et al. 10.3389/fimmu.2024.1511949
seeded in 24-well plates at a density of 5 x 105 cells/well for use

in experiments.
2.4 Macrophage stimulation with Brucella
abortus or transfected DNA

Cultured macrophages from ZBP1 KO and C57BL/6 mice were

infected in vitro with B. abortus at the multiplicity of infection

(MOI) of 100:1 in DMEM with 1% FBS for the indicated times at

37°C in 5% CO2. B. abortus DNA was purified using the Illustra

bacteria genomic Prep Mini Spin Kit (GE Healthcare,

Buckinghamshire, United Kingdom) according to the

manufacturer’s instructions. Then, the purified bacterial DNA

was transfected (1 mg/mL) using FuGENE HD (Promega,

Madison, WI) accordingly to manufacturer instructions. Culture

supernatants and cell lysates were harvested and stored at -80°C

until use.
2.5 STING knockdown in macrophages via
small interfering RNA

Macrophages from ZBP1 KO and C57BL/6 mice were

transfected with siRNA from siGENOME SMARTpools

(Dharmacon, Lafayette, CO) using the GenMute siRNA

transfection reagent according to the manufacturer’s instructions

(SignaGen, Rockville, MD). siGENOME SMARTpool siRNA

specific for mouse STING (M-055528-01) and a control siRNA

pool were used (D-001206-14-05). Forty-eight hours after

transfection, culture medium was replaced and macrophages were

infected as described above.
2.6 Quantitative real-time PCR

Macrophages from ZBP1 KO and C57BL/6 mice treated as

described above were homogenized in TRIzol reagent (Invitrogen,

Carlsbad, CA, USA) to obtain total RNA accordingly to

manufacturer guidelines. Then, RNA was treated with DNase I

(Invitrogen) to remove genomic DNA followed by reverse

transcription of 1 mg of total RNA using Illustra Ready-To-Go

RT-PCR Beads (GE Healthcare, Chicago, IL) according to the

manufacturer’s instructions. Real-time RT-PCR was performed

using SYBR Green PCR master mix (Applied Biosystems, Foster

City, CA) on a QuantStudio3 real-time PCR instrument (Applied

Biosystems), using the following cycling parameters: 60°C for 10

min, 95°C for 10 min, 40 cycles of 95°C for 15 sec, and 60°C for 1

min, and a dissociation stage of 95°C for 15 sec, 60°C for 1 min,

95°C for 15 sec, and 60°C for 15 sec. The appropriate primers were

used to amplify a specific fragment corresponding to specific gene

targets as follows: BiP F: 5’-AGGATGCGGACATTGAAGAC-3’, R:

5’-AGGTGAAGATTCCAATTACATTCG-3’; XBP1(s) F: 5’-

GAGTCCGCAGCAGGTG-3’, R: 5’-GTGTCAGAGTCCATGG

GA-3’; IFN-b F: 5’-GCCTTTGCCATCCAAGAGATGC-3’, R: 5’-

ACACTGTCTGCTGGTGGAGTTC-3’; IFN-a4 F: 5’-CCTG
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TGTGATGCAGGAACC-3’, R: 5’-TCACCTCCCAGGCACAGA-

3’; b-actin F: 5’-GGCTGTATTCCCCTCCATCG-3’, R: 5’-

CCAGTTGGTAACAATGCCATGT-3’. All data are presented as

relative expression after normalization to the b-actin gene.
2.7 Cytokine measurements, LDH release
determination and nitric oxide assay

Macrophage supernatants from ZBP1 KO and C57BL/6 mice

were harvested from treated cells for cytokine, NO and lactate

dehydrogenase (LDH) measurements. The murine cytokines (IL-

1b, IL-6, IL-12 and TNF-a) were detected using ELISA kits (R&D

systems, Minneapolis, MN), according to the manufacturer’s

instructions. To evaluate NO production, the concentration of

nitrite (NO2
−) was assessed using the Griess reagent method as

previously described (25). The LDH activity was measured using the

CytoTox96 LDH release kit (Promega, Madison, WI), according to

the manufacturer’s instructions.
2.8 Western blot analysis

Supernatants from treated macrophages were harvested and

cells were lysed with M-PER Mammalian Protein Extraction

Reagent (Thermo Fisher Scientific) supplemented with 1:100

protease inhibitor mixture (Sigma-Aldrich, St. Louis, MO). Then,

equal volume of supernatants or equivalent amounts of protein of

cell lysates were loaded onto 12% SDS-polyacrylamide gels.

Following electrophoresis, bands were transferred to nitrocellulose

membranes (Amersham Biosciences, Uppsala, Sweden) according

to standard techniques. Membranes were blocked in Tris-buffered

saline (TBS) with 0.1% Tween-20 containing 5% nonfat dry milk for

1 hr and then incubated at 4°C overnight with primary antibodies

(IL-1b, clone 3A6; IRF-1, clone D5E4; BiP, clone C50B12; b-actin,
clone 13E5; Cell Signaling Technology, MA, Danvers) (ZBP1, clone

Zippy-1; p20 subunit of caspase-1, clone Casper-1; Adipogen, San

Diego, CA). The membranes were washed three times for 5 min in

TBS with 0.1% Tween 20 and incubated for 1 hr at room

temperature with the appropriate HRP-conjugated secondary

antibody (Cell Signaling Technology). Proteins were visualized

using Luminol chemiluminescent HRP substrate (Millipore,

Burlington, MA) in an Amersham Imager 600 (GE Healthcare).

Densitometry analysis was performed using ImageQuant TL

Software (GE Healthcare) and band intensities were normalized

to b-actin. Data were relativized to the level of WT macrophages

infected with B. abortus for 8 h assigned arbitrarily with the value

of 1.0.
2.9 Measurement of B. abortus CFU in
infected mice and macrophages

ZBP1 KO and C57BL/6 mice were infected i.p. with 1 x 106

colony formation units (CFU) of B. abortus in 0.1 ml of saline (NaCl
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0.9%). After 2 and 4 weeks post-infection, mice were sacrificed and

spleens were used to determine the number of bacteria by CFU

counting. For the measurement of viable intracellular bacteria in

vitro, infected macrophages were washed twice with PBS and then

lysed for 10 min at room temperature in 1 mL of PBS containing

0.1% Triton X-100 under manual agitation. To assess B. abortus

CFU, spleens and cells lysates were serially diluted in saline and

plated in duplicate on BB agar. Plates were incubated for 3 days at

37°C and CFU number was determined.
2.10 Proinflammatory cytokine production
in Brucella‐primed spleen cells

Spleen cells were harvested from infected mice and treated with

an ammonium-chloride-potassium buffer (0.15 M NH4Cl, 1.0 mM

KHCO3, 0.1 mM ethylenediaminetetraacetic acid [EDTA]; pH 7.2)

to lyse red blood cells. After washing, the cells were resuspended in

RPMI medium (Life Technologies) supplemented with 2 mM L-

glutamine (Life Technologies), 25 mM HEPES, 10% heat-

inactivated FBS, 100 U/mL penicillin G sodium, and 100 mg/mL

streptomycin sulfate, and adjusted to 1 × 106 cells per well in a 96-

well plate. Splenocytes were stimulated with B. abortus (MOI of

100:1), 1 µg/ml Escherichia coli LPS (Sigma-Aldrich), or 5 µg/ml

Concanavalin A (ConA) (Sigma-Aldrich). Spleen cells were

incubated at 37°C in 5% CO2, and culture supernatants were
Frontiers in Immunology 04
collected 48 or 72 hours after stimulation to measure TNF-a or

IFN-g, respectively, by ELISA (R&D Systems).
2.11 Statistical analysis

Data analysis and graphing were performed using GraphPad

Prism 5 software (GraphPad Software, San Diego, CA). All

quantitative data are expressed as mean ± standard deviation. The

data presented are representative of three independent experiments.

A p value less than 0.05 (p<0.05) was considered statistically

significant using two-way ANOVA test.
3 Results

3.1 ZBP1 is involved in type I
interferon expression

In the context of intracellular Brucella infection, the activation

of innate immune sensors can occur through distinct mechanisms

leading to type I IFN response (21). To evaluate the impact of ZBP1

in this pathway, BMDMs were obtained from both ZBP1 KO and

C57BL/6 mice. Subsequently, these cells were exposed to the

virulent B. abortus S2308 strain, and the expression of the IFN-b
gene (Figure 1A) and IFN-a gene (Figure 1B) was assessed. The
FIGURE 1

B. abortus induces ZBP1 activation and type I interferon expression. Macrophages from wild-type (WT) or ZBP1 KO mice were infected with B.
abortus (Ba) for 16 h and the IFN-b (A) and IFN-a (B) expression levels were determined by real-time RT-PCR. Non-infected cells (NI, control) were
incubated under the same experimental conditions without bacteria. (C) Macrophages from wild-type (WT) or ZBP1 KO mice were stimulated with
transfected B. abortus DNA for 16 h and the IFN-b expression levels were determined by real-time RT-PCR. Fugene alone (FUG) was used as control.
(D) Macrophages from wild-type (WT) or ZBP1 KO mice were transfected with non specific siRNA (si CONTROL) or STING siRNA (si STING) for 2
days. Then, cells were infected with B. abortus for 16 h and the IFN-b expression levels were determined by real-time RT-PCR. The data (A-D) are
presented as mean ± SD. (A-C), * (comparison between WT and KO), p < 0.05, two-way ANOVA. (D), * (comparison between WT and KO) or &
(comparison between si CONTROL-treated and si STING-treated), p < 0.05, two-way ANOVA.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1511949
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gomes et al. 10.3389/fimmu.2024.1511949
results revealed a significant reduction in the expression of both

type I IFN genes in ZBP1 KO macrophages compared to WT cells.

In prior studies, the involvement of ZBP1 in DNA-mediated innate

immune responses was recognized, and ZBP1 was designated as a

cytosolic DNA sensor (3). Therefore, we examined the influence of

transfected Brucella abortus-derived DNA on IFN-b expression

through ZBP1 activation, using macrophages from ZBP1 KO and

WT mice. As observed in Figure 1C, IFN-b expression induced by

transfected DNA was dependent on the presence of ZBP1. Taken

together, our data demonstrated that both Brucella infection and

bacterial DNA transfection induces type I IFN responses in a ZBP1-

dependent manner.

Moreover, we addressed the cooperation between the STING

and ZBP1 in driving type I IFN expression during B. abortus

infection. Hence, we performed siRNA silencing of STING in

ZBP1 KO and WT macrophages. The knockdown of siRNA led

to decreased expression of IFN-b in both ZBP1 KO and WT cells

compared to cells treated with the control (scramble siRNA)

(Figure 1D). The data suggest that both STING and ZBP1

contribute to type I IFN responses induced by Brucella-

infected macrophages.
3.2 ZBP1 enhances the activation
of the unfolded protein response upon
B. abortus infection

Previous data unveiled that B. abortus infection led to UPR

induction and enhanced expression of the UPR downstream targets,

BiP and XBP1(s). Moreover, it was shown the crucial role of IFN-b
in triggering UPR during B. abortus infection (22). Given that ZBP1

plays a pivotal role in type I IFN response, we examined the

involvement of this receptor in the UPR activation during B.

abortus infection. In this regard, macrophages from ZBP1 KO

and WT mice were infected to assess the expression of BiP

(Figure 2A) and XBP1(s) (Figure 2B). The results indicated

increased expression of both BiP and XBP1(s) in a ZBP1-

dependent manner. Therefore, our data suggest that ZBP1 plays a

role in controlling the UPR activation upon B. abortus infection.
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3.3 ZBP1 contributes to type I interferon
signaling during B. abortus infection

IRF-1 operates as a transcriptional regulator, activating the

expression of genes associated with protection against invading

pathogens (26). IRF-1 functions downstream of IFN expression,

participating in the signal transduction pathway initiated by IFN

during infection (27). Regarding B. abortus infection, it was

previously demonstrated that the expression of IRF-1 depends on

the activation of IFNAR by IFN-b (21). Given this context, we

evaluated the level of IRF-1 protein expression in macrophages

derived from WT and ZBP1 KO mice. We noted a significant

increase in IRF-1 protein level in WT cells following bacterial

infection compared to the non-infected cells (Figures 3A, B).

Moreover, this upregulation was partially dependent on ZBP1, as

KO macrophages exhibited reduced IRF-1 protein level 16 hours

post-infection. Furthermore, we assessed the protein level of BiP

upon B. abortus infection (Figures 3A, C). It was observed that the

increase in BiP protein level occurred at 16 hours post-infection,

and this enhancement relies in the presence of ZBP1. This result

strengthens the conception that ZBP1 contributes to activate the

UPR. Finally, we examined the level of ZBP1 protein stimulated by

the infection (Figures 3A, D). The results revealed a significant

increase in ZBP1 protein level only at 16 hours post-infection.

Collectively, our data indicates that ZBP1 stimulated by B. abortus

infection drives IFN-b expression potentially contributing to IRF-

1 expression.
3.4 ZBP1 is dispensable for production
of proinflammatory mediators during
B. abortus infection

In addition to the type-I IFN response during ZBP-1 activation,

the NF-kB signaling pathway leading to proinflammatory cytokine

production also constitutes a line of defense against pathogenic

infections (7). In that context, ZBP1 also emerged as a regulator of

proinflammatory cytokine production, such as IL-6 and TNF-a (11).

Thus, we aimed to evaluate the participation of ZBP1 in the secretion
FIGURE 2

ZBP1 promotes the Brucella-induced UPR response. Macrophages from wild-type (WT) or ZBP1 KO mice were infected with B. abortus (Ba) for 16 h
and the BiP (A) and XBP1(s) (B) expression levels were determined by real-time RT-PCR. Non-infected cells (NI, control) were incubated under the
same experimental conditions without bacteria. The data (A, B) are presented as mean ± SD. (A, B), * (comparison between WT and KO), p < 0.05,
two-way ANOVA.
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of proinflammatory cytokines by macrophages during B. abortus

infection. Macrophages derived from ZBP1 KO mice exhibited

similar levels of IL-12, IL-6, and TNF-a in comparison to WT

infected macrophages at all time points tested (Figures 4A–C).

Moreover, considering nitric oxide (NO) as another classical

marker of the inflammatory macrophage profile, we assessed NO

production in infected cells. The findings revealed that ZBP1 KO

infected macrophages displayed no difference in NO production

compared to infected cells from WT mice (Figure 4D). Taken

together, the data suggest that the production of proinflammatory

cytokines and NO by macrophages infected with B. abortus occurs

independently of ZBP1 activation.
3.5 Inflammasome activation and cell
death during B. abortus infection are
ZBP1-independent

A growing body of evidence showed that ZBP1 induces

inflammasome activation and subsequent IL-1b secretion (28–30).

Thus, to gain insight into the role of ZBP1 in promoting

inflammasome activation in response against B. abortus infection,
Frontiers in Immunology 06
we assessed the production of IL-1b and caspase-1 processing in

macrophages. The data showed no difference in the secretion of IL-

1b when comparing macrophages derived from ZBP1 KO mice to

those fromWTmice (Figure 5A). Furthermore, both WT and ZBP1

KO infected macrophages exhibited equivalent levels of pro-IL-1b
(Figure 5B), and no difference was observed regarding the presence

of caspase-1 p20 subunit in cell supernatants (Figure 5B), suggesting

no influence of ZBP1 in inflammasome assembly and activation.

Cell death is closely interconnected to the host immune

response during infection, and ZBP1 was previously linked to cell

death measured by lactate dehydrogenase (LDH) release (28). In

addition, we demonstrated previously that B. abortus infection

induces pyroptosis and LDH release in a process dependent on

caspase-11 activation and gasdermin-D cleavage (31). Therefore, we

assessed the involvement of ZBP1 in macrophage cell death

mediated by bacterial infection through LDH release in a time-

lapse experiment. It was observed that LDH release is prominent

after 16 hours of infection compared to non-infected cells.

Furthermore, there is no difference concerning cell death between

WT and ZBP1 KO macrophages at any assessed time point

(Figure 5C). Thus, the data indicates that ZBP1 is not essential

for the cell death induced by B. abortus in infected macrophages.
FIGURE 3

ZBP1 participates in the type I interferon signaling elicited by Brucella. (A) Western blot analysis of IRF-1, BiP and ZBP1 in wild-type (WT) or ZBP1 KO
macrophages lysates, non-infected (NI) or infected with B. abortus at 8 h or 16 h Equal loading was verified by measuring b-actin levels in the
corresponding cell lysates. The densitometry analysis of Western blot of IRF-1 (B), BiP (C) and ZBP1 (D) were performed relative to b-actin. The data
(B-D) are presented as mean ± SD. (B-D) * (comparison between WT and KO), p < 0.05, two-way ANOVA.
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3.6 ZBP1 does not contribute to control of
B. abortus infection

Previously, our group demonstrated that mice deficient in the

IFN-ab receptor controlled Brucella infection more efficiently than

wild-type animals (32). This data indicated the detrimental role of

type I IFN signaling to the host during B. abortus infection. Since

IFN-b expression is partially diminished in ZBP1 KO mice, we

explored the role of ZBP1 in host defense against B. abortus. Thus,

we infected both WT and ZBP1 KO mice and then assessed the

bacterial load in the spleen at 2 and 4 weeks post-infection (wpi)

(Figure 6A). As observed, there is no difference between WT and

ZBP1 KO mice concerning CFU counts in spleen at both analyzed

time points post-infection. In addition, to further explore the role of

ZBP-1 in vivo, we analyzed the production of proinflammatory

cytokines during B. abortus infection. Splenocytes from wild-type

and ZBP1 KO infected mice were stimulated with live bacteria,

ConA, or LPS as controls, and cytokine secretion was determined.

Analysis of all stimuli demonstrated that ZBP1 KO-infected mice

produced similar levels of the proinflammatory cytokines TNF-a
(Figure 6B) and IFN-g (Figure 6C) compared to WT

infected animals.

Furthermore, we evaluated the CFU counts following 8 hours

and 16 hours of infection in macrophages derived from ZBP1 and

WT mice (Figure 6D). As observed, there is no difference in

bacterial replication within macrophages at any of the analyzed

time points. Therefore, these data suggest that ZBP1 is not essential
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for controlling either Brucella infection in vivo or bacterial

replication inside macrophages.
4 Discussion

Innate immune cells are often confronted by pathogenic bacteria

that are able to survive and replicate intracellularly. The recognition

of pathogen-associated molecular patterns (PAMPs) by pattern

recognition receptors (PRRs) is pivotal for initiating a proper

immune response leading to activation of potent antimicrobial

effector pathways against bacterial infection (33). Regarding B.

abortus, DNA is considered a major bacterial PAMP which

activates the host innate immune system involving TLR9, AIM2

and STING sensors (34). Here we demonstrated that ZBP1 elicit

DNA-mediated innate immune responses by inducing type I IFN

expression during B. abortus infection. Corroborating our data, it was

previously demonstrated that ZBP1 interacts with synthetic B-form

DNA, and longer DNA sequences were found to be more effective in

inducing IFN-b production compared to shorter sequences (4). In

addition, it becomes evident that the cytosolic DNA-sensing system is

redundant, as suppression of ZBP1 expression only partially inhibits

IFN-b expression (4). Regarding B. abortus infection, our present

study indicates that both STING and ZBP1 contribute to type I IFN

signaling pathway. This diversity of pathways underscores the

adaptability of the immune system, which may compensate for the

absence of one single receptor during bacterial infection.
FIGURE 4

ZBP1 is not necessary for the production of proinflammatory cytokines and NO during B. abortus infection. The cytokines IL-12 (A), IL-6 (B) and
TNF-a (C) produced by wild-type (WT) or ZBP1 KO macrophages, non-infected (NI) or infected with B. abortus at 8 h or 16 h, were detected in cell
supernatants using ELISA. (D) NO2

− (nitrite) accumulation in cell supernatants from wild-type (WT) or ZBP1 KO macrophages, non-infected (NI) or
infected with B. abortus at 8 h or 16 h, were measured by Griess reaction. The data (A-D) are presented as mean ± SD. No statistical difference was
observed (comparison between WT and KO), p < 0.05, two-way ANOVA.
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The accumulation of misfolded or unfolded proteins in the ER

activates the UPR. This pathway is crucial for maintaining cellular

homeostasis and promoting cell survival under conditions of ER

stress (35). Brucella is known to traffic to the ER and activates the

UPR (36). Activation of the UPR elicited by B. abortus infection is

dependent on STING and leads to the upregulation of chaperone

proteins such as BiP and the splicing of XBP1. Notably, IFN-b
production and signaling participates in this UPR activation in

response to B. abortus infection (22). In this context, we observed

here that ZBP1 is implicated in the activation of the UPR pathway

during B. abortus infection. This was evidenced by impaired

upregulation of BiP and spliced XBP1 in ZBP1 KO macrophages

compared to WT cells. These findings suggest that ZBP1 is involved

in coordinating the UPR pathway in response to B. abortus,

highlighting its role in cellular stress response during bacterial

infection. These findings also suggest that the type I IFN

production elicited by ZBP1 activation is correlated with the

UPR, similar to the role observed with STING. However, further

investigations are needed to elucidate novel specific mechanisms by

which ZBP1 regulates the UPR activation during B. abortus

infection. In addition, UPR pathway was previously associated to

establish a safe replication zone in ER favoring Brucella replication

(22, 37, 38). However, our data show no evidence of ZBP1

participating in the control of B. abortus replication inside

macrophages. Therefore, it seems possible that partial inhibition
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of UPR sensors by ZBP1 i s not su ffic i ent to a l t e r

Brucella replication.

The production of proinflammatory cytokines is associated

with the immune response against B. abortus infection (39).

Regarding ZBP1, it was previously shown that this sensor

activates NF-kB signaling eliciting proinflammatory cytokines

production in response to cytosolic DNA (3, 40). The role

of ZBP1 in proinflammatory cytokine and NO production during

B. abortus infection appears to be limited based on our findings.

The results presented here suggest that B. abortus induces

proinflammatory mediators by activating other PRRs, and

ZBP1 is dispensable in this process. It is well known that several

factors contribute to the induction of immune response against

B. abortus infection (18). Notably, the recognition of Brucella-

derived molecules by various innate immune receptors leads to the

activation of signaling pathways that culminate in proinflammatory

cytokine production (41). For instance, cytosolic Brucella DNA

recognition by STING pathway also triggered proinflammatory

cytokine production, and a STING-dependent resistance to B.

abortus infection was described (21). In this regard, STING

activation upon B. abortus infection also induced the M1-type

macrophages (classically activated macrophages) and NO

production, which are associated with host protection (24). The

data provide here demonstrated that ZBP1 is not required for the

control of B. abortus infection.
FIGURE 5

ZBP1 is dispensable for inflammasome activation and cell death during B. abortus infection. (A) The cytokine IL-1b released by wild-type (WT) or
ZBP1 KO macrophages, non-infected (NI) or infected with B. abortus at 8 h or 16 h, were detected in cell supernatants using ELISA. (B) Western blot
analysis of wild-type (WT) or ZBP1 KO macrophages, non-infected (NI) or infected with B. abortus at 8 h or 16 h The protein pro-IL-1b was detected
in cell lysates, and the active form of caspase-1 (p20 subunit) in supernatants. Equal loading was verified by measuring b-actin levels in the
corresponding cell lysates. (C) Cell death was assessed by measuring LDH release in the supernatant of wild-type (WT) or ZBP1 KO macrophages,
non-infected (NI) or infected with B. abortus (Ba) at the indicated time points. The data (A, C) are presented as mean ± SD. No statistical difference
was observed (comparison between WT and KO), p < 0.05, two-way ANOVA.
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When triggered by pathogen infection, ZBP1 potentially initiates

PANoptosis which involves the activation of cell death pathways such

as pyroptosis, apoptosis, and necroptosis (6). ZBP1-mediated

PANoptosis was characterized by NLRP3 inflammasome activation

with LDH and IL-1b release during viral infection (11). In our

previous study on B. abortus infection, we demonstrated the

involvement of NLRP3 and AIM2 in inflammasome activation (20).

Therefore, we aimed to evaluate the participation of ZBP1 in this

process. The data presented here reveal that ZBP1 is not required for

IL-1b release, caspase-1 processing, and cell death induced by B.

abortus infection, suggesting a mechanism of NLRP3/AIM2 activation

that is independent of ZBP1. These findings differ from the response

to other bacterial pathogens mediated through ZBP1 activation. For

instance, ZBP1 cooperates with pyrin to form a complex that drives

AIM2-mediated caspase-1 activation and cell death, contributing to

host defense against Francisella novicida (12). In addition, ZBP1

contributes to cell death induction during Mtb infection, playing a

key role in necroptosis by promoting MLKL phosphorylation (13).

In summary, we proposed that ZBP1 activation contributes to

the production of type I IFN in response to B. abortus infection or

its derived DNA. Moreover, ZBP1 participates in the activation of

the UPR pathway influencing the expression of BiP and XBP1(s).

However, ZBP1 is dispensable for controlling B. abortus replication

within macrophages or infected mice. ZBP1 also does not

significantly impact proinflammatory cytokine secretion or

inflammasome activation. These findings highlight ZBP1 as a key

player in type I IFN production and UPR activation in response to

B. abortus, suggesting a specific role for ZBP1 in the innate immune
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response against this pathogen. Our results shown here provide

insights into the interplay between ZBP1-mediated innate

immunity and cellular stress responses, contributing to our

understanding of host-pathogen interactions.
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