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Background: Anti-citrullinated peptide antibodies (ACPA)-negative (ACPA−)

rheumatoid arthritis (RA) presents significant diagnostic and therapeutic challenges

due to the absence of specific biomarkers, underscoring the need to elucidate its

distinctive cellular and metabolic profiles for more targeted interventions.

Methods: Single-cell RNA sequencing data from peripheral blood mononuclear

cells (PBMCs) and synovial tissues of patients with ACPA− and ACPA+ RA, as well as

healthy controls, were analyzed. Immune cell populations were classified based on

clustering and marker gene expression, with pseudotime trajectory analysis,

weighted gene co-expression network analysis (WGCNA), and transcription

factor network inference providing further insights. Cell-cell communication was

explored using CellChat and MEBOCOST, while scFEA enabled metabolic flux

estimation. A neural network model incorporating key genes was constructed to

differentiate patients with ACPA− RA from healthy controls.

Results: Patients with ACPA− RA demonstrated a pronounced increase in classical

monocytes in PBMCs and C1QChigh macrophages (p < 0.001 and p < 0.05).

Synovial macrophages exhibited increased heterogeneity and were enriched in

distinct metabolic pathways, including complement cascades and glutathione

metabolism. The neural network model achieved reliable differentiation between

patients with ACPA− RA and healthy controls (AUC=0.81). CellChat analysis

identified CD45 and CCL5 as key pathways facilitating macrophage-monocyte

interactions in ACPA− RA, prominently involving iron-mediated metabolite

communication. Metabolic flux analysis indicated elevated beta-alanine and

glutathione metabolism in ACPA− RA macrophages.

Conclusion: These findings underscore that ACPA-negative rheumatoid arthritis

is marked by elevated classical monocytes in circulation and metabolic
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reprogramming of synovial macrophages, particularly in complement cascade

and glutathione metabolism pathways. By integrating single-cell RNA

sequencing with machine learning, this study established a neural network

model that robustly differentiates patients with ACPA− RA from healthy

controls, highlighting promising diagnostic biomarkers and therapeutic targets

centered on immune cell metabolism.
KEYWORDS

rheumatoid arthritis, single-cell RNA sequencing, ACPA, synovial macrophage, beta-
alanine and glutathione metabolism
Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disorder

marked by persistent synovial inflammation, leading to joint

destruction and impaired functionality. Its pathogenesis is driven

by a multifaceted interaction of genetic, environmental, and

immunological factors that promote immune dysregulation and

chronic synovial inflammation (1, 2). A central feature of RA is the

presence of autoantibodies, notably anti-citrullinated peptide

antibodies (ACPA), which exhibit high specificity for the disease

and serve as important diagnostic and prognostic markers (3, 4).

Patients with ACPA-positive (ACPA+) RA typically experience a

more aggressive disease course, characterized by accelerated joint

damage and systemic involvement (5).

Nevertheless, approximately 20–30% of patients with RA are

ACPA-negative (ACPA−), lacking these specific autoantibodies (6).

ACPA− RA presents distinct clinical challenges, as it may follow

unique disease trajectories and exhibit variable therapeutic

responses compared to ACPA+ RA (7). The absence of ACPA

complicates early diagnosis, potentially delaying treatment onset

and impacting long-term patient outcomes (8). Furthermore, the

immunopathological mechanisms underlying ACPA− RA remain

incompletely characterized, posing a barrier to the development of

targeted treatments for this subgroup (9).
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Recent findings suggest that ACPA− RA represents a distinct

clinical entity with unique immunological characteristics (10).

Variations in genetic predisposition, cytokine profiles, and

immune cell composition differentiate ACPA− RA from its

ACPA+ counterpart (11, 12). Notably, alterations in monocyte

and macrophage populations have been implicated in RA

pathogenesis (13). Monocytes and macrophages are pivotal in

inflammation and immune modulation, driving synovial

hyperplasia and joint destruction through the release of pro-

inflammatory cytokines and matrix-degrading enzymes (14).

However, the precise roles of these immune cells in ACPA− RA

remain inadequately elucidated.

Metabolic reprogramming in immune cells is increasingly

recognized as a pivotal factor in autoimmune diseases, including

RA (15). During immune activation, differentiation, and effector

functions, immune cells reconfigure their metabolic pathways to

meet heightened energetic and biosynthetic demands (16).

Dysregulated metabolic processes can profoundly impact immune

cell function, fostering chronic inflammation (17). In RA, research

has demonstrated that altered glucose and lipid metabolism in both

synovial fibroblasts and immune cells accelerates disease

progression (15, 18). However, the metabolic characteristics of

immune cells in ACPA− RA remain largely unexamined.

Advancements in single-cell RNA sequencing (scRNA-seq)

now enable precise profiling of cellular heterogeneity, facilitating

the identification of novel cell subtypes and disease-associated

pathways (19). Utilizing scRNA-seq on peripheral blood

mononuclear cells (PBMCs) and synovial tissue mononuclear

cells (STMCs) from patients with RA allows researchers to

delineate the complex cellular interactions and metabolic

pathways underlying inflammation (20). Coupling scRNA-seq

data with computational models further supports the estimation

of metabolic fluxes and the construction of cell-cell communication

networks (21).

This study investigates the cellular composition, metabolic

reprogramming, and intercellular communication specific to

ACPA− RA. scRNA-seq analysis was performed on PBMCs and

STMCs from both patients with ACPA− RA and those with ACPA+

RA, with a focus on monocyte and macrophage subsets. Our
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hypothesis posits that patients with ACPA− RA exhibit distinctive

immune cell profiles and metabolic pathways that underlie their

unique clinical features. By identifying differentially expressed

genes, metabolic modules, and signaling pathways, this research

aims to pinpoint potential biomarkers and therapeutic targets for

ACPA− RA. Our findings offer new insights into ACPA− RA

pathogenesis and underscore the critical role of metabolism in

modulating immune responses within this patient subgroup.
Methods

Data acquisition

The sequence data used for this study have been deposited in the

Genome Sequence Archive at the BIG Data Center, Beijing Institute of

Genomics (BIG), Chinese Academy of Sciences, under accession code

HRA000155 (22). Researchers seeking access must submit an

application for approval to utilize this dataset for further analysis.
Single-cell RNA sequencing alignment and
quality control

Raw 10x Genomics sequencing data were processed with

CellRanger v2.2.0 using the human transcriptome GRCh38-1.2.0

as a reference (23). Additional quality control measures were

applied to remove low-quality cells, specifically excluding cells

with mitochondrial gene expression exceeding 5%. Single-cell

read counts from all samples were analyzed with the Seurat

package (v5.0.1) in R (v4.3.1), where data were transformed into

Seurat objects (24). Filtering criteria included retaining cells with

unique molecular identifier (UMI) counts between 1000 and 25000

and genes detected in at least five cells while restricting cells to those

expressing between 500 and 3500 genes. Post-filtering, data

normalization was executed with Seurat’s NormalizeData

function, followed by the identification of highly variable genes

using FindVariableFeatures.
Integration of scRNA-seq data from the
same tissue

For tissue-specific scRNA-seq data integration (PBMC or

synovial tissue), the Harmony package was employed.

Downstream analyses, including dimensionality reduction and

clustering, leveraged highly variable gene correlations.
Dimensionality reduction and major cell
type annotation

Separate analyses were conducted for PBMC and synovial tissue

datasets, with adjustments for confounders such as UMI counts,

mitochondrial gene percentage, and cell cycle genes. Gene
Frontiers in Immunology 03
expression was scaled to unit variance, and dimensionality was

reduced using principal component analysis (PCA), selecting the

top 20 principal components (PCs) based on the elbow plot and

variance explained. Cell clusters were visualized in two-dimensional

space via Uniform Manifold Approximation and Projection

(UMAP), and unsupervised clustering was executed with Seurat’s

FindClusters function, applying the Louvain algorithm for

community detection. Resolution parameters were set to 0.5 for

PBMC and 0.8 for synovial tissue.

Resolution settings were determined through an iterative

approach, evaluating cluster stability and biological significance

by varying resolution from 0.2 to 1.5 in 0.2 increments. Silhouette

scores and modularity metrics were utilized to assess cluster

cohesion and separation. The final resolutions provided an

optimal balance, capturing distinct subpopulations without

excessive clustering of biologically similar cells. Cell identities

were assigned based on known marker genes for each cell type, as

illustrated in Figure 1A and Supplementary Figure 1B, with

validation through cross-referencing published datasets and

established cell type annotations. For ambiguous marker

expression, differential expression analysis was applied to confirm

cell identity.
Differential expressed genes and
pathway analysis

Differentially expressed gene (DEG) analysis was conducted

using the FindMarkers function in Seurat with the Wilcoxon test.

Bonferroni correction was applied to adjust p-values, and DEGs

were filtered at a significance threshold of p < 0.05. For this study,

the mini pct was set to 0.1, meaning at least 10% of cells in either

group must express the gene for it to be included in the analysis.

Enrichment analysis of DEGs was carried out using the

clusterProfiler package (v3.12.0), examining Gene Ontology (GO)

terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways (25). Specific parameters used in the analysis include a p-

value cutoff of 0.05, a q-value cutoff of 0.2, and a gene set size range

of 10 to 500. Multiple testing correction was performed using the

Benjamini-Hochberg method. These parameter choices were

guided by established practices to ensure biologically meaningful

and statistically reliable results. To elucidate the functional roles of

each macrophage subset, gene set variation analysis (GSVA) was

performed with standard settings in the GSVA R package

(v1.32.0).For this single-cell analysis, log-normalized expression

data from Seurat were used as input. Pathways were selected from

the MSigDB KEGG gene set collection, ensuring a comprehensive

evaluation of biological processes. Specific parameters for the gsva()

function included method = “gsva” (default kernel-based density

estimation), mx.diff = TRUE (to calculate enrichment scores based

on maximum difference between conditions), and a min.sz = 10 and

max.sz = 500 to ensure only biologically relevant pathways were

considered while accounting for sparsity in single-cell datasets.

These parameter choices were optimized for single-cell data to

maintain robustness and biological interpretability.
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Additionally, AUCell analysis was performed to evaluate the

activity of gene sets in individual cells, complementing GSVA

results by providing cell-level resolution. This analysis used the

AUCell package (v1.12.0) with the AUCell_buildRankings()

function to rank genes based on expression levels across

individual cells. The AUCell_calcAUC() function was then

applied to calculate the Area Under the Curve (AUC) scores for

predefined gene sets, with thresholds determined based on

empirical distributions. Parameters included a ranking threshold

of 5% and the use of log-normalized data to ensure compatibility

with single-cell datasets. These details enhance the transparency

and reproducibility of the methods used in this study.
Trajectory inference

The Monocle2 algorithm was applied to explore differentiation

trajectories within selected clusters (26). Cells of interest were subset

using the Seurat subset function, and a CellDataSet object was

generated with Monocle2’s newCellDataSet function, setting the

lowerDetectionLimit parameter to 0.5. Low-quality cells and genes

were removed with min_expr = 0.1, and dimensionality reduction

was conducted using the DDRTree method. Visualization of

trajectories was achieved through plot_cell_trajectory and

plot_genes_in_pseudotime functions.
SCENIC analysis

To identify regulons (transcription factors [TFs], their modules,

and potential targets) and assess their activity, this study employed

the single-cell regulatory network inference and clustering

(SCENIC) approach (27). This workflow began with the inference

of co-expression modules using GRNBoost2, followed by motif
Frontiers in Immunology 04
pruning with cisTarget. Regulon activity was quantified with

AUCell scores, and TF activity was evaluated using the Python-

based tool pySCENIC (28). Leveraging the cis-target and motif

databases, all TFs with motifs were analyzed to identify cell-type-

specific regulons with high regulon specificity scores (RSS) (29).
HdWGCNA analysis

High-dimensional weighted gene co-expression network

analysis (hdWGCNA) was employed to identify key macrophage-

related genes (30). Monocyte and macrophage populations were

extracted from scRNA-seq data, gene expression correlation

matrices were computed, and gene co-expression modules were

identified. Critical parameters were carefully optimized during the

hdWGCNA process to ensure robust network construction and

module detection. In the initial step, gene expression correlation

matrices were calculated, and the soft-thresholding power was

determined to optimize scale-free network topology. A soft-

thresholding power of 7 was selected to ensure that the network

exhibited scale-free properties, a hallmark of biological networks.

This selection was guided by plotting the scale-free topology model

fit against various power values and choosing the point where the

network’s R-squared value reached a plateau. Following network

construction, co-expression modules—clusters of genes with similar

expression patterns across the macrophage population—were

identified. The relevance of these modules was assessed via

module-trait relationship analysis, correlating each module with

specific traits related to macrophage activation and inflammation.

For each trait-related module, hub genes—genes with high

intramodular connectivity central to the network structure—were

identified. Hub genes were defined based on their connectivity

scores (kME values) within their respective modules, following the

approach outlined in previous studies.
FIGURE 1

(A) Sample size distribution of scRNA-seq data from HC, ACPA+ RA, and ACPA− RA individuals. (B) UMAP clustering of immune cells from PBMCs.
(C) Wilcoxon test comparing immune cell proportions between ACPA+ and ACPA− groups. (D) UMAP clustering of monocyte subpopulations. (E)
Wilcoxon test comparing monocyte subpopulations between ACPA+ and ACPA− groups. (P-values are expressed as follows: * p ≤ 0.05, ** p ≤ 0.01,
and *** p ≤ 0.001.).
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Deep neural network construction

A deep neural network (DNN) was constructed using PyTorch

to define and optimize the network architecture. Based on PBMC

expression data from 20 DEGs and corresponding cell-type data,

the DNN was developed to distinguish patients with ACPA− RA

from healthy controls (HC). Data were divided into a 70% training

set and a 30% test set, with training performed over 1000 epochs

using mini-batch gradient descent. The DNN architecture consisted

of an input layer with 21 features, followed by four hidden layers

containing 128, 64, 32, and 16 neurons, each employing Sigmoid

activation functions, and concluded with a single Sigmoid neuron in

the output layer for binary classification (ACPA-negative or

healthy).In clinical settings, the characterization of macrophage

populations plays a crucial role in diagnosing and understanding

rheumatoid arthritis (RA) subtypes. If over 50% of a patient’s

macrophages are found to be ACPA-negative, this could strongly

suggest an ACPA-negative RA diagnosis. Otherwise, the patient is

likely classified as healthy.

To prevent overfitting, early stopping was applied based on

validation loss, and each hidden layer included a dropout rate of 0.2.

Key model parameters, including learning rate, number of layers,

and dropout rates, were optimized via grid search, exploring

learning rates from 0.001 to 0.01. A learning rate of 0.005 was

ultimately selected based on improved validation accuracy. Model

performance was assessed through accuracy metrics and ROC curve

analysis, with the ROC curve generated using Scikit-learn’s

roc_curve function. Additionally, cross-validation was

implemented to reinforce model robustness, averaging

performance metrics across five folds to ensure generalizability.
Cell communication and
signaling pathways

Cell communication analysis was performed using the CellChat

package in R with default parameters, focusing on PBMCmonocyte

and synovial macrophage subsets independently (31). The analysis

utilized the human CellChatDB and enabled a comparative

assessment of interactions between ACPA+ and ACPA−

macrophage subpopulations and PBMC monocytes.
MEBOCOST analysis

MEBOCOST, a Python-based tool, inferred metabolite-

mediated cell communication from scRNA-seq data. This tool,

which leverages a curated database of metabolite sensors and

partners, identified sender and receiver cells based on metabolite

outflow/inflow rates and enzyme/sensor expression levels. scRNA-

seq expression data were first loaded into a Python pandas

DataFrame, integrated with cell annotations, and then used to

infer metabolic communications. Results were visualized to

illustrate communication events, sender-to-receiver flows, and

sensor expression levels.
Frontiers in Immunology 05
Construction of single-cell metabolic
flux curves

Single-cell metabolic flux profiles were derived using the single-

cell flux estimation analysis (scFEA) algorithm, a graph neural

network-based approach (21). The algorithm utilized 168 metabolic

modules, obtained from scFEA’s official GitHub repository (https://

github.com/changwn/scFEA). KEGG enrichment analysis was

conducted on input and output modules using MetaboAnalyst

(https://www.metaboanalyst.ca/home.xhtml).
Statistical analysis

All statistical analyses were performed using R software (v4.3.1),

with visualizations generated in R Studio. Data were pre-processed to

meet the assumptions for each statistical test, and appropriate

transformations were applied when necessary. Statistical tests were

selected based on data distribution and study design. For comparisons

between two groups with normally distributed data and equal

variances, Student’s t-test was used. The Wilcoxon Rank-Sum Test

was applied for non-parametric data, providing a robust method for

comparing medians between two independent groups, especially

suitable for small sample sizes or skewed distributions. The Kruskal-

Wallis Test was employed for comparisons across more than two

independent groups with non-parametric data. To control the family-

wise error rate, p-values were adjusted using the Holm-Bonferroni

method. Statistical significance was set as follows: “ns” for p > 0.05, * for

p ≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001, and **** for p ≤ 0.0001.
Results

Identification of distinct immune cell types
in patients with RA

Single-cell sequencing data of immune cells from patients with

ACPA− RA and patients with ACPA+ RA were obtained from the

Genome Sequence Archive at the Big Data Center, Beijing Institute of

Genomics, Chinese Academy of Sciences. The dataset comprised 44

samples, including CD45+ PBMCs isolated from HC (n = 4) and from

ACPA+ (n = 10) and ACPA− (n = 10) RA individuals (Figure 1A).

Additionally, synovial tissuemononuclear cells (STMCs) were obtained

from ACPA+ (n = 10) and ACPA− (n = 10) RA individuals

(Figure 1A). None of the patients were receiving disease-modifying

antirheumatic drugs (DMARDs), corticosteroids, or targeted therapies

at the time of sampling, though some opted for physical therapies, such

as thermotherapy or acupuncture, to manage pain. A graph-based

unsupervised clustering method was applied to identify cell types by

examining typical marker genes. Cell populations identified included T

cells, B cells, monocytes, dendritic cells, plasma cells, NK cells, and

common myeloid progenitors (CMP). Each cell type was annotated

according to well-characterized marker genes (Figure 1B,

Supplementary Figure 1A). Specifically, T cells were defined by high

expression of CD3D and CD3E, while NK cells were distinguished by
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NKG7 and GNLY. Monocytes were annotated by CD14 and FCGR3A,

and dendritic cells by ITGAX andHLA-DQA1. B cells and plasma cells

were characterized by distinct marker profiles, with B cells expressing

CD19, MS4A1, and CD79A, and plasma cells marked by SDC1 and

MZB1. CMPs were identified using CD34, KIT, and FLT3, established

indicators of progenitor populations. Marker selection was based on

specificity for each cell type, validated by previous research in the field.

This rigorous marker selection and clustering approach enabled robust

and precise classification of cell types within the dataset.
Increased monocyte proportions in
patients with ACPA− RA

The Wilcoxon test was applied to assess differences in immune

cell type proportions across ACPA-positive, ACPA-negative, and

HC groups. Results indicated a statistically significant increase in

monocyte proportions within the ACPA-negative group compared

to both ACPA-positive and HC groups (p < 0.001). Additionally, a

significant difference was detected in T cell proportions between

ACPA-negative and ACPA-positive groups (p < 0.01). No

significant differences were observed for NK cells, B cells,

dendritic cells, plasma cells, or CMPs across the groups (Figure 1C).
Identification of monocyte subpopulations

Further dimensionality reduction and clustering analysis of

monocytes identified three distinct subpopulations: classical, non-

classical, and intermediate monocytes (Figure 1D). Classical

monocytes were characterized by CD14 expression, non-classical

monocytes by CD16, and intermediate monocytes by the co-

expression of CD14 and CD16 (Supplementary Figure 1B).
Patients with ACPA+ RA show increased
classical monocytes and reduced non-
classical monocytes

The Wilcoxon test was subsequently conducted to compare the

proportions of monocyte subpopulations between ACPA-positive

and ACPA-negative groups. This analysis revealed a statistically

significant reduction in the proportion of non-classical monocytes

in the ACPA-positive group relative to the ACPA-negative group (p

< 0.01) (Figure 1E). Conversely, the ACPA-positive group exhibited

a significant increase in classical monocyte proportions (p < 0.01)

(Figure 1E). No significant difference was identified in intermediate

monocyte proportions between the two groups (Figure 1E).
Macrophages and fibroblasts are increased
in ACPA-positive synovial tissue

Recognizing synovial inflammation as a hallmark of RA,

dimensionality reduction and clustering analysis were performed on

scRNA-seq data from synovial cells. This approach identified eight
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distinct cell populations within synovial tissue: T cells, plasma cells, NK

cells, B cells, macrophages and myeloid cells, endothelial cells, mast

cells, and fibroblasts (Figure 2A, Supplementary Figure 1C). Each cell

type was annotated based on classical markers, selected for their

established involvement in RA-related inflammation and immune

response. Specifically, T cells were characterized by CD3D and CD3E

expression, B cells by CD19 and CD79A, and plasma cells by markers

such as MZB1 and IGLC2. Macrophages and myeloid cells showed

high CD68 and LYZ levels, while endothelial cells were identified by

PECAM1 and VWF. Mast cells were marked by TPSAB1, and

fibroblasts by ACTA2 and DCN expression. These cell types are

well-documented contributors to the inflammatory cascade and

tissue damage observed in RA, providing insights into the cellular

landscape of synovial inflammation. Using the Wilcoxon test, immune

cell proportions were compared between patients with ACPA+ RA and

those with ACPA− RA. Results demonstrated a statistically significant

increase in macrophages and myeloid cells (p < 0.01) and fibroblasts (p

< 0.05) in the ACPA+ group (Figure 2E), aligning with the roles of

macrophages and fibroblasts in sustaining inflammation and

facilitating joint destruction in RA. No significant differences were

found for T cells, plasma cells, NK cells, B cells, endothelial cells, or

mast cells (Figure 2E).
Identification of 11 distinct macrophage
subtypes with differential roles in RA

Focusing on macrophages, which are central to chronic

inflammation, tissue destruction, and immune dysregulation in RA,

further dimensionality reduction and clustering analysis identified 11

distinct macrophage subtypes based on gene expression profiles: C1:

C1QChigh(T), C2:NAMPT/NFKBIAhigh(H), C3:FN1high(H), C4:

LYZhigh(H), C5:CD163high(T), C6:HLAhigh(H), C7:APOEhigh(T),

C8:MARCOhigh(H), C9:MIFhigh(H), C10:BIRC3high(T), and C11:

C1QBhigh(H) (Figure 2B, Supplementary Figure 1D). These subtypes

reflect macrophage populations with diverse roles in RA. Here, T

denotes tissue-resident macrophages, which sustain local inflammation

in synovial tissue, while H represents hematogenous macrophages,

recruited from the bloodstream in response to inflammatory signals.

Tissue-resident macrophages were identified by CXCR6, ITGAE, and

CD69 markers, while hematogenous macrophages were marked by

S1PR1, KLF2, and CCR7, following marker definitions from prior

studies (Figure 2C) (32–34).
Specific macrophage subtypes are
enriched in ACPA-negative and ACPA-
positive RA

KEGG enrichment analysis on differentially expressed genes

across 11 macrophage clusters revealed that genes downregulated in

ACPA-positive samples (i.e., upregulated in ACPA-negative

samples) were enriched in RA-related subgroups, particularly

clusters C1 and C7. These genes were associated with immune

pathways such as Th17, Th1, and Th2 cell differentiation.

Conversely, ACPA-positive samples showed lower counts and
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higher p-values in the upregulated differentially expressed genes for

C1 and C7, indicating less enrichment compared to ACPA-negative

samples (Supplementary Figures 2A, B).

GSVA identified several key pathways in C1 and C7, including

complement and coagulation cascades, allograft rejection, alcoholic

liver disease, phagosome, antigen processing and presentation,

cholesterol metabolism, pertussis, lysosome, and Staphylococcus

aureus infection (Figure 3F). Further Wilcoxon test analysis indicated

a significant increase in the proportion of C1 macrophages in the

ACPA-negative group (p < 0.05), suggesting these cells contribute to

local inflammation and synovial hyperplasia in ACPA-negative RA. In

contrast, a significant decrease in C7 proportions was observed in the

ACPA-negative group (p < 0.01), suggesting that C7macrophages may

have a regulatory or protective function that is diminished in ACPA-

positive RA (Figure 2F).

AUCell activity scoring for rheumatoid arthritis pathways in the

KEGG database across the 11 macrophage subtypes revealed

distinct activity patterns between ACPA-positive and ACPA-

negative groups. Specifically, C1, C2, C5, C6, C7, and C10

exhibited significantly higher activity scores in the ACPA-positive

group, whereas C1 and C8 had notably higher activity in the ACPA-

negative group. These results suggest that C1 and C8 may play

pivotal roles in ACPA-negative RA, while other subtypes are more

active in ACPA-positive RA (Figure 2D).
ACPA-negative RA macrophages display
more complex developmental trajectories

To elucidate the dynamic roles of macrophage subtypes in RA

progression and immune responses, pseudotime trajectory analysis
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was conducted on 11 macrophage subtypes to investigate their

developmental paths (Figures 3A–D). Separate analyses were

performed for macrophages from ACPA− RA and ACPA+ RA

individuals. Results indicated that macrophages in ACPA− RA

exhibited a more intricate developmental trajectory, forming four

distinct branches (Figure 3A), whereas ACPA+ RA macrophages

formed only two branches (Figure 3C). This suggests greater

diversity in developmental and activation processes among

macrophages in ACPA− RA, possibly reflecting increased

heterogeneity in macrophage function compared to ACPA+ RA.

Within ACPA− RA, certain macrophage subtypes displayed

distinct patterns along the developmental path. Subtypes C10(T)

and C11(H), for instance, appeared primarily in early

developmental stages, indicating a role in initial macrophage

activation or differentiation. In contrast, C1(T) and C7(T)

spanned both early and late stages but were absent from

intermediate stages, suggesting that these subtypes may have

specialized roles at the onset and resolution phases of the

macrophage lifecycle, potentially involved in initiating and

resolving inflammation. In ACPA+ RA, macrophage subtypes

were more uniformly distributed along the trajectory, indicating

less developmental complexity, which may reflect a more sustained

and homogeneous inflammatory response in ACPA+ RA. The

increased developmental complexity and unique pathway

involvement in ACPA− RA highlight a higher degree of

macrophage heterogeneity, which could contribute to the variable

clinical presentation and disease progression observed in ACPA

− RA.

To elucidate the biological relevance of pseudotime-related

changes, KEGG enrichment analysis was performed on genes

associated with pseudotime trajectories for ACPA+ RA and
FIGURE 2

(A) UMAP plot of scRNA-seq data from synovial cells. (B) UMAP plot of macrophage subtypes from synovial cells. (C) Markers for hematogenous
macrophages and tissue-resident macrophages. (D) AUCell activity scoring of the 11 macrophage subtypes in the KEGG Rheumatoid Arthritis
pathway. (E) Wilcoxon test comparing synovial cell populations between ACPA+ and ACPA− groups. (F) Wilcoxon test comparing macrophage
subpopulations from synovial cells between ACPA+ and ACPA− groups. (P-values are expressed as follows: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001,
and NS indicates no significance.).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1512483
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2024.1512483
ACPA− RA macrophages. Both groups shared 141 pathways,

including key inflammatory and RA-related pathways such as

Rheumatoid arthritis and Osteoclast differentiation, which are

fundamental to RA pathology (Supplementary Table 1).

Distinctly, ACPA− RA macrophages were enriched in seven

pathways, including Complement and coagulation cascades,

Antifolate resistance, and Glycosphingolipid biosynthesis –

ganglion series. These pathways suggest specific roles in the

development and progression of ACPA− RA (Supplementary
Frontiers in Immunology 08
Table 1). Enrichment in the Complement and coagulation cascades

pathway implies a role in heightened inflammation and immune

activation, potentially exacerbating joint damage. Antifolate

resistance indicates an altered response to treatments such as

methotrexate, suggesting the potential need for alternative

therapeutic strategies in patients with ACPA− RA. Furthermore,

enrichment in Glycosphingolipid biosynthesis suggests unique lipid

metabolism influencing macrophage activity and immune regulation,

further distinguishing ACPA− RA fromACPA+ RA. These pathways
FIGURE 3

(A) Pseudotime trajectory analysis of macrophage subtypes in patients with ACPA− RA. (B) Pseudotime progression of macrophage subtypes in
patients with ACPA− RA. (C) Pseudotime trajectory analysis of macrophage subtypes in patients with ACPA+ RA. (D) Pseudotime progression of
macrophage subtypes in patients with ACPA+ RA. (E) Heatmap of transcription factor activity in ACPA− (left panel) and ACPA+ (right panel) RA
macrophages. (F) GSVA analysis of macrophage subpopulations.
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underscore critical biological differences that may impact both

treatment response and disease progression in ACPA− RA.

Conversely, ACPA+ RA macrophages were enriched in 22

unique pathways, including key signaling pathways such as

Sphingolipid signaling pathway, JAK-STAT signaling pathway,

mTOR signaling pathway, and Adipocytokine signaling pathway

(Supplementary Table 1). These pathways are pivotal in immune

regulation and inflammation, with their enrichment in ACPA+ RA

macrophages pointing to distinct molecular mechanisms

underlying the more aggressive disease phenotype commonly

observed in patients with ACPA+ RA.
More extensive transcription factor
networks in ACPA-positive
RA macrophages

To further elucidate the gene regulatory mechanisms

underlying these differences, SCENIC analysis was conducted to

infer TF regulatory networks. This analysis identified 80 active TFs

regulating macrophage subtypes in ACPA− RA and 90 active TFs in

ACPA+ RA (Figure 3E). Notably, 43 TFs were shared between the

two groups, indicating common regulatory mechanisms in

macrophage activation across both ACPA+ and ACPA− RA

(Figure 3E). However, the number of genes regulated by these

shared TFs was greater in ACPA+ RA, suggesting a more extensive

and complex gene regulatory network in this group. This expanded

network in ACPA+ RA likely reflects a more robust and uniform

activation of regulatory pathways, consistent with the severe and

sustained inflammatory phenotype frequently observed in patients

with ACPA+ RA.
Gene modules associated with ACPA-
negative RA identified by hdWGCNA

To investigate the molecular mechanisms of macrophage

subtypes associated with ACPA-negative (ACPA−) RA, high-

dimensional weighted gene co-expression network analysis

(hdWGCNA) was employed. While traditional WGCNA and

other dynamic network analysis tools are effective for bulk RNA-

seq data, hdWGCNA provides distinct advantages for high-

dimensional single-cell RNA-seq, being optimized to address

unique challenges such as data sparsity, high noise levels, and the

need for granularity in capturing cell-type-specific networks. Unlike

standard WGCNA, hdWGCNA preserves cellular-level data

structure, making it well-suited to the complex heterogeneity

present in RA macrophage populations.

The hdWGCNA approach enabled the identification of

modules of highly co-expressed genes, offering biological insights

through enrichment analysis and integration with known pathways.

An optimal soft threshold of 7 was chosen to ensure a scale-free

network topology, facilitating robust co-expression analysis. Using

this threshold, a co-expression network was constructed, identifying

seven distinct gene co-expression modules, each representing a
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unique set of interconnected genes with potential regulatory roles in

macrophage function.

Correlation analysis between these modules and ACPA+/- RA

showed that the brown, red, and black modules were associated

with ACPA−, while the yellow, turquoise, and blue modules were

linked to ACPA+ (Figure 4A, Supplementary Table 2). The brown

module, in particular, exhibited high expression in macrophage

subtypes C1:C1QChigh(T), C5:CD163high(T), and C7:APOEhigh

(T) (Figure 4B). Enrichment analysis on the brown, red, and black

modules revealed that the brown module was enriched in critical

immune-related pathways, such as MHC class II-related pathways,

Rheumatoid arthritis, Complement and coagulation cascades,

Antigen processing and presentation, and Th1 and Th2 cell

differentiation (Figure 4C).

By intersecting the 426 genes in the brown module with

differentially expressed genes in PBMCs and macrophage

subtypes, 20 intersecting genes were identified (Figure 4D),

indicating their differential expression in both PBMCs and

macrophage subtypes. Given that anti-cyclic citrullinated peptide

(anti-CCP) antibodies serve as an important diagnostic marker for

RA but are absent in patients with ACPA− RA, complicating

diagnosis relative to ACPA+ RA, these 20 differentially expressed

genes were leveraged to construct a neural network model.
Neural network model distinguishes ACPA-
negative RA from healthy controls

Using PBMC expression data and cell-type annotations, a deep

neural network was constructed to distinguish patients with ACPA−

RA from healthy controls. The data was split into a 70% training set

and a 30% test set, with the model trained over 1000 epochs using

mini-batch gradient descent (Figure 4E). To ensure robustness and

prevent overfitting, the ROC curve was evaluated for both training and

test sets, achieving an AUC of 0.92 on the training set and 0.81 on the

test set. To further validate the robustness and generalizability, five-fold

cross-validation was applied, with the average AUC across folds

reaching 0.87 and individual AUCs ranging from 0.84 to 0.89. These

results indicate stable model performance, supporting the potential

clinical application of single-cell transcriptomics for RA

diagnostics (Figure 4F).
ACPA-positive RA exhibits stronger
macrophage-monocyte communication

Examining PBMC monocyte and macrophage subtype

interactions in RA is essential to understanding systemic immune

responses that contribute to local joint inflammation and tissue

damage. These interactions highlight mechanisms driving chronic

inflammation, reveal biomarkers for disease progression, and

identify therapeutic targets by isolating specific pathways involved

in monocyte-to-macrophage differentiation.

CellChat was utilized to analyze cell communication between

monocytes and macrophages in ACPA+ and ACPA− RA. ACPA+
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RA showed 2,199 inferred interactions, higher than the 1,789

interactions observed in ACPA− RA. Interaction strength was

also significantly higher in ACPA+ RA (0.467) compared to

ACPA− RA (0.196) (Figure 5A), suggesting that macrophage-

monocyte communication in ACPA+ RA is more intense,

potentially contributing to the aggressive inflammatory response

and severe clinical presentation typically seen in ACPA+ RA.

Regarding relative information flow, CD45 and CCL5 emerged as

primary pathways mediating macrophage-monocyte communication

in ACPA− RA (Figure 5B, Supplementary Tables 3, Supplementary

Table 4). The CD45 pathway was particularly critical for cross-organ

communication between classical monocytes and C1:C1QChigh(T)

macrophages (Figure 5C), indicating its role in macrophage activation

and recruitment to inflamed tissues in ACPA− RA. In contrast, fewer

interactions were observed between classical monocytes and C1:

C1QChigh(T) macrophages in ACPA+ RA, suggesting alternative

pathways may drive immune responses in ACPA+ RA.

To further explore, the Wilcoxon test was employed to compare

gene expression levels of CD45 pathwaymediators, specifically PTPRC

and MRC1, between the two groups. PTPRC expression was

significantly higher in C1(T) and C9:MIFhigh(H) macrophages in

ACPA+ RA (P < 0.001 and P < 0.05, respectively) (Figure 5D). This

elevated expression of PTPRC, a key component of the CD45 pathway,

suggests sustainedmacrophage activation in ACPA+ RA. Additionally,

MRC1 showed significantly higher expression in C1(T) macrophages

(P < 0.001) (Figure 5E), implying a role in modulating immune

responses through alternative pathways in this macrophage subtype.
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Iron-mediated cell communication is
prominent in ACPA-negative RA

Previous CellChat analysis suggested that macrophage-

monocyte communication in PBMCs might be mediated by the

CD45 pathway. Given the importance of cell metabolism in RA

pathogenesis—particularly in shaping immune cell functions and

inflammatory responses—the role of metabolite-mediated

interactions between macrophages and monocytes was

considered. Metabolic factors such as lipids and iron play

significant roles in RA by influencing cellular energy balance,

signaling, and differentiation, thereby driving inflammation and

disease progression.

To explore this further, MEBOCOST, a Python-based

computational tool for inferring metabolite-mediated cell-cell

communication from single-cell RNA sequencing data, was

employed. Analysis showed a higher number of metabolite-

mediated communication events in ACPA+ RA (Figure 6B)

compared to ACPA− RA (Figure 6A). However, focusing on the

communication flow from sender metabolite to sensor in the receiver,

key interactions were identified in ACPA− RA between monocytes

and C1(T) macrophages, as predicted by CellChat. Specifically, the

metabolic communication pathways included classical monocytes

(sender) – Iron (metabolite) – TFRC (sensor) – C1:C1QChigh(T)

macrophages (receiver) and classical monocytes (sender) – Iron

(metabolite) – SLC40A1 (sensor) – C1:C1QChigh(T) macrophages

(receiver). Additionally, non-classical monocytes displayed similar
FIGURE 4

(A) Correlation heatmap of seven gene co-expression modules identified by WGCNA in macrophage subtypes. (B) Dot plot showing gene expression
within the brown module across macrophage subtypes. (C) Enrichment analysis of genes in the brown module. (D) Venn diagram showing the
overlap of 426 genes from the brown module with differentially expressed genes in PBMCs and macrophage subtypes. (E) Training loss curve for the
deep neural network model distinguishing patients with ACPA− RA from healthy controls. (F) ROC curve displaying the neural network model’s
performance on the test set.
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iron-mediated communication pathways in ACPA− RA (Figure 6C,

Supplementary Tables 5, Supplementary Table 6).

In contrast, metabolite-mediated communication between

monocytes and macrophages was less prominent in ACPA+ RA

(Figure 6D), consistent with CellChat findings, indicating that

macrophage-monocyte communication may not be as central in

ACPA+ RA. This suggests that iron-mediated interactions may be

more critical in ACPA− RA, while alternative communication

mechanisms could be more relevant in ACPA+ RA.
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Visualizing the mean abundance of communication-mediating

metabolites revealed higher levels of iron and L-glutamine in ACPA

− RA, indicating their roles in macrophage-monocyte interactions

(Figure 6E). Conversely, cholesterol abundance was higher in

ACPA+ RA, pointing to a shift towards lipid-related metabolic

pathways in this group (Figure 6F). These results underscore

distinct metabolic profiles in ACPA− and ACPA+ RA, with iron

and glutamine as key mediators in ACPA− RA, while cholesterol

may be more influential in the immune response of ACPA+ RA.
FIGURE 5

(A) Bar chart depicting the number of inferred interactions and interaction strengths. (B) Relative information flow of key signaling pathways
mediating macrophage-monocyte communication. (C) CD45 signaling pathway network for ACPA− (left) and ACPA+ (right) RA. (D) Box plot of
PTPRC expression, a critical component of the CD45 signaling pathway. (E) Box plot of MRC1 expression, another essential component of the CD45
signaling pathway. (P-values are expressed as follows: * p ≤ 0.05, *** p ≤ 0.001, and NS indicates no significance.).
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Metabolic flux analysis reveals upregulated
pathways in ACPA-negative
RA macrophages

To further explore metabolic flux in macrophage subtypes

within ACPA− RA, scFEA—a graph neural network model

tailored for estimating cell metabolism using scRNA-seq data—

was employed. scFEA leverages a reconstructed human metabolic

map, utilizing a probabilistic model with flux balance constraints

and an optimization solver within a graph neural network to

capture the intricate relationships from transcriptomics to

metabolomics. This model reflects the non-linear dependencies

between enzyme gene expression and reaction rates, using gene

expression profiles of macrophage subtypes as input data.

Figure 7A shows model convergence through the loss function,

confirming its accuracy. Given the continuous and normally

distributed output data, the limma package was used to compare

ACPA− and ACPA+ RA samples, considering p < 0.05 as statistically

significant, with t > 0 indicating upregulation in ACPA− RA and t < 0

indicating downregulation. This analysis identified 11 metabolic

modules upregulated in ACPA− RA (Figures 7B, C), with each

module corresponding to in and out metabolites. Notably, the C9:

MIFhigh(H) macrophage subtype exhibited a substantial number of

upregulated metabolites. KEGG enrichment analysis of these

metabolites was performed using MetaboAnalyst. The input

metabolites were predominantly enriched in pathways such as beta-

alanine metabolism, Glutathione metabolism, Arginine and proline
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metabolism, D-amino acid metabolism, and Histidine metabolism

(Figure 7E). The output metabolites were enriched in pathways

including Butanoate metabolism, Alanine, aspartate and glutamate

metabolism, Glutathione metabolism, Glyoxylate and dicarboxylate

metabolism, Porphyrin metabolism, Arginine and proline metabolism,

Primary bile acid biosynthesis, Nitrogen metabolism, and Valine,

leucine and isoleucine biosynthesis (Figure 7D).

These results suggest that macrophage subtypes, particularly

C9:MIFhigh(H), may significantly contribute to RA pathogenesis by

promoting key metabolic processes, highlighting distinct metabolic

pathways active in ACPA− RA.
Discussion

This study offers a detailed analysis of the cellular and molecular

distinctions of ACPA− RA, particularly focusing on metabolic

alterations. scRNA-seq identified unique immune cell

composi t ions , metabol ic pathways , and interce l lular

communication patterns that set ACPA− RA apart from ACPA+

RA. Notably, a marked increase in monocytes, especially classical

monocytes, was observed in the PBMCs of patients with ACPA−

RA patients compared to patients with ACPA+ RA and healthy

controls. This elevation suggests a pivotal role for monocytes in the

systemic inflammation that characterizes ACPA− RA. Classical

monocytes, known for their potent pro-inflammatory cytokine

production and their capacity to differentiate into macrophages
FIGURE 6

(A) Number of metabolite-sensor communication events in ACPA− RA. (B) Number of metabolite-sensor communication events in ACPA+ RA (C)
Metabolite-mediated communication pathways in ACPA− RA. (D) Metabolite-mediated communication pathways in ACPA+ RA. (E) Violin plots
showing the mean abundance of metabolites in ACPA− RA. (F) Violin plots showing the mean abundance of metabolites in ACPA+ RA.
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and dendritic cells, likely contribute significantly to disease

pathology. While previous studies have reported elevated

monocyte levels in patients with RA (35), our findings emphasize

their increased presence specifically in ACPA− RA, indicating a

subtype-specific inflammatory mechanism. This suggests that

therapies aimed at monocyte recruitment or activation might be

particularly beneficial. Monocyte-targeted interventions, such as

inhibitors of monocyte chemoattractant proteins or their receptors,
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may hold promise for reducing systemic inflammation in ACPA−

RA. Additionally, therapies that modulate monocyte differentiation

into pro-inflammatory macrophages could help in slowing disease

progression in these patients.

In synovial tissue, macrophages from patients with ACPA− RA

demonstrated greater heterogeneity and more complex

developmental trajectories, forming four distinct branches in

pseudotime analysis compared to only two branches in ACPA+
FIGURE 7

(A) Convergence of the loss function during scFEA analysis. (B) T-values of metabolite modules across macrophage subtypes, visualized with color
codes: red for t-values > 0 (indicating upregulation in the ACPA− group) and blue for t-values < 0 (indicating downregulation in the ACPA− group or
upregulation in the ACPA+ group). (C) Summary table of the top in-and-out metabolites for significant metabolic modules in ACPA− RA. (D) KEGG
enrichment analysis of output metabolites from macrophage subtypes. (E) KEGG enrichment analysis of input metabolites from
macrophage subtypes.
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RA. This increased heterogeneity suggests varied activation and

differentiation processes, potentially leading to diverse disease

courses and therapeutic responses. Notably, macrophages in

ACPA− RA were enriched in distinct metabolic pathways,

including complement and coagulation cascades, antifolate

resistance, and glycosphingolipid biosynthesis. The complement

and coagulation cascades are central to immune responses and

inflammation. Within the RA context, the complement system

contributes to synovial inflammation by promoting opsonization,

chemotaxis, and membrane attack complex formation, which drives

tissue damage (36). The activation of the coagulation cascade leads

to thrombin generation and fibrin deposition in the synovium,

intensifying inflammation and encouraging pannus formation (37).

These processes establish a pro-inflammatory environment that

supports the infiltration and activation of immune cells, such as

macrophages and T cells, thereby sustaining joint destruction.

Targeting components of the complement and coagulation

pathways could thus be a promising therapeutic approach in

ACPA− RA, potentially reducing synovial inflammation and

preventing joint damage.

The enrichment of metabolic pathways in ACPA− RA

macrophages emphasizes the critical role of altered metabolism in

disease pathogenesis. The upregulation of complement and

coagulation cascades, for example, may intensify inflammatory

responses, as components of these pathways act as chemoattractants

and immune cell activators (38). Antifolate resistance presents

potential treatment challenges, given that methotrexate, a folate

antagonist, remains central to RA therapy (39). The identification of

glycosphingolipid biosynthesis pathways aligns with evidence that

lipid metabolism influences immune cell function and inflammation

(40), potentially impacting macrophage activation and cytokine

production in ACPA− RA. These insights suggest that therapies

targeting metabolic pathways, such as inhibitors of specific enzymes

in glycosphingolipid biosynthesis like glucosylceramide synthase, may

modulate macrophage function and reduce inflammation in ACPA−

RA. Addressing antifolate resistance with alternative disease-

modifying antirheumatic drugs (DMARDs) or combination

therapies could further enhance treatment efficacy. Some inhibitors,

like eliglustat, are already approved for Gaucher disease (41), though

their viability in RA requires further investigation. Elucidating

macrophage metabolic dependencies in ACPA− RA could guide the

development of selective therapies that target pathogenic immune cell

subsets while sparing normal immune function.

scFEA further identified 11 upregulated metabolic modules in

ACPA− RA macrophages, enriched in pathways like beta-alanine

and glutathione metabolism. Beta-alanine metabolism is linked to

carnosine synthesis, an antioxidant dipeptide that can modulate

inflammatory responses (42). Glutathione metabolism is essential

for redox balance and cellular protection against oxidative stress,

which is elevated in RA (43). The pronounced role of the C9:

MIFhigh(H) macrophage subtype in driving these metabolic

pathways suggests that specific macrophage populations

contribute to the metabolic reprogramming seen in ACPA− RA.

Targeting these metabolic pathways could provide novel

therapeutic approaches. Enhancing glutathione levels or
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modulating its metabolism might alleviate oxidative stress and

inflammation in the synovial environment. N-acetylcysteine, a

glutathione precursor, is already used clinically for other

indications and could be repurposed for RA treatment (44).

Similarly, interventions targeting beta-alanine metabolism and

carnosine synthesis could influence macrophage activation or

cytokine production (45). Identifying the C9:MIFhigh(H)

macrophage subtype as a driver of these metabolic alterations

highlights it as a potential therapeutic target. Agents that inhibit

MIF (macrophage migration inhibitory factor) or its downstream

signaling could reduce inflammation and tissue damage in patients

with ACPA− RA (46, 47).

Our cell-cell communication analysis revealed that

macrophage-monocyte interactions in ACPA− RA are primarily

mediated by CD45 and CCL5 signaling pathways. CD45, a receptor

tyrosine phosphatase encoded by PTPRC, is critical for T-cell and

B-cell receptor signaling and can modulate macrophage activation

(48). The involvement of CD45 and its ligands, such as MRC1,

suggests a shift in immune regulation in ACPA− RA. Additionally,

metabolite-mediated communication analysis highlighted

significant engagement of iron-mediated pathways. Elevated iron

and L-glutamine levels in patients with ACPA− RA point to a

pivotal role for iron metabolism in immune cell interactions. Iron

can drive macrophage polarization towards a pro-inflammatory

phenotype (49), while the increased abundance of L-glutamine, a

key amino acid for immune cell proliferation and function,

underscores the metabolic demands of activated immune cells in

ACPA− RA (50). Therapeutically, targeting the CD45 pathway may

offer a means to modulate macrophage activation and reduce

inflammation (48). CD45 inhibitors, already explored in other

inflammatory conditions, hold potential for repurposing in RA

(51). Modulating iron metabolism presents another promising

strategy; iron chelators or agents that regulate iron homeostasis

could influence macrophage polarization and attenuate pro-

inflammatory responses (52). Additionally, interventions that

restrict glutamine availability or inhibit glutamine metabolism

could limit immune cell proliferation and activation, providing

another therapeutic approach (50). Such strategies may be

especially beneficial for patients with ACPA− RA, who often

respond suboptimally to standard treatments.

These metabolic alterations may underlie the distinct clinical

features of ACPA− RA. Unlike ACPA+ RA, typically associated with

more severe joint damage and systemic manifestations, ACPA− RA

may follow a different trajectory due to these metabolic distinctions.

Our findings support previous research suggesting that metabolic

reprogramming of immune cells is a hallmark of autoimmune

diseases (53). Future studies should aim to validate these metabolic

pathways as biomarkers for disease progression and treatment

response in ACPA− RA. Longitudinal studies examining metabolic

profile changes pre- and post-therapy could further clarify their clinical

utility. Additionally, clinical trials evaluating agents that target these

metabolic pathways could assess their efficacy and safety in ACPA−

RA, paving the way for more personalized treatment strategies.

Weighted gene co-expression network analysis (WGCNA)

identified key gene modules associated with ACPA− RA,
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particularly the brown module, which is enriched in immune-

related pathways. Intersecting genes from this module with

differentially expressed genes in PBMCs and macrophage

subtypes pinpointed 20 genes differentially expressed in both

compartments. Notably, genes such as HLA-DRA, CD74, and

FCER1G, which are involved in antigen presentation and

immune activation, emerged as potential biomarkers or

therapeutic targets. Modulating HLA-DRA and CD74 could

influence antigen presentation to T cells, potentially mitigating

autoimmune responses (54). Small molecules or antibodies

targeting these proteins could be developed, though this would

require extensive research and development. A neural network

model utilizing these genes was constructed, effectively

distinguishing patients with ACPA− RA from healthy controls

with an area under the curve (AUC) of 0.81. This outcome

underscores the potential of integrating scRNA-seq data with

machine learning to enhance ACPA− RA diagnosis, especially

given the absence of specific serological markers in these patients.

Early and precise diagnosis is essential for initiating timely

treatment and improving patient outcomes. To advance these

results into clinical practice, further validation of the neural

network model is required. Prospective studies with larger,

independent cohorts are necessary to confirm its diagnostic

accuracy and reliability. Additionally, integrating this model into

clinical workflows would necessitate developing accessible assays or

platforms to measure the identified genes, potentially through

targeted PCR panels or immunoassays. Considerations around

regulatory approval and cost-effectiveness would also be essential.

Ultimately, this approach holds promise for enabling earlier

diagnosis and more personalized treatment strategies for patients

with ACPA− RA.
Limitation

While this study provides valuable insights, certain limitations

exist. The cross-sectional design precludes evaluation of temporal

changes in immune cell metabolism and function. Future studies

with larger, longitudinal cohorts are needed to validate these

findings and further investigate the therapeutic potential of

targeting metabolic pathways in ACPA− RA.
Conclusion

In conclusion, this study underscores the significant role of

altered metabolism in ACPA− RA pathogenesis. The identification

of distinct immune cell compositions, metabolic pathways, and

intercellular communication patterns enhances understanding of

the disease and suggests new avenues for therapeutics targeting

metabolic processes. By pinpointing specific metabolic pathways

and immune cell interactions unique to ACPA− RA, these findings

highlight potential biomarkers and therapeutic targets that could

support the development of more effective, personalized treatments.
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Future research should focus on clinically validating these targets

and examining their impact on patient outcomes. Targeting the

metabolic reprogramming of immune cells, particularly

macrophages, may enable the creation of precise interventions

aimed at modulating inflammation and improving clinical

outcomes for patients with ACPA− RA.
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Top 3 markers of cell types in macrophage subpopulations from STMCs.
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subpopulations. (B) Enrichment analysis of DEGs upregulated in ACPA−
macrophage subpopulations.
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