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Background: Recent years have seen persistently poor prognoses for glioma

patients. Therefore, exploring the molecular subtyping of gliomas, identifying

novel prognostic biomarkers, and understanding the characteristics of their

immune microenvironments are crucial for improving treatment strategies and

patient outcomes.

Methods:We integrated glioma datasets frommultiple sources, employing Non-

negative Matrix Factorization (NMF) to cluster samples and filter for differentially

expressed metabolic genes. Additionally, we utilized Weighted Gene Co-

expression Network Analysis (WGCNA) to identify key genes. A predictive

model was developed utilizing the optimal consistency index derived from a

combination of 101 machine learning techniques, and its effectiveness was

confirmed through multiple datasets employing different methodologies. In-

depth analyses were conducted on immune cell infiltration and tumor

microenvironmental aspects. Single-cell sequencing data were employed for

clustering and differential expression analysis of genes associated with glioma.

Finally, the immune relevance of the model gene ALPK1 in the context of pan-

cancer was explored, including its relationship with immune checkpoints.

Results: The application of NMF, coupled with differential analysis of metabolic-

related genes, led to the identification of two clusters exhibiting significant

differences in survival, age, and metabolic gene expression among patients.

Core genes were identified through WGCNA, and a total of 101 machine

learning models were constructed, with LASSO+GBM selected as the optimal

model, demonstrating robust validation performance. Comprehensive analyses

revealed that high-risk groups exhibited greater expression of specific genes,

with ALPK1 showing significant correlations with immune regulation.

Conclusion: This research employed a multi-dataset strategy and various

methods to clarify the differences in metabolic traits and immune conditions in

glioma patients, while creating an innovative prognostic risk evaluation

framework. These results offer fresh perspectives on the intricate biological

processes that define gliomas.
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1 Introduction

Gliomas, malignant tumors originating from neural glial cells,

represent one of the most common primary intracranial tumors (1–3).

Characterized by high incidence, recurrence rates, mortality, and low

curability, they predominantly affect individuals aged 60 to 80 years,

with a higher prevalence in males (4). The clinical manifestations of

gliomas are diverse and may include headache, nausea, vomiting, and

seizures, often leading to cognitive impairment, motor dysfunction,

and emotional disturbances, which significantly impact patients’

quality of life and survival (5). Treatment primarily involves surgical

resection, complemented by a multimodal approach including

radiation therapy and chemotherapy. Despite significant

advancements in the diagnosis and treatment of gliomas in recent

years, patient prognoses remain poor, particularly for those with high-

grade gliomas, where the median survival time is still relatively short

(6, 7). Therefore, exploring the molecular subtyping of gliomas,

identifying new prognostic biomarkers, and understanding the

characteristics of their immune microenvironment are crucial for

improving treatment strategies and patient outcomes.

Nucleotide metabolism plays a vital role in cellular survival and

proliferation, significantly impacting tumor development and

progression (8). Abnormalities in nucleotide metabolism can

promote rapid tumor cell proliferation and may affect the

sensitivity of these cells to treatment (9). Previous research has

indicated that alterations in nucleotide metabolism are strongly

associated with the progression of glioma, especially in the realms

of cell cycle control, DNA repair mechanisms, and energy

metabolism (10). However, the specific impact of nucleotide

metabolism on the prognosis of glioma patients and its potential as

a novel therapeutic target remain to be fully explored.

This study aims to integrate multi-source RNA sequencing data

and utilize various bioinformatics approaches to reveal differences

in metabolic characteristics and immune status among glioma

patients, thereby constructing a reliable prognostic risk scoring

system. We employed Non-negative Matrix Factorization (NMF)

technology to cluster the merged glioma Bulk RNA-seq dataset

based on nucleotide metabolism gene expression patterns,

identifying two optimal clusters (11). These two clusters exhibited

significant differences in survival rates and age distributions.

Following Weighted Gene Co-expression Network Analysis

(WGCNA) analysis, six modules associated with clinical

pathological features were identified (12). By constructing and

evaluating 101 machine learning prognostic models, we ultimately

selected the LASSO+GBM combination model , which

demonstrated good performance in both training and validation

sets, as well as validation in an independent dataset.

By employing this model, we computed risk scores for patients

and identified connections with genes related to apoptosis and the

cell cycle, indicating potential dysregulation in the mechanisms that

regulate tumor proliferation. Further investigations revealed

significant differences in immune cell infiltration levels across

different clusters and risk categories, providing valuable insights

into the mechanisms of glioma immune evasion and the exploration

of immunotherapeutic strategies. In light of the absence of single-

cell data specifically on glioma immune checkpoint inhibitors, we
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analyzed single-cell data from lung cancer to infer the distribution

and functional characteristics of immune cells, thereby recognizing

various cell subpopulations and their functional distinctions. A

comprehensive analysis across multiple cancers revealed a notable

relationship between the ALPK1 gene and different immune

checkpoints, alongside its link to the prognosis of patients with

glioma. Elevated levels of ALPK1 expression were associated with

heightened infiltration of immune cells in several cancer types,

indicating its potential significance in modulating the immune

microenvironment of gliomas and positioning it as a promising

target for forthcoming immunotherapeutic strategies.

In summary, this research examined gene expression data

related to gliomas using various approaches, identified variations

in metabolic features and immune conditions, and developed a

dependable prognostic risk scoring system. This work offers a fresh

viewpoint for comprehending the biological mechanisms of glioma

and devising targeted medical strategies, thus aiding in the

enhancement of patient survival rates.
2 Material and methods

2.1 Data acquisition and preprocessing

We employed the “TCGAbiolinks” R package to acquire bulk

RNA-sequencing (RNA-seq) data from 704 glioma specimens along

with 5 adjacent normal specimens from The Cancer Genome Atlas

(TCGA) (13). Furthermore, we accessed additional bulk RNA-seq

data comprising 693 glioma samples (CGGA_693) and 325 glioma

specimens (CGGA_325) from the Chinese Glioma Genome Atlas

(CGGA, http://www.cgga.org.cn/). The single-cell sequencing

datasets were obtained from the Tumor Immune System

Interaction and Cancer Heterogeneity Database 2 (TISCH2,

http://tisch.comp-genomics.org/home/), focusing on three glioma

datasets (GSE103224, GSE131928, GSE138794). Additionally, we

downloaded a single-cell dataset related to lung cancer (post-

immunotherapy), GSE207422, from the Genomics Expression

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo) (14). We

merged the glioma bulk RNA-seq data utilizing the Combat function

from the “sva” R package. All datasets were meticulously reviewed to

eliminate any incomplete or NA values that might interfere with the

analysis outcomes. In instances where the data distribution range was

excessively wide, log2 transformation was applied. The analysis of all

bulk RNA-seq data was conducted in the format of Transcripts Per

Kilobase of exonmodel perMillion mapped reads (TPM). The datasets

used in this study are publicly available and do not require ethical

review. The nucleotide metabolism-related genes, glycolysis-related

genes, amino acid metabolism-related genes, and lipid metabolism-

related genes analyzed in this paper were downloaded from the

“msigdbr” R package.
2.2 Non-negative matrix factorization

Using nucleotide metabolism genes, we first performed NMF

clustering on the merged glioma bulk RNA-seq dataset. The NMF
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technique, employing the ‘brunet’ method, was applied to classify

the samples. The number of clusters (k) was varied from 2 to 10 to

identify the optimal fit. The advantage of NMF is its ability to

reduce the dimensionality of high-dimensional data through non-

negative constraints while preserving the natural clustering

structure of the data, which is suitable for extracting meaningful

features from complex biological data. We evaluated the most

suitable cluster number (k) through a collaborative assessment of

cophenetic correlation, residuals, dispersion, residual sum of

squares (RSS), explained variance (evar), silhouette score, and

sparsity. The specific criteria for selection included maximizing

the cophenetic correlation to enhance the consistency between

clustering results and the original data; optimizing dispersion and

silhouette scores to improve clustering distinguishability and

quality; selecting the last k value with a significant reduction in

residuals and RSS to ensure model fit; and focusing on a notable

increase in explained variance while seeking a balance point for

sparsity to ensure the interpretability of the clustering results.

Subsequently, we analyzed the differences in overall survival (OS)

and age among the identified clusters.
2.3 Comparison of metabolic genes and
functional pathways among clusters

We examined the differences in expression of genes associated

with glycolysis, amino acid metabolism, and lipid metabolism across

various clusters, visualizing our findings through heatmaps. Next, we

utilized the “limma” package to carry out a differential expression

analysis of genes between the clusters and performed Gene Set

Enrichment Analysis (GSEA) based on the differentially expressed

genes (DEGs), illustrating both the upregulated and downregulated

pathways (15, 16). The analysis of data was supported by the

“clusterProfiler” package, while the visual representations were

created using the “enrichplot” package (17, 18). Information

regarding pathway-related terms was obtained from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) (19).
2.4 Weighted gene co-expression
network analysis

We executedWGCNA using the “WGCNA” R package (20). The

advantage of WGCNA is the ability to construct gene co-expression

networks, identify functionally relevant gene sets through modular

analysis, and correlate them with clinical features, thereby discovering

genes or gene modules that are closely related to disease prognosis.

Initially, we removed genes with low expression levels or minimal

variability across all samples. Next, we constructed a correlation

matrix and an adjacency matrix, determining the power parameter b
based on scale independence and mean connectivity. We then

generated a Topological Overlap Matrix and constructed the co-

expression network. Module partitioning and merging of similar
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modules were performed using the Dynamic Tree Cut method.

Following this, we analyzed the correlation of each module with

variables such as Age, Alive, Dead, OS time, and Cluster, and

visualized these relationships. Core genes were further chosen from

the module that was most closely associated with the clusters,

adhering to the criteria of Module Membership (MM) > 0.6 and

Gene Significance (GS) > 0.4. Moreover, we performed enrichment

analysis on the genes found within each module, with the exception

of the gray module, utilizing the “clusterProfiler” version 4.0 R

package to visualize the outcomes.
2.5 Construction of 101 machine learning
prognostic models

We utilized an integrated dataset as the training set, with

GSE102073 and GSE26712 serving as validation sets. Employing the

“Mime” R package, we executed a combinatorial analysis of 10

machine learning algorithms, resulting in a total of 101 distinct

prognostic modeling combinations (21). The gene list input for the

calculations comprised core genes identified through WGCNA. Using

the integrated functionalities of the “Mime” R package, we calculated

the consistency index (C-index) for each algorithm across different

datasets, along with the Mean C-index across all cohorts and the Mean

C-index in the validation cohorts. We selected the algorithm

combination corresponding to the maximum Mean C-index in the

validation cohorts as the final prognostic model algorithm. Following

this, we calculated risk scores for all patients by utilizing the algorithm

and categorized each dataset into high-risk and low-risk tiers according

to the median score values. The differences in prognostic levels

between the two risk categories within each dataset were evaluated

through the Kaplan-Meier method. We validated the performance of

the algorithms across different datasets by employing receiver

operating characteristic (ROC) curves at 1, 3, and 5 years.

Furthermore, we conducted a meta-analysis across three datasets.
2.6 Exploration of risk scores, clinical
features, and carcinogenic pathways

Initially, we utilized a Sankey diagram to display the

distribution patterns of samples across varied clusters and

survival statuses within the two risk categories. Subsequently, we

conducted an analysis of differential gene expression between the

two risk categories and assessed the variations in activity within

classical cancer-related pathways. We employed heatmaps to

visualize the differences in both pathway activities and gene

expression across the two risk categories. We also presented

correlation heatmaps to illustrate the relationships between risk

scores and apoptosis-related genes, as well as cell cycle-related

genes. Additionally, we analyzed the top ten Single Nucleotide

Polymorphism (SNP) genes ranked within each risk group.
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Finally, we demonstrated the correlation between risk scores and

various classical tumor pathways.
2.7 Immune-related analyses

We commenced our analysis by examining the differences in

infiltration levels of 22 immune cell types across various clusters and

between risk groups. We utilized the “IOBR” R package (https://

github.com/IOBR/IOBR) to perform immune cell infiltration

analyses of bulk RNA-seq datasets through built-in algorithms

such as CIBERSORT, EPIC, MCP-Counter, quanTIseq, TIMER,

and xCell. Furthermore, we assessed differences in tumor

microenvironment scores between the different risk groups

using the ESTIMATE algorithm. Ultimately, we acquired

Immunophenoscore (IPS) data for every sample from The Cancer

Immunome Atlas (TCIA) (https://tcia.at/home) and examined the

differences in IPS scores that could predict the effectiveness of PD-

L1 or CTLA-4 inhibitor therapies among various risk groups.
2.8 Single-cell sequencing data analysis

The preprocessing of single-cell sequencing data was

accomplished utilizing the Seurat pipeline. Given that the TISCH2

database had previously undergone basic quality control checks, it

was deemed unnecessary to implement further quality control

measures. The “Harmony” R package was employed to mitigate

batch effects for the integration of multiple samples. Annotation was

conducted using information sourced from the TISCH database. To

evaluate the model genes, we utilized the AddModuleScore function

within Seurat, allowing us to examine the distribution of these scores

across various cell populations. Moreover, we isolated malignant cells

for additional dimensionality reduction and clustering, which was

subsequently followed by differential and enrichment analyses for

each subpopulation. The Uniform Manifold Approximation and

Projection (UMAP) algorithm was applied for this dimensionality

reduction and clustering process. In our focus on the non-small cell

lung cancer dataset, GSE207422, we assessed the distribution of cases

that were treatment-naïve (NE), treatment-responsive (MPR), and

treatment-resistant (NMPR) in accordance with the provided

treatment data. We analyzed the disparities in model gene scores

across the distinct treatment groups, allowing us to categorize cells

into high and low scoring groups. GSEA was then implemented to

evaluate differences in pathways between these two groups. For three

additional glioma datasets, we conducted integration and applied

similar analytical methods.
2.9 Pan-cancer and immune analysis based
on the model gene ALPK1

We first conducted an analysis of the association between

ALPK1 and various immune modulators—including receptors,
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MHC molecules, immune stimulators, and chemokines—across

33 different tumor types. Subsequently, we focused on visualizing

the Pearson correlation coefficients between ALPK1 and four

immune checkpoints—CD274 (PD-L1), CTLA-4, LAG-3, and

PDCD1 (PD-1)—in glioblastoma (GBM) and lower-grade

glioma (LGG). We utilized the single-sample Gene Set

Enrichment Analysis (ssGSEA) method to investigate the

association between ALPK1 expression and the infiltration levels

of 28 immune cell types associated with tumors across 33 different

types of tumors. The correlation coefficients were derived using

Pearson correlation methods, and statistical significance was

calculated with p-values.

The glioma dataset was divided into categories reflecting high

and low expression levels according to the median expression of

ALPK1. First, we investigated the differences in immune

modulators between these two categories and illustrated the

results using heatmaps. Following that, we collected relevant

information about the anti-cancer immunity cycle from the

literature and evaluated the differences in the various stages of

this cycle between the two categories (22). Following this analysis,

we evaluated the expression differences of immune cell-associated

effectors across the groups. Ultimately, a correlation analysis was

conducted between ALPK1 and molecules that suppress

immune responses.
2.10 Statistical analysis

All statistical evaluations were performed utilizing R software

(version 4.1.3). The “clusterProfiler” package facilitated the data

analysis, while visual representations were produced with the help

of the “enrichplot” package. The “limma” package was employed for

the analysis of differential gene expression among clusters. Unless

stated differently, all figures were generated using “ggplot2.” A p-

value threshold of < 0.05 was regarded as statistically significant (* p

< 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).
2.11 Cell culture

The following cell lines were utilized in this study for in vitro

experiments: Neuroependymal Hypothalamic Astrocytoma (NHA)

cells, HS683, LN229, U87MG, and U251MG, sourced from the Cell

Bank of the Chinese Academy of Sciences in China. NHA served as

the normal control cell line, whereas the other lines were classified

as tumor cell lines. Culturing was performed in Dulbecco’s

Modified Eagle Medium (DMEM; Hyclone, USA) for NHA,

HS683, LN229, and U251MG, while U87MG was maintained in

Minimum Essential Medium (MEM; Hyclone, USA). Each culture

medium was enriched with 10% fetal bovine serum (FBS; Hyclone,

USA) and 1% penicillin-streptomycin solution (Keygen, China) to

prevent bacterial proliferation. The cells were kept in a humid

atmosphere at 37°C with 5% CO₂ to promote logarithmic growth.
frontiersin.org

https://github.com/IOBR/IOBR
https://github.com/IOBR/IOBR
https://tcia.at/home
https://doi.org/10.3389/fimmu.2024.1512491
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2024.1512491
2.12 Transfection

Transfection experiments were conducted on the HS683 and

LN229 cell lines using siRNA (Sangon, China) for the transient

knockdown of the ALPK1 gene, with a negative control (NC)

serving as the control group. The cells were first placed in six-well

plates and permitted to achieve about 80% confluence. A suitable

amount of Opti-MEM reduced serum medium (Thermo, USA) was

used to dissolve Lipofectamine 3000 (Thermo, USA) and siRNA,

which was allowed to sit for 5 minutes. Following this, the two

components were mixed and incubated for 20 minutes before

adding the mixture to the six-well plates. The medium was

replaced 5 hours post-transfection.
2.13 Total RNA extraction and RT-qPCR

Cells from each group were digested with trypsin and collected

in centrifuge tubes. After centrifugation and washing, the resulting

pellets were obtained. To lyse cell structures and inhibit RNase

activity, 950 mL of Trizol (Takara, Japan) was added. The mixture

was allowed to stand for 5 minutes, followed by the addition of 150

mL of chloroform (Sinopharm, China), which was thoroughly

mixed by vortexing. The mixture was then centrifuged at 12,000 g

for 5 minutes at 4°C, and the supernatant was carefully collected.

An equal volume of isopropanol (Sinopharm, China) was added to

promote RNA precipitation. After another 5-minute centrifugation

at 12,000 g and 4°C, the precipitate was washed with 1 mL of 75%

ethanol or anhydrous ethanol and allowed to dry naturally. All

operations were performed under RNase-free conditions, and the

concentration of the extracted RNA, as well as DNA and protein

contamination, were assessed.

Genomic DNA was removed using the PrimeScript RT Master

Mix (TaKaRa, Japan), and appropriate reaction mixtures were

prepared according to the manufacturer’s instructions and the

measured RNA concentration. Complementary DNA (cDNA)

was synthesized through reverse transcription. Real-time

quantitative PCR (qPCR) analysis was conducted on a Roche480

PCR system (Roche, Switzerland) using SYBR GreenER Supermix

(TaKaRa, Japan), following the manufacturer’s protocol. All

samples and reagents were pre-mixed before analysis. Each

experimental group included three technical replicates, with b-
actin serving as the internal control gene.
2.14 Cell counting kit-8 assay

Twenty-four hours post-transfection, cells were seeded into 96-

well plates at a density of 4,000 cells per well and allowed to adhere,

with three technical replicates for each group. The CCK8 reagent

(KeyGEN, China) was prepared according to the manufacturer’s

instructions, mixed with the culture medium, and adjusted to a final

volume of 100 mL per well. The plates were then shielded from light

and placed in a cell culture incubator. After 2.5 hours, the

absorbance at 450 nm was measured using a spectrophotometer,

with measurements repeated at various time points.
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3 Results

3.1 Differential analysis of NMF
and clustering

We determined the optimal number of clusters (k) to be 2

through multiple metrics, categorizing all patient samples into two

distinct classes. At this point, all metrics demonstrated ideal

outcomes (Figure 1A). Subsequently, we conducted OS analysis

for the two clusters, revealing that patients in cluster 2 had a

significantly lower survival rate compared to those in cluster 1 (p

< 0.0001, Figure 1B). Furthermore, there was a notable difference in

age distribution between the two clusters, with an average age of

41.59 years in cluster 1 and 62.40 years in cluster 2 (p < 0.001,

Figure 1C). We then analyzed the expression differences of

glycolysis-related genes, amino acid metabolism-related genes,

and lipid metabolism-related genes between the clusters,

visualizing the results with heatmaps. Notably, cluster 2 exhibited

a higher expression of glycolysis-related genes, amino acid

metabolism-related genes, and lipid metabolism-related genes

compared to cluster 1 (Figures 2A–C). GSEA of DEGs between

the two clusters indicated that pathways such as the Complement

and Coagulation Cascades (NES = 2.43, p < 0.001) and Viral Protein

Interaction with Cytokine and Cytokine Receptor (NES = 2.43, p <

0.001) were upregulated in cluster 1 (Figure 2D), while pathways

including Insulin Secretion were downregulated in cluster 1 (NES =

-2.47, p < 0.001, Figure 2E).
3.2 Core gene selection

We employed WGCNA for preliminary gene selection in

subsequent machine learning applications. To ensure scale-free

network characteristics, we set the threshold for scale

independence at 0.9, resulting in a soft threshold (b) of 16. The
average connectivity assessment indicated that the sparsity of the

network was appropriate under this soft threshold (Figure 3A). We

generated a clustered dendrogram of co-expression modules to

illustrate the clustering hierarchy and effectiveness (Figure 3B). In

total, six modules were identified, with almost every module

showing a highly significant correlation with clinical pathological

features. The modules MElightyellow, MEblack, and MEmagenta

displayed similar correlation trends with clinical pathological

features, while MEcyan and MEroyalblue showed similar trends

in correlation. Notably, MEcyan was significantly positively

correlated with Cluster (R = 0.84, p < 0.00001) and also exhibited

a significant positive correlation with the Dead parameter (R = 0.56,

p < 0.00001, Figure 3C). Further analysis and visualization of the

MEcyan genes were performed (Figure 3D). The analysis of

enrichment for each module indicated that Module_cyan was

mainly associated with pathways related to the immune system,

including the activation of myeloid leukocytes, the enhancement of

cytokine production, and the movement of leukocytes.

Module_black was primarily enriched in pathways that relate to

the assembly of cell junctions, while Module_magenta was

associated with pathways that play a role in the modulation of
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chemical synaptic transmission and the organization of synapses. In

addition, Module_lightyellow focused on pathways pertinent to the

development of oligodendrocytes and the myelination of the central

nervous system, whereas Module_royalblue was connected to

pathways linked to B cell receptor signaling and immune

responses mediated by immunoglobulins (Figure 3E).
3.3 Construction of 101 machine learning
prognostic models

Utilizing the training dataset, we conducted a total of 101

prognostic models by employing machine learning methods and

selecting among them, subsequently ranking the models according

to the mean C-index calculated across all datasets. The comparison

revealed that the combination of LASSO and Gradient Boosting
Frontiers in Immunology 06
Machine (GBM) algorithms achieved the highest mean C-index in

validation cohorts (0.72). Under this algorithm, the training set C-

index was 0.89, validation set 1 C-index was 0.73, and validation set

2 C-index was 0.72, indicating that this model combination

possesses good accuracy and generalizability, effectively mitigating

the risk of overfitting (Figure 3F). The risk score for every patient

was determined through this algorithm, and the datasets were

categorized into high-risk and low-risk groups according to the

median score of each dataset. In all three datasets, the survival rates

for the high-risk group were notably lower compared to those of the

low-risk group, suggesting that the risk score serves as a negative

prognostic indicator (HR > 3, p < 0.001, Figure 3G). Furthermore,

the ROC curves at 1, 3, and 5 years for the three datasets indicated

that this combination of models exhibits strong diagnostic

performance (AUC > 0.7, Figure 3H). Results from the meta-

analysis revealed considerable heterogeneity across the three
FIGURE 1

Nucleotide metabolism subclusters and prognosis in TCGA- LGG/GBM. (A) Cophenetic distributions, residual sum of squares (RSS), and dispersion
indices for ranks 2–10. (B) Overall Kaplan-Meier survival curves for both subclusters. (C) The age distribution between two subclusters.
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datasets; in these scenarios, the risk associated with the high-risk

group was markedly elevated compared to the low-risk group in

each dataset (HR > 1, p < 0.001), illustrating the robustness and

generalizability of our model (Figure 3I).
3.4 Exploration of risk scores, clinical
features, and carcinogenic pathways

Initially, we employed a Sankey diagram to represent the trends

in sample distribution among various clusters and survival statuses

within the two identified risk groups. Cluster 1 primarily

encompassed patients from the low-risk category, while cluster 2

was predominantly populated by patients from the high-risk group,
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who exhibited a greater mortality rate compared to those in cluster

1. The survival trends observed across different clusters aligned with

those seen between the risk groups (Figure 4A). Notably, genes that

were expressed at elevated levels in the high-risk group relative to

the low-risk group were documented (Figure 4B). In general,

pathways including Androgen, TNFa, JAK-STAT, EGFR,

Hypoxia, PI3K, and VEGF displayed significant activity across

both risk categories; nevertheless, the intensity of activation of

these pathways differed. The low-risk group manifested

considerably higher activity in the Androgen, TNFa, JAK-STAT,

VEGF, and Trail pathways, while the high-risk group showed

increased activity in other pathways (Figure 4C). Among the 63

genes selected for modeling, nearly all were markedly overexpressed

in the high-risk cohort (Figure 4D). Moreover, we investigated the
FIGURE 2

Crosstalk between nucleotide metabolism subclusters and key metabolic pathways. (A) Differences in glycolysis-related genes between subclusters.
(B) Differences in amino acid metabolism-related genes between subclusters. (C) Differences in lipid metabolism-related genes between subclusters.
(D) Gene set enrichment analysis (GSEA) reveals pathways downregulated in subtype C2 relative to C1. (E) GSEA reveals pathways upregulated in
subtype C2 relative to C1.
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FIGURE 3

Models Construction based on nucleotide metabolism subclusters. (A) Analysis of network topology for different soft-threshold power. The left panel
shows the impact of soft-threshold power (power = 16) on the scale-free topology fit index; the right panel displays the impact of soft-threshold
power on the mean connectivity. (B) Cluster dendrogram of the co-expression modules. Each color indicates a co-expression module. (C) Module-
trait heatmap displaying the correlation between module eigengenes and clinical traits. (D) Correlation between module membership and gene
significance in the turquoise module. Dots in color were regarded as the hub genes of the corresponding module (MM > 0.6 & GS > 0.4). (E) Top five
enriched GO terms of module genes in each module except for the grey. (F) A total of 101 kinds of prediction models fitted in TCGA- LGG/GBM
(Dataset1) and verified in the other two validation cohorts (GSE102073 [Dataset2] and GSE26712 [Dataset3]). The model was ordered by the average
of the C-index of all datasets. The optimal model developed by “StepCox[forward]+GBM” was utilized in subsequent analyses. (G) Survival differences
between two groups in the three datasets. (H) Time-dependent ROC analysis of the model in the three datasets. (I) Meta analysis of univariate Cox
regression across the three datasets.
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relationship between risk scores and genes related to apoptosis as

well as those associated with the cell cycle. Analysis revealed a

significant relationship between risk scores and genes like BIRC3,

FAS, BIRC2, IL1A, IRAK2, ENDOD1, and IL1RAP (p < 0.01), in

addition to a significant connection with IRAK3, CSF2RB, and

XIAP (p < 0.05), which are implicated in apoptosis. Furthermore,

risk scores exhibited significant associations with cell cycle-related

genes such as DBF4, E2F2, and SMC1B (p < 0.05, Figures 4E, F).
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Analysis of mutations indicated that the IDH1 mutation was the

most common in the low-risk cohort, appearing in 93% of cases,

whereas TP53 mutations were the most frequent in the high-risk

group at 42%. Both risk groups exhibited mutations in TP53, IDH1,

TTN, ATRX, and PIK3CA. Among the various types of mutations,

missense mutations emerged as the most frequent, followed by

multi-hit mutations, while other mutation forms were relatively

rare (Figure 4G). Additionally, we established a connection between
FIGURE 4

Associations between risk scores, clinical features, and oncogenic pathways in TCGA- LGG/GBM. (A) Distribution of risk groups among nucleotide
metabolism subclusters and survival samples. (B) Differential genes between risk groups. (C) Activity differences in classic cancer-related pathways
between risk groups. (D) Relationships between risk groups and gene expression levels. (E) Correlation of risk scores with apoptosis-related genes.
(F) Correlation of risk scores with cell proliferation-related genes. (G) Distribution of the top 10 genes with the highest mutation frequencies across
different risk groups. (H) Correlation of risk scores with enrichment scores of different classic tumor pathways.
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risk scores and several established tumor pathways. The most

substantial positive association was found between risk scores and

EGFR (R = 0.79), while the strongest negative association was noted

with NFkB (R = -0.56, see Figure 4H).
3.5 Immune-related analysis

We first analyzed the differences in infiltration levels of 22

immune cell types across various metabolic clusters and risk groups.

In general, the patterns observed in infiltration levels showed

distinct variations among clusters and risk categories, with the

majority of immune cell types demonstrating significant differences
Frontiers in Immunology 10
across the various clusters and risk categories. Specifically, cluster 2

exhibited a broader range of immune cell types with heightened

infiltration when compared to cluster 1, while the high-risk category

revealed a greater quantity of immune cell types with increased

infiltration in contrast to the low-risk category (Figures 5A, B). We

employed six varied algorithms to clarify the relationship between

risk scores and different immune cells (Figure 5C). The findings

from the ESTIMATE analysis revealed that both the Immune score

and the Stromal score were considerably elevated in the high-risk

category compared to the low-risk category (p < 0.0001, Figure 5D),

indicating a more abundant infiltration of immune and stromal

cells within the tumor microenvironment of patients categorized as

high-risk. Additionally, individuals in the high-risk category were
FIGURE 5

Investigation of the correlation between risk score and the immune microenvironment of TCGA- LGG/GBM. (A, B) Differences in infiltration levels of
22 immune cell types between nucleotide metabolism subclusters and between risk groups. (C) Correlation of risk scores with various immune cells
as revealed by seven different algorithms. (D) Differences in tumor microenvironment scores between different risk groups as revealed by the
ESTIMATE algorithm. (E) Differences in IPS scores predicting effectiveness of PD-L1 or CTLA-4 inhibitor treatments between different risk groups. IPS
score of each TCGA- LGG/GBM sample was acquired from the TCIA (https://tcia.at/home). ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001.
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more likely to gain advantages from immunotherapy based on

differing levels of PD-L1 or CTLA-4 expression (p <

0.05, Figure 5E).
3.6 Single-cell sequencing data analysis

Due to the absence of single-cell datasets for gliomas treated with

immune checkpoint inhibitors, we leveraged datasets related to lung

cancer for our analysis. Using the built-in dimensionality reduction

clustering algorithm in Seurat, we classified all 92,330 cells into 10

clusters at a resolution of 0.6 (Figure 6A). Subsequently, we annotated

the cells into eight categories based on biological marker genes:

Epithelium, T/NK, T, B, Neutrophil, Stromal, Mast, and Myeloid

(Figure 6B). The NMPR cell category represented the majority of the

cell population, while NE and MPR cells were distributed sparsely

(Figure 6C). Within the NE group, Neutrophils accounted for the

largest proportion; conversely, T cells comprised the highest

proportion in the MPR and NMPR groups (Figure 6D). We then

presented the overall signature scores for the NE, NMPR, and MPR

groups (Figure 6E). Notably, high signature scores were

predominantly found in the Myeloid cell subpopulation

(Figure 6F). Specifically, within the NE group, high signature scores

were primarily concentrated in the Myeloid and Neutrophil

subpopulations; in the MPR group, they were found mainly in the

Myeloid and T cell subpopulations; and in the NMPR group, high

signature scores were primarily associated with Myeloid and Stromal

cell subpopulations (Figure 6G). The proportion of signature-positive

cells varied across different subpopulations, with the Stromal cell

subpopulation exhibiting the highest proportion (89.3%), while the B

cell subpopulation had the lowest (18.8%, Figure 6H). The heatmap

illustrated the differences in the abundance of characteristic genes

among the various groups (Figure 6I). To conclude, we classified the

cells into groups with high and low scores and utilized GSEA to assess

the differences in pathways between these two categories. The high-

scoring group exhibited upregulation in pathways such as Lysosome,

Complement and Coagulation Cascades, Proteoglycans in Cancer,

and Cytokine-Cytokine Receptor Interaction, while downregulation

was observed in pathways including Metabolic Pathways and Cell

Adhesion Molecules (Figure 6J).

We integrated three glioma datasets and identified a total of 27

subpopulations at a resolution of 0.6. We categorized these into 13

distinct subpopulations based on their biological characteristics:

AC-like Malignant, Endothelial, Mono/Macro, NB-like

Malignant, Neuron, OC-like Malignant, OPC-like Malignant,

CD8Tex, Malignant, MES-like Malignant, NPC-like Malignant,

Oligodendrocyte, and Astrocyte, as illustrated in Figures 7A, B.

Upon scoring each cell for its signature, we found that high scores

were predominantly concentrated in the MES-like Malignant

subpopulation (Figure 7C). The proportion of signature-positive

cells also varied across subpopulations, with the MES-like

Malignant subpopulation having the highest (95%) and the NB-

like Malignant subpopulation the lowest (4.5%, Figure 7D). GSEA

results indicated that, compared to cells with low signature scores,

those with high signature scores were primarily enriched in

pathways such as Phagosome and Antigen Processing and
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Presentation, while showing downregulation in pathways such

as Nucleocytoplasmic Transport, MicroRNAs in Cancer, and

Glioma (Figure 7E). Further dimensionality reduction clustering

of 12,213 cells identified seven subpopulations at a resolution of

0.6 (Figure 7F). Signature scoring revealed a concentration of high

scores primarily in the Malignant_C0 subpopulation (Figure 7G).

GO analysis demonstrated the heterogeneity of pathways enriched

in each cell subpopulation (Figure 7H).
3.7 Pan-cancer and immune analysis

We began our analysis by examining the association between

ALPK1 and various immune regulators (including receptors, MHC

molecules, immune stimulators, and chemokines) across 33

different tumors (Figure 8A). In both glioblastoma multiforme

(GBM) and lower-grade glioma (LGG), ALPK1 showed a

significant positive association with four immune checkpoints:

PD-L1 (CD274), CTLA-4, LAG-3, and PD-1 (PDCD1)

(Figures 8B, C). Furthermore, ALPK1 showed significant

associations with multiple immune cell types across various

tumors (Figure 8D).

By stratifying the combined glioma dataset according to the

median expression level of ALPK1, we categorized it into groups of

high and low expression. We then conducted an initial analysis to

examine the differences in immune regulatory factors, presenting

the findings in a heatmap (Figure 9A). The two expression

categories demonstrated variability in enrichment levels

throughout various stages of the anti-cancer immunity cycle

(Figure 9B). The group with high expression consistently showed

elevated levels of immune cell-associated effectors in comparison to

the group with low expression (Figure 9C). Furthermore, a

significant positive correlation was observed between ALPK1 and

several immune suppressive molecules (Figure 9D).
3.8 ALPK1 promotes glioma
cell proliferation

There is currently a lack of studies investigating the role of

ALPK1 in glioma cells; thus, we selected this gene from our model

for experimental validation. Comparative analysis of expression

levels among different cell lines revealed that ALPK1 is significantly

overexpressed in glioma cell lines (p < 0.05, Figure 10A).

Subsequently, we achieved effective knockdown of ALPK1 in two

cell lines, demonstrating a substantial reduction in expression (p <

0.01, Figure 10B). The findings from the CCK8 assay demonstrated

that the reduction of ALPK1 notably decreased the growth of tumor

cells (p < 0.01, Figures 10C, D). Therefore, our findings suggest that

ALPK1 plays a critical role in promoting glioma cell proliferation.
4 Discussion

Glioma, which is a type of aggressive tumor that arises from

glial cells, ranks among the most frequently occurring primary
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FIGURE 6

Single-cell analysis of risk score in immunochemotherapy treated scRNA-seq cohort. (A–C) UMAP visualization of 92,330 cells from the public
NSCLC scRNA-seq cohort treated with immunochemotherapy. A total of ten subpopulations were identified under the resolution of 0.6 and
manually annotated to eight meta-clusters based on the cranial markers provided in the original publication. (D) Differences in the abundance of cell
types across different groups. (E) Distribution of the signature scores between groups. The signature score was calculated by the (AddModuleScore)
function implemented in the “Seurat” package based on the genes derived from the model from the machine-learning pipeline. (F, G) UMAP
visualization of the signature scores across cell types (F) and different groups (G). (H) The positive ratio of the signature across each cell type. (I) The
differences in the abundance of signature genes across different groups in all patients. (J) GSEA reveals significantly altered pathways in cells with
high signature scores compared to those with low scores.
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intracranial tumors. It is distinguished by elevated rates of

incidence, recurrence, and mortality, along with low rates of

successful treatment (23, 24). Its clinical presentation is diverse,

and treatment primarily involves surgical resection, supplemented

by radiotherapy and chemotherapy (25, 26). Although there have
Frontiers in Immunology 13
been substantial improvements in the diagnosis and management of

gliomas, the outlook for patients continues to be unfavorable,

especially for high-grade gliomas, which are characterized by

notably brief median survival durations (27, 28). Consequently,

exploring molecular subtyping, identifying novel prognostic
FIGURE 7

Single-cell analysis of risk score in the integrated LGG/GBM scRNA-seq datasets. (A–C) UMAP visualization of single cells from the public LGG/GBM
scRNA-seq cohorts. A total of 16 subpopulations were identified under the resolution of 0.6 and manually annotated to nine meta-clusters based on
the cranial markers. (C) UMAP visualization of the signature scores across cell types. (D) The positive ratio of the signature across each cell type.
(E) GSEA reveals significantly altered pathways in cells with high signature scores compared to those with low scores. (F) UMAP showing the
subpopulations of malignant cells. (G) UMAP visualization of the signature scores across cell types. (D) The positive ratio of the signature across each
cell type. (H) Top six enriched GO terms of each malignant subpopulation.
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biomarkers , and understanding the tumor ’s immune

microenvironment is vital for improving treatment strategies

and outcomes.

Nucleotide metabolism is a critical process for cell survival and

proliferation, playing an essential role in tumorigenesis.
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Abnormalities in nucleotide metabolism can facilitate rapid tumor

cell proliferation and potentially influence the sensitivity of these

cells to treatment (8). Research has indicated a close correlation

between alterations in nucleotide metabolism and the development

of gliomas, particularly in aspects such as cell cycle regulation, DNA
FIGURE 8

Influence of ALPK1 on immune landscapes in pan-cancer. (A) Association of ALPK1 with various immunoregulators (including receptors, MHC
molecules, immunostimulators, and chemokines). (B) The associations between different tumor types and four immune checkpoints: CD274 (PD-L1),
CTLA-4, LAG-3, and PDCD1 (PD-1), with dots representing various cancer types. GBM is marked with a red dot. (C) The associations between
different tumor types and four immune checkpoints: CD274 (PD-L1), CTLA-4, LAG-3, and PDCD1 (PD-1), with dots representing various cancer
types. LGG is marked with a red dot. (D) Relationship between ALPK1 and infiltration levels of 28 immune cells in different tumor types, as analyzed
by the ssGSEA method. The correlation strength is depicted by color intensity. Statistically significant correlations, determined through Pearson
correlation analysis, are marked with asterisks. *p < 0.05; **p < 0.01; ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1512491
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2024.1512491
repair, and energy metabolism (29). The precise influence of

nucleotide metabolism on the prognosis of glioma, along with its

potential as a target for therapy, requires additional research.

In this study, we utilized NMF analysis on gene expression data

from glioma patients, categorizing them into two distinct clusters.

Notably, patients in cluster 2 exhibited significantly lower survival

rates and were, on average, older than those in cluster 1. This

suggests that age may be a crucial factor influencing glioma patient

survival, with differing biological behaviors and treatment responses

among age groups. Moreover, cluster 2 demonstrated a significantly

higher expression of glycolytic, amino acid metabolism, and lipid

metabolism-related genes compared to cluster 1, indicating that

metabolic characteristics may play a key role in distinguishing

patients with different prognoses.

To further explore potential biomarkers, we employed

WGCNA for initial gene screening (30). By setting a suitable soft

threshold, we effectively built a scale-free network and recognized
Frontiers in Immunology 15
six modules that have substantial associations with clinical

pathological characteristics. Notably, the MEcyan module

exhibited strong positive correlations with both cluster and

mortality, suggesting its close association with disease

progression. Functional enrichment analysis of the MEcyan

module revealed associations with various biological processes,

including immune cell activation, cell junction assembly, synaptic

transmission regulation, oligodendrocyte development, and B cell-

mediated immune responses.

We created 101 prognostic models utilizing machine learning

techniques and, using the average C-index ranking derived from

validation cohorts, identified the combination of LASSO and GBM

algorithms as the most effective model (31). The model demonstrated

significant predictive accuracy and effectiveness across both training

and validation datasets. Furthermore, in three distinct datasets, the

survival rates observed in the high-risk cohort were substantially

lower than those seen in the low-risk cohort, highlighting the
FIGURE 9

Impact of ALPK1 on the TME in TCGA- LGG/GBM. (A) Expression differences of immunoregulators (as identified in Figure 8A) between the high- and
low- ALPK1 expression groups in TCGA- LGG/GBM. (B) Variations in the stages of the cancer immunity cycle for high versus low ALPK1 expression
groups. (C) Association of ALPK1 with infiltration levels of five types of tumor-infiltrating immune cells: CD8+ T cells, DCs, macrophages, NK cells,
and Th1 cells, determined by the six TME decoding algorithms. (D) Expression differences in effector genes of these immune cells between the high-
and low- ALPK1 groups. Asterisks denote the significance levels as determined by the Mann-Whitney U test. ns, not significant; *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1512491
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2024.1512491
reliability of our risk scoring system as a prognostic tool.

Additionally, a meta-analysis revealed notable heterogeneity among

the three datasets; however, within the high-risk cohorts, risk levels

were significantly elevated compared to those in the low-risk groups,

thus reinforcing the model’s robustness and applicability. The risk

scoring system uncovered distinct gene expression differences

between patients classified as high-risk and those deemed low-risk.

Specifically, the low-risk individuals showed significantly heightened

activity in pathways associated with Androgen, TNFa, JAK-STAT,
and VEGF when compared to the high-risk group, highlighting the

substantial variability in pathway activity between the two risk

categories. These observations imply that the activation of certain

signaling pathways might impact patient prognosis and could serve as

potential novel targets for therapeutic interventions. Additionally, the

risk score correlated significantly with a range of apoptosis-related

genes, indicating a potential dysregulation in tumor cell proliferation

control mechanisms.

This research also explored the variations in levels of immune

cell infiltration among different clusters and risk categories. Our

findings revealed that immune cell infiltration levels were

significantly higher in cluster 2 and the high-risk category

compared to cluster 1 and the low-risk category. Additionally,

both the immune and stromal scores were markedly elevated in

the high-risk group, indicating a richer presence of immune and

stromal components within their tumor microenvironment.
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Notably, despite the elevated immune cell infiltration and stromal

elements observed in cluster 2 and the high-risk group, the

prognostic outcomes were contrary. This intensified immune

response did not lead to improved results; on the contrary, it

correlated with worse clinical outcomes, highlighting the necessity

for further investigation into the specific roles and interactions of

these immune cells and stromal elements. There could be

mechanisms of immune suppression or adverse effects from

certain immune cell subpopulations, leading to an active immune

response that is ineffective in curbing tumor advancement. This

observation offers essential insights for the formulation of future

immunotherapeutic approaches.

Patients exhibiting different levels of PD-L1 or CTLA-4 showed

that individuals in the high-risk category had a greater likelihood of

responding positively to immunotherapy. This indicates that our

risk assessment system might also help in pinpointing patients who

could gain benefits from immunotherapy. Although direct single-

cell datasets on glioma immunotherapy with checkpoint inhibitors

are lacking, we inferred the distribution and functional status of

immune cells by analyzing lung cancer-related single-cell datasets.

By employing the Seurat algorithm for dimensionality reduction

clustering, we identified several cell subpopulations, revealing

significant differences in signature scores across these groups.

Notably, high signature scores were concentrated in myeloid cell

subpopulations, with the highest positivity rate in stromal cell
FIGURE 10

The effect of ALPK1 on Glioma was verified by wet experiment. (A) Comparison of mRNA expression levels of ALPK1 among cell lines. (B) ALPK1
knock inefficiency assessment. (C) Changes in proliferation levels after ALPK1 knockdown in LN229 cell lines. (D) Changes in proliferation levels after
ALPK1 knockdown in HS683 cell lines. *p < 0.05; **p < 0.01; ***p < 0.001.
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subpopulations (89.3%). Additionally, cells with high signature

scores showed upregulation in pathways such as lysosome and

complement and coagulation cascades, while downregulation

occurred in metabolic pathways and cell adhesion molecules. This

indicates functional disparities among different cellular states and

their roles in disease progression. The activation of lysosomal and

complement systems, along with changes in proteoglycans and

cytokine networks, may be related to immune evasion

mechanisms. Conversely, the downregulation of metabolic

pathways and cell adhesion molecules suggests that these cells

may have adopted alternative metabolic strategies and potentially

lost functions dependent on cell adhesion. This implies a

transformation enabling better survival and proliferation within

the tumor microenvironment.

Lastly, we conducted a pan-cancer analysis, revealing significant

correlations between ALPK1 and various immune checkpoints,

including PD-L1, CTLA-4, LAG-3, and PDCD1. This result

indicates that ALPK1 could significantly influence the modulation

of the immune microenvironment. Studies have shown that ALPK1

can affect the expression of immune-related genes, thereby

changing the tumor microenvironment and affecting the

development of glioma (32). Additionally, the levels of ALPK1

expression were associated with the infiltration of immune cells in

various cancer types, where groups with high expression typically

displayed increased concentrations of effector molecules related to

immune cells in comparison to those with low expression.

Furthermore, research experiments suggest that ALPK1 is vital

for enhancing the proliferation of glioma cells. ALPK1 also

displayed significant positive correlations with various immune

suppressive molecules, potentially indicating its pivotal role in

regulating specific stages of the anti-tumor immune cycle.

While this research highlighted variances in the metabolic traits

and immune profiles of glioma patients using various data sets and

techniques, and established a dependable prognostic risk scoring

system, it also presents several limitations. These include inadequate

representation of the data sets, restricted generalizability of the

machine learning models, and the need for validation of the clinical

potential of the ALPK1 gene as a biomarker. Upcoming

investigations should concentrate on multi-center clinical trials,

analyses of immune cell functions at the single-cell level, and the

specific functional mechanisms of the ALPK1 gene to enhance both

the applicability of the findings and their clinical significance.

In conclusion, this study utilizes an integrative bioinformatics

approach to unveil distinct metabolic features and immune states in

glioma patients, establishing a reliable prognostic risk scoring

system. Our findings provide new perspectives for further

understanding the complex biological mechanisms of gliomas and

lay the groundwork for future precision medicine strategies.
5 Conclusion

This study integrates various advanced bioinformatics

approaches to reveal the heterogeneity of metabolic and immune

states among glioma patients. Furthermore, we successfully

developed an effective prognostic risk assessment model. These
Frontiers in Immunology 17
findings not only provide new insights into the complex biological

underpinnings of glioma but also lay a crucial foundation for

advancing the future of precision medicine.
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