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GPR55 in the tumor
microenvironment of pancreatic
cancer controls tumorigenesis
Dušica Ristić , Thomas Bärnthaler , Eva Gruden ,
Melanie Kienzl , Laura Danner, Karolina Herceg,
Arailym Sarsembayeva , Julia Kargl and Rudolf Schicho *

Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
Background: The G protein-coupled receptor 55 (GPR55) is part of an expanded

endocannabinoid system (ECS), and plays a pro-tumorigenic role in different

cancer models, including pancreatic cancer. Next to cancer cells, various cells of

the immune tumor microenvironment (TME) express receptors of the ECS that

critically determine tumor growth. The role of GPR55 in cancer cells has been

widely described, but its role in the immune TME is not well understood.

Methods: We intended to uncover the role of GPR55 in tumor immunity in a

model of pancreatic ductal adenocarcinoma (PDAC). To this end, a KPCY tumor

cell line or a GPR55-overexpressing KPCY cell line (KPCY55) from murine PDAC

were subcutaneously injected into wildtype (WT) and GPR55 knockout (KO)

mice, and immune cell populations were evaluated by flow cytometry.

Results: Deficiency of GPR55 in the TME led to reduced tumor weight and

volume, and altered the immune cell composition of tumors, favoring an anti-

tumorigenic environment by increasing the number of CD3+ T cells, particularly

CD8+ T cells, and the expression of PDL1 on macrophages. RNA-seq pathway

analysis revealed higher T cell activity in KPCY55 tumors of GPR55 KO vs. WT

mice. In addition, tumors from GPR55 KO mice displayed increased levels of T

cell chemokines Cxcl9 and Cxcl10. Migration of T cells from GPR55 KO mice

towards CXCL9was increased in comparison to T cells fromWTmice, suggesting

that a CXCR3/CXCL9 axis was involved in T cell influx into tumors of GPR55 KO

mice. Notably, anti-PD-1 immunotherapy increased tumor burden in WT mice,

while this effect was absent in the GPR55 KO mice.

Conclusion:Our study indicates that GPR55 in TME cells may drive tumor growth

by suppressing T cell functions, such as migration, in a model of PDAC, making it

an interesting target for immunotherapies.
KEYWORDS

KPCY model, pancreatic cancer, GPR55, checkpoint inhibitors, anti-PD-1 antibody,
tumor microenvironment, CXCR3/CXCL9 axis
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1 Introduction

The tumor microenvironment (TME) is comprised of a variety

of cell types, such as immune, stromal, and endothelial cells, which

play a crucial role in cancer progression (1). For instance, patients

with abundant presence of cytotoxic T and natural killer (NK) cells

in the TME have a better prognosis across multiple cancer types (2,

3). However, this favorable response may be hampered by other,

namely immunosuppressive cell types present in the TME, like

regulatory T cells (Tregs) and myeloid-derived suppressor cells

(MDSCs) (4). Pancreatic ductal adenocarcinoma (PDAC) has a

highly immune-suppressive TME, in part because the majority of

infiltrating immune cells are myeloid in origin (5). Moreover, only a

fraction of pancreatic cancer patients has infiltrating cytotoxic T

cells, which are known to be correlated with improved survival (6).

Lately, the endocannabinoid system (ECS) has attracted attention

regarding its effects on the behavior of immune cells during

inflammation and cancer (7, 8). Main members of the ECS are

the cannabinoid receptors 1 and 2 (CB1 and CB2), their endogenous

ligands (endocannabinoids), and enzymes for endocannabinoid

metabolism, like monoacylglycerol lipase (MGL), the 2-

arachidonoylglycerol (2-AG)-degrading enzyme (7). Other

receptors show responsiveness to endocannabinoids, such as the

G protein-coupled receptor 55 (GPR55), which is considered part of

an ‘expanded’ ECS, or the ‘endocannabinoidome’ (9–11). Various

immune cells in the TME possess cannabinoid receptors (7), which

can be influenced by components of the ECS (9). We previously

showed prominent expression of CB2 and MGL in TME immune

cells of non-small cell lung cancer (NSCLC) models and human

NSCLC tissue (12, 13). Like CB2 (14), GPR55 is present in immune

cells, e.g., B cells (15), T cells (16) and neutrophils (17), and also in

cancer cells of various origin, for instance, in colon and pancreatic

cancer cells (18–20). In many types of cancer that have been

studied, GPR55 primarily plays a pro-tumorigenic role (18, 20–

25). As to pancreatic cancer, genetic ablation of GPR55 in a PDAC

model clearly improved disease outcome (20).

Since involvement of GPR55 in cancerogenesis was mostly

researched in the context of its role in cancer cells (18, 19, 26),

we focused on the immune TME in this study using GPR55 KO

mice, and explored whether the knockout of GPR55 could have an

influence on the immune cell landscape and the tumor progression

in a PDAC mouse model (27). To this end, we used KPCY tumor

cells (from mouse PDAC), and - since GPR55 is highly

expressed in human pancreatic cancer cells (20) and higher stage

pancreatic intraepithelial neoplasia (28) - KPCY tumor cells that

overexpressed GPR55 (termed KPCY55). KPCY and KPCY55 cell

lines were subcutaneously (s.c.) injected into the flanks of

immunocompetent wildtype (WT) or GPR55 knockout (KO)

mice. By using GPR55 KO mice in this model, we created a

situation where GPR55 was present in cancer cells, but not in

cells of the TME. We can report that mice lacking GPR55 had

smaller tumors and higher lymphoid cell infiltration than WT

mice. The results may have importance for developing new

immunotherapies against PDAC.
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2 Materials and methods

2.1 Cancer cell lines

The KPCY cell lines were generated from late-stage primary

pancreatic tumors from C57BL/6 KPC mice expressing a YFP

lineage tag (KPCY) (Trp53L/+) (27). One T-cell high clone

(2838c3) was purchased from Kerafast (Boston, MA, USA). The

KPCY cells were maintained in DMEM with 10% FBS (Life

Technologies) and 1% penicillin/streptomycin (P/S, PAA

Laboratories) at 37°C and 5% CO2 in a humidified atmosphere.

A GPR55-overexpressing KPCY cell line (KPCY55) was

generated in our lab from the original KPCY parental cell line

using a lentivirus for transduction that carried a GPR55 Puro

cassette (or a control cassette) for stable overexpression of GPR55

(VectorBuilder). Puromycin (0.5 µg/ml, Thermo Fisher, A1113803)

was used for positive selection of clones, and overexpression was

confirmed with RT-qPCR.
2.2 Mice used in the study

C57BL6/J mice were purchased from Charles River (Germany)

and bred in house. GPR55 KO mice (B6;129S-Gpr55tm1Lex/Mmnc)

were obtained through MMRRC (Mutant Mouse Regional Resource

Center; USA). The strain was backcrossed with C57BL6/J mice for

ten generations, and was also bred in house (18). Experimental

procedures were approved by the Austrian Federal Ministry of

Science, Research and Economy (protocol # 2022-0.748.851) and

performed in strict accordance with international guidelines. All

experimental procedures were performed on 7-12-week male mice.
2.3 PDAC mouse model

KPCY and KPCY55 cells were dissociated into single cells,

washed with PBS twice and counted before s.c. injection. Cells

(5×105) were resuspended in 450 mL Dulbecco’s phosphate buffered

saline (PBS, Gibco) and injected into the flanks of mice on day 0.

Tumors were harvested at the experimental endpoint upon reaching

the appropriate size, i.e., on day 21 for the KPCY tumors, and on

day 28 or 29 for the KPCY55 tumors. Tumors were then

subsequently weighed, measured with a digital caliper ex vivo, and

submitted to analysis. Tumor volume was calculated based on the

following formula: V = length x width x height x p/6 (29).
2.4 Anti-PD1 antibody treatment

KPCY55 tumor-bearing WT or GPR55 KO mice were injected

i.p. with 200 µg rat monoclonal anti-mouse PD-1 antibody (clone

29F.1A12, BioXCell, Lebanon, NH) or rat IgG2a isotype control

(clone 2A3, BioXCell, Lebanon, NH) 6 times (as shown in the

treatment protocol scheme) over a period of two weeks.
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2.5 Single-cell suspensions

Single cell suspensions of s.c. tumors were prepared as

previously described (13). Briefly, tumors were cut into small

pieces with scissors. The tumor pieces were afterwards digested

with collagenase for 30 minutes at 37°C (CLS-1; 4.5 U/ml;

Worthington) and DNase I (160 mU/ml; Worthington;

LS002006), while rotating at 1000 rpm. After digestion, tissue was

passed through a 40 mm-strainer, washed with staining buffer (SB;

PBS + 2% FBS), followed by a wash in PBS only.
2.6 Flow cytometric phenotyping of
immune cell populations

In order to exclude dead cells, single cell suspensions were

incubated for 20 min in Fixable Viability Dye (FVD) (eFluor™ 780;

eBioscience, #65-0865-18) in the dark at 4°C. The cells were initially

incubated with 1 mg TruStain™ FcX (Biolegend, #101320), and

afterwards stained in the dark at 4°C for 30 min with antibodies

listed in Supplementary Table S1. From this point onwards, the

staining protocol differed for intracellular immunofluorescent

staining. For surface staining, samples were fixed with

eBioscience™ IC Fixation Buffer (ThermoFisher Scientific, #00-

8222-49) in the dark for 10 min at 4°C, resuspended in SB, and

acquired within two weeks on a BD LSR Fortessa, running on

FACSDiva software (BD Biosciences). Samples requiring

intracellular staining were fixed with Fix/Perm solution from the

BD Cytofix/Cytoperm™ Fixation/Permeabilization Kit (BD

Biosciences, #554714) for 20 min in the dark at 4°C. Afterwards,

they were washed twice with 1x Perm/Wash buffer and then

incubated with the antibody in Perm/Wash buffer for 30 min at

4°C. The cells were washed twice in 1x Perm/Wash buffer and

resuspended in SB prior to analysis. FlowJo software (v10.20,

Treestar) was used for analysis and compensation. See

Supplementary Figures S1 and S2 for gating strategies.
2.7 RNA extraction and RT-qPCR

RNA was extracted from tissue using Trizol (Life Technologies,

#15596026). Samples were then treated either with a DNA-free™

DNA Removal Kit (Invitrogen, #10729525) or RNase-Free DNase

set (Qiagen, #79254). Quality and concentration of RNA were

determined using a NanoDrop ND-1000 spectrophotometer

(Thermo Fisher Scientific). Reverse transcription of purified RNA

(1 mg) was performed by High-Capacity cDNA Reverse

Transcription Kit (Applied Biosystems, #4368814). Gene

expression was assessed by reverse transcription-quantitative

polymerase chain reaction (RT-qPCR) using SsoAdvanced

Universal SYBR Green Supermix (Bio-Rad, #1725271). Primers

were acquired from Eurofins (Supplementary Table S2). Relative

gene expression was calculated using 2-DCT methods (30). Hprt was

used as a housekeeping gene.
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2.8 Bulk RNA-seq: sample preparation
and analysis

RNA was extracted from tissue using Trizol (Life Technologies,

#15596026). Samples were afterwards treated with the DNA-free™

DNA Removal Kit (Invitrogen, #10729525), and the concentration

and quality of RNA was measured using Agilent Bioanalyzer 2100.

After poly-A enrichment and library prep, RNA-seq was performed

on Illumina NovaSeq (6000 and the X Plus), with 20 million reads

per sample (GENEWIZ, Azenta Life Sciences). The raw data were

aligned to GRCm39 using STAR 2.7.10b, after running FastQC

0.11.9. Differential gene expression was assessed by RStudio 4.4.1

using edgeR package (version 4.2.0) (31). For pathway enrichment

analysis, pathfindR was used (version 2.4.1) (32). Heatmaps were

generated after normalization to transcripts per million and

subsequent z-scaling. All RNA-seq data are deposited at GEO

database, accession number GSE280636.
2.9 Isolation of splenic pan-T cells and
migration assays

Pan-T cells were isolated from WT and GPR55 KO mouse

spleens using EasySep™ Mouse T Cell Isolation Kit (Stemcell,

#19851), according to the manufacturer’s protocol. T cell

migration assay was performed using a 96-well MultiScreen plate

(Millipore, MAMIC5S10) with a 5-mm pore-size polycarbonate

filter. A series of dilutions of the chemokine (C-X-C motif) ligand

9 (CXCL9 Biolegend, #578204) in assay buffer containing Ca2+ and

Mg2+ was pipetted into the bottom well, after which T cells were

added to the top well in the same buffer (1x105 per 75 ml). The cells
were left to migrate in the plate for 90 min at 37°C. Migrated cells in

the bottom wells were counted on a BD Accuri™ C6 Plus flow

cytometer. Chemotactic index was defined as the number of cells

migrating towards CXCL9 divided by the number of cells migrating

towards negative control (17).
2.10 In situ hybridization
and immunofluorescence

Tumors were fixed in acid-free phosphate-buffered 10%

formaldehyde solution (Roti®-Histofix 10%, pH 7, Roth, P087.1)

for 24-48 hrs at room temperature, and further processed for

paraffin embedding, according to standard procedures. Tissue was

cut in 5 mm-sections, baked at 60°C for 1 hr, dewaxed, and

rehydrated. ISH was performed according to the manufacturer’s

protocol, and as recently published by us (12). In brief, three ZZ

probes for GPR55 (targeting bases 2-907 of NM_001033290.2)

(RNAScope ™ RED kit; Advanced Cell Diagnostics [ACD],

#322360) were used to detect the corresponding mRNAs in

tumors. Sections with tumor tissue were treated with H2O2 for

10 min, which was followed by target retrieval, using the Brown

FS3000 food steamer for 15 min. Each step was followed by washes
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in distilled water. The sections were digested with Protease IV at 40°

C for 20 min, washed, incubated at 40°C for 2 hrs, and stained with

FastRed. GPR55 KO and WT mice samples were put on one slide

for comparison. GPR55 KO mice lacked expression of GPR55

outside of KPCY tumor cells (Supplementary Figure S3).

An antibody against GFP (1:500; Abcam #ab290) was used to

label tumor cells (YFP-tagged). Antibodies against CD8+ (1:100;

Abcam # ab203035), CD11b+ (1:100; Novus #NB11089474), F4/80+

(1:500, Cell Signaling #70076), and CD4+ (1:400, Abcam

#ab183685) were used to stain cell types of the immune TME co-

localizing with GPR55 mRNA. After ISH, tissue sections were first

blocked with 5% goat serum (Sigma-Aldrich) in 0.1 M PBS

containing 0.3% Triton X-100. Afterwards, primary antibodies

were applied in 0.1 M PBS containing 0.3% Triton X-100 and 1%

goat serum over night at 4°C. As second antibodies, Alexa Fluor®

488 goat anti-rabbit (1:500; Jackson Immuno Research; #111-

5491144) or Cy5-labeled anti-rabbit IgGs (1:500; Jackson

Immuno Research; #711-175-152) were used. Sections were then

mounted with Vector® TrueVIEW® Autofluorescence Quenching

Kit containing DAPI (Vector Laboratories, #SP-8500-15), and

images were taken by an Olympus IX73 fluorescence microscope

(Olympus) connected with a Hamamatsu ORCA-ER digital camera

(Hamamatsu Photonics K.K.). Images were processed with

Olympus CellSense® 1.17 imaging software (Olympus). Only

contrast, brightness, and color balance of images were adjusted.

ImageJ software and QuPath (version 0.4.3) were applied to

quantify expression and colocalization with the ISH probe (29).
2.11 Statistical analysis

GraphPad Prism 10.0.3 (GraphPad® Software) was used to

perform statistical analyses. Data are presented as means ± standard

deviation (SD), or as medians with 25th and 75th percentiles, and

min-max values. Statistically significant differences between two

experimental groups were determined by unpaired Student’s t-test,

two-way ANOVA with Šıd́ák’s multiple comparisons or Tukey’s

post-hoc test, and by ordinary one-way ANOVA with Dunnett’s

multiple comparisons test. P values <0.05 were considered

significant and denoted with 1, 2, 3 or 4 asterisks when lower

than 0.05, 0.01, 0.001, or 0.0001, respectively. For RNA-seq data

analysis, edgeR (version 2.4.0) was used to obtain differential gene

expression according to the respective vignette.
3 Results

3.1 GPR55 deficiency reduces KPCY-
induced tumor weight and volume

Tumors were induced by s.c. injection of KPCY cells and

harvested after 21 days (Figure 1A). Ex vivo measurements

revealed that the tumors of GPR55 KO mice were smaller in

weight and volume than those of WT mice (Figure 1B). Although

we measured more live cells in tumors from KO mice, percentages
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of CD45+ cells did not differ significantly between the two groups

(Figure 1C). Percentages of CD3+ T cells, CD8+ T cells, and pan-

dendritic cells were higher in tumors of GPR55 KO vs. WT mice

(Figures 1D, E), while the number of neutrophils was lower

(Figure 1E). We observed no changes in CD8+ and CD4+ T cell

subtypes (Figure 1F). Expression of PD-1 was higher on CD8+ T

cells in tumors of GPR55 KO vs. WTmice (Figure 1G, left), whereas

PD-L1 expression was higher on CD45- cells (Figure 1H). GPR55

mRNA expression (which should only derive from GPR55-

expressing tumor cells) was significantly lower in tumor samples

of GPR55 KO vs. WT mice (Figure 1I).
3.2 GPR55 deficiency also reduces
KPCY55-induced tumor weight
and volume

Knowing that GPR55 is highly expressed in pancreatic cancer

(20, 28), we generated a KPCY cell line (KPCY55) that stably

overexpressed GPR55 (Figure 2A). KPCY55 cells were injected s.c.

into the flanks of mice, and tumors were harvested after 29 days

(Figure 2B). Similar to KPCY cell-induced tumors, KPCY55 tumors

from GPR55 KO mice were smaller in both mass and volume than

those from WT mice (Figure 2C). Percentages of CD45+ cells

remained unchanged between the two groups (Figure 2D). The

number of lymphoid cells was higher in tumors of GPR55 KOmice,

with increases in CD3+, CD8+ T and NK cells (Figure 2E). There

was no difference between the presence of myeloid cells between the

two groups (Figure 2F). Among lymphoid subtypes, we measured

increases in CD4+ T effector and CD8+ T memory cells (Figure 2G).

PD-1 expression on CD8+ T cells remained unchanged, but it was

lower in CD4+ T cells from tumors of GPR55 KO vs. WT mice

(Figure 2H). On the other hand, expression of PD-L1 was higher on

macrophages [known to be the main source of PD-L1 in the TME

(33)] in KPCY55 tumors of GPR55 KO mice (Figure 2H, right).

Total mRNA expression in KPCY55 tumor samples differs widely

between GPR55 KO and WT mice, indicating the lack of GPR55 in

cells of the TME, and the reduction of tumor cells in KO mice

(Figure 2I). In Figure 2J, representative ISH images and

colocalization of GPR55 mRNA with tumor cells are shown in

KPCY55 tumors from GPR55 KO and WT mice, demonstrating

similar colocalization (Figure 2J, right).
3.3 GPR55 is present in immune and
cancer cells of tumors

We performed ISH combined with immunofluorescence and

localized GPR55 mRNA expression in sections of KPCY and

KPCY55 tumors from WT mice (Figure 3). GPR55 largely

colocalized with CD11b+ cells (66.8% ± 7.9%), CD8+ T cells

(31.6% ± 5.7%), CD4+ T cells (43.5% ± 4.9%), but only little with

F4/80+ macrophages (12.6% ± 4.3%) in KPCY tumors. GPR55

mRNA colocalized with KPCY55 tumor cells by 43.4% ± 13.4%, and

with KPCY tumor cells by 31.9% ± 11% (all data are means ± SD).
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FIGURE 1

Deficiency of GPR55 reduces tumor weight and volume in KPCY-induced tumors. (A) GPR55 KO and WT mice were subcutaneously (s.c.) injected
with 5x105 KPCY cells on day 0. On day 21, tumors were measured ex vivo and processed for analysis. (B) Tumor mass and volume are expressed by
medians, 25th 75th percentiles, and min-max values from three pooled independent experiments. n= 25-27. (C–H) Flow cytometric analysis of
lymphoid and myeloid populations in single cell suspensions from KPCY tumors. Data indicate medians, 25th and 75th percentiles, and min-max
values from three pooled independent experiments. n=14-25. (I) Relative gene expression of GPR55 mRNA in KPCY tumors. n=12-14. Statistical
differences were evaluated by using unpaired Student’s t-test (B, C, H, I) or two-way ANOVA with Šıd́ák’s multiple comparisons test (D, E, G).
*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. WT, wildtype; KO, knockout; CD8+ T mem, CD8+ T memory cells; panDCs, pan-dendritic cells;
cDCs1, dendritic cell type 1; mDCs, monocyte-derived dendritic cells; NK cells, natural killer cells; ns, not significant; gd T cells; TME,
tumor microenvironment.
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FIGURE 2

GPR55 deficiency reduces tumor weight and volume in tumors with a GPR55-overexpressing clone (KPCY55). (A) Relative gene expression of GPR55
in KPCY and KPCY55 cell lines. n=3. (B) GPR55 KO and WT mice were subcutaneously (s.c.) injected on day 0 with 5x105 KPCY55 cells. On day 29,
tumors were measured ex vivo and used for analysis. (C) Tumor mass and tumor volume from ex vivo measurements of KPCY55 tumors. Data
indicate medians, 25th and 75th percentiles, and min-max values from three experiments. n=21-24. (D–H) Flow cytometric analysis of single cell
suspensions from KPCY55 tumors showing changes in the lymphoid and myeloid cell populations. (I) RT-qPCR of KPCY55 whole tumor samples
from WT and GPR55 KO mice. n=4. (J, left) GPR55 ISH signals (red; representatively indicated by arrows) in tumor cells (YFP tagged) of KPCY55
tumors labeled with anti-GFP antibody (green). Nuclei are stained with DAPI (blue). Calibration bars: 20µm. (J, right) Percentage (%) colocalization of
GPR55 mRNA ISH signals with KPCY55 tumor cells. Sections from 3 animals were evaluated. Data indicate medians, 25th and 75th percentiles, and
min-max values from one (G), two (H), or three experiments (D–F). n=4-24. Statistical differences were assessed by using two-way ANOVA with
Šıd́ák’s multiple comparisons test (E–G) or unpaired Student’s-t test (A, C, D, I, J right). *p<0.05; **p<0.01, ***p<0.001,****p<0.0001; **p<0.01;
****p<0.0001. WT, wildtype; KO, knockout; CD8+ T mem, CD8+ T memory cells; panDCs, pan-dendritic cells; cDCs1, dendritic cell type 1; mDCs,
monocyte-derived dendritic cells; NK cells, natural killer cells; ns, not significant gd T cells, gamma delta T cells; TME, tumor microenvironment.
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3.4 GPR55 deficiency leads to upregulation
of genes involved in immune cell functions
in KPCY55-induced tumors

Since changes in the immune TME of GPR55 KO mice were

more pronounced in KPCY55 than KPCY tumors, and high

expression of GPR55 was reported in human pancreatic cancer

(28), we used KPCY55 tumors for RNA-seq evaluation and for

further in vivo experiments.

Gene expression analysis revealed 768 differentially expressed

genes (DEGs) in KPCY55 tumors (see volcano plot in Figure 4A) of

GPR55 KO vs. WT mice, of which 569 were up- and 199

downregulated (| log FC|≥1 and FDR<0.05) (see also

Supplementary Table S3). PCA analysis of the top 500 genes with

greatest significant differences between KPCY55 tumors of GPR55

KO and WT mice revealed clear separation of gene expression

profiles (Figure 4B). In Figure 4C (and Supplementary Figure S4),

pathway enrichment analysis of RNA-seq data showed that the

DEGs particularly correspond, among others, to pathways related to

immune cell functions, such as antigen processing/presentation,

signaling and differentiation of T cells, NK cell cytotoxicity, and

checkpoint protein expression, indicating strong anti-tumor

immune responses in KPCY55-induced tumors of GPR55 KO vs.

WT mice. Normalized read counts of the top fifty differentially

expressed genes from individual mice of each group further

highlight the differences in gene expression between the two

groups (wt1-wt6 vs. ko1-ko6; Figure 4D).
Frontiers in Immunology 07
3.5 Cell cycle genes and Ki-67 are changed
in KPCY55-induced tumors of GPR55 KO
vs. WT mice

Our RNA-seq dataset additionally revealed decreased

expression of stratifin (Sfn; a protein involved in cell cycle control

and used as a biomarker of poor prognosis in PDAC) (34), and

cyclin D2 (Ccnd2; involved in cell cycle regulation and malignancy

(35)) in KPCY55 tumors of GPR55 KO vs. WT mice

(Supplementary Figure S5A). Interestingly, there were no changes

in the expression of proliferation marker Ki-67 in our bulk RNA-

seq data from whole tumor samples (Supplementary Figure S5A).

However, by measuring Ki-67 mRNA in KPCY55 tumor cells of

ISH sections, we observed lower expression in GPR55 KO vs. WT

mice (Supplementary Figure S5B). GPR55 overexpression did not

influence the viability and proliferation of KPCY55 cells in culture

(Supplementary Figures S6A, B).
3.6 Migration of T cells from GPR55 KO
mice towards CXCL9 is enhanced

Since we observed increased T cell activity in RNA-seq pathway

analysis, as well as increased numbers of lymphoid cells in KPCY55

tumors of GPR55 KO mice, we set out to investigate a possible

mechanism behind the higher T cell counts, focusing on cytokines/

chemokines involved in T cell migration. In our RNA-seq data,
FIGURE 3

Presence of GPR55 in KPCY and KPCY55 tumors. ISH/immunofluorescence for immune and tumor cells in sections of KPCY and KPCY55 tumors
from WT mice. Representative arrows point at cells expressing GPR55 mRNA signals (red). Antibodies against immune cell markers CD8+, CD4+,
CD11b+, and F4/80+ were used (all in green). Tumor cells (YFP+) of KPCY and KPCY55 tumors were labeled with anti-GFP antibody (green). Nuclei
were stained with DAPI (blue). Calibration bars=20 µm. 30-900 cells were counted per section; sections from 3 animals used. ISH, In situ
hybridization; WT, wildtype; TME, tumor microenvironment.
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Ristić et al. 10.3389/fimmu.2024.1513547
significant increases in normalized RNA counts for the T cell-

attracting and interferon (IFN)-g-inducible ligands Cxcl9 and

Cxcl10, and for their receptor Cxcr3 (36) were detected (although

levels for Cxcr3 and INF-g were quite low) (Figure 5A). We

subsequently validated these targets using RT-qPCR (Figure 5B)

and investigated a potential migratory effect of CXCL9 on T cells

involving GPR55. To this end, we assessed the migration of splenic

pan-T cells from GPR55 KO and WT mice in response to CXCL9.

We counted more T cells from KO than from WT mice migrating

towards increasing concentrations of CXCL9 (Figure 5C).

Presence of CXCR3 on T cells in KPCY55 tumors was then

evaluated using flow cytometry (Figure 5D). There was a decrease of

CXCR3 on CD3+ and CD8+ T cells in KPCY55 tumors of GPR55

KO vs. WT mice. Expression of CXCR3 was not different between

splenic T cells of healthy WT and GPR55 KO mice (Supplementary

Figure S7). A schematic summarizing the migration assays is shown

in Figure 5E.
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3.7 Deficiency of GPR55 influences anti-
PD-1 antibody treatment in mice with
KPCY55-induced tumors

In Figure 2H, we showed an increase of PD-L1 on macrophages

by flow cytometry in KPCY55 tumors of GPR55 KO vs. WTmice. By

use of RNA-seq and RT-qPCR, we also detected higher mRNA

expression of immune checkpoint and co-stimulatory molecules, e.g.,

CD27, CD86, ICOS and CD40 (Figures 6A, B). Since PD-L1 is one of

the most reliable biomarkers for responding to PD-1 blockade (37),

we injected KPCY55 cells s.c. into GPR55 KO and WT mice, and

after 14 days, treated the mice with 6 rounds of anti-PD-1 antibodies

(or isotype control) (Figure 6C). We confirmed the results on tumor

weight and volume from Figure 2C in this set of experiments (see

Supplementary Figures S8A, B). Notably, when comparing isotype

control and anti-PD-1 antibody treatment, we observed that tumor

volume andmass increased inWT (Figure 6D), but not in GPR55 KO
FIGURE 4

RNA-seq reveals that GPR55 deficiency leads to upregulation of genes involved in enhanced immune cell functions in KPCY55-induced tumors. (A)
Volcano plot showing the log of fold-change (logFC) on the x axis and the −log10 false discovery rate (−log10FDR) on the y axis of RNA-seq data. The
cut-off values were 1 for fold-change, and 0.05 for FDR, respectively. (B) PCA plot of log gene expression data showing the first and second
principal components. (C) Pathway analysis of RNA-seq data, showing enrichment in processes linked to immunity. The number of genes enriched
in a pathway is represented by the size of the dot. The color of the dot represents the −log10 (lowest-p) value of the pathway. (D) Heatmap of the
top 50 differentially expressed genes in KPCY55 tumors from WT and GPR55 KO mice. The resulting Z-score scaling indicates that genes exhibiting
high expression relative to the mean have positive Z-scores (dark red), while low-expression genes exhibit negative Z-scores (white). Ko (ko),
knockout; WT (wt), wildtype; TME, tumor microenvironment.
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mice (Figure 6E). The treatment, however, did not further reduce

tumor burden in GPR55 KO mice (Figure 6E). To elucidate whether

PD-1 inhibition was more effective in GPR55 KO than WT mice, we

evaluated the % differences (D) in tumor weights/volumes between

isotype control and anti-PD-1 antibody treatment in both groups. As

a result, we noticed differences in changes of tumor weight/volume

that were greater between anti-PD-1-antibody-treated than isotype

control-treated mice (p=0.07), suggesting that anti-PD-1 antibodies

are more effective in KPCY55 tumors of GPR55 KO than WT mice

(Supplementary Figure S8C).
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With regard to a potential effect of PD-1 blockade on the

CXCR3/CXCL9 axis, we found that macrophages from tumors of

GPR55 KO mice expressed significantly more CXCL9 than those

from tumors of their WT counterparts, while noticing a strong

trend in the same direction for monocytes (Figure 6F). However,

CXCL9 expression did not differ between isotype control and anti-

PD-1 antibody treatment (Figure 6F) (nor was there a difference in

CXCR3 expression on CD3+ and CD8+ T cells between the groups;

see Supplementary Figure S8D), indicating that the CXCR3/CXCL9

axis was unaffected by anti-PD1 antibody treatment.
FIGURE 5

Role of the CXCR3/CXCL9 axis in the migration of T cells. (A) Differential expression of Cxcl9, Cxcl10, Cxcr3, and Ifng in the TME of KPCY55 tumors
from WT and GPR55 KO mice, presented by normalized counts (transcripts per million) with p-adjusted values (p.adj) from bulk RNA-seq. n=6. (B)
Relative gene expression (2^-dCT) of Cxcl9, Cxcl10, and Ifng normalized to Hprt. Statistical differences were evaluated by unpaired Student’s t-test,
**p<0.01, *p<0.05. n=6. (C) Chemotaxis assay of pan-T cells isolated from healthy spleens of GPR55 KO and WT mice, migrating towards different
concentrations of CXCL9 in the bottom wells. Statistical differences were evaluated using two-way ANOVA and Tukey’s post hoc test. *p<0.05. n=4-
5 (D) Geometric means of CXCR3 expression on lymphocytes in KPCY55 tumors from WT and GPR55 KO mice. Statistical differences were evaluated
using two-way ANOVA with Šıd́ák’s multiple comparisons test. ***p<0.001, ****p<0.0001. n=4-5. In all datasets, data indicate medians, 25th and 75th

percentiles, and min-max values. (E) Schematic showing the comparison between the GPR55 WT and KO TME. p.adj, adjusted p-value; ns, not
significant; WT, wildtype; KO, knockout; TME, tumor microenvironment. Created in BioRender. Ristic, (D) (2024) https://BioRender.com/j25e259.
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FIGURE 6

GPR55 deficiency in the TME of KPCY55 tumors influences anti-PD-1 treatment. (A) RNA-seq-derived normalized counts (transcripts per million with
p-adjusted values (p.adj)) and (B) RT-qPCR data (normalized to Hprt) for a select number of immune checkpoint and costimulatory molecules. n=6.
(C) GPR55 KO and WT mice were subcutaneously (s.c.) injected on day 0 with 5x105 KPCY55 cells. Starting on day 14, six rounds of anti-PD1
antibodies or isotype control were injected i.p. into mice. On day 28, tumors were measured ex vivo and used for analysis. (D, E) Ex vivo
measurement of tumor mass and volume in isotype control (Isotype) and anti-PD1 antibody (PD-1) treated mice. n=8-10 per group. Statistical
differences were evaluated using unpaired Student’s t-test. (F) Flow cytometric analysis of monocytes and macrophages positive for CXCL9
expression in KPCY55 tumors from WT or GPR55KO mice. Statistical differences were evaluated using two-way ANOVA with Šıd́ák’s multiple
comparisons test. In all datasets, data indicate medians, 25th and 75th percentiles, and min-max values. *p<0.05, **p<0.01, ***p<0.001. n=7-10. WT,
wildtype; KO, knockout; p.adj, adjusted p-value; PD-1, anti-PD-1 antibody; Isotype, isotype control; TME, tumor microenvironment.
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4 Discussion

Even though pancreatic cancer is the eleventh most common

cancer in the world, it is the seventh leading cause of cancer-related

deaths (38). Since involvement of the immune system is low in this

type of cancer, new therapeutic approaches are hard to implement,

and often do not prolong long-term survival of the patient (39).

Recent research suggests that stratification of patients according to

immune infiltration could be of benefit (40). As such, a higher

number of infiltrating CD8+ T cells can predict a better response to

immunotherapy (40).
4.1 GPR55 in cancer cells

Studies have shown that GPR55 plays a pro-tumorigenic role in

many types of cancer (20, 21, 25, 41–43). As to pancreatic cancer,

inhibition of GPR55 revealed antitumor effects in a human

pancreatic cancer cell line (44). In addition, genetic ablation of

GPR55 in a PDAC mouse model significantly prolonged the

survival of mice (20). In our experiments, we also saw less Ki-67

expression in tumor cells of GPR55 KO mice, suggesting reduced

proliferation through deficiency of GPR55. Its influence on the

metabolism of pancreatic cancer cells has been also demonstrated

through the actions of (R, R’)-4’-methoxy-1-naphthylfenoterol,

which, by modulating GPR55 signaling, altered L-lactose

metabolism in PANC-1 cells and mice xenografts (45).

We did not see differences in proliferation and viability between

KPCY and GPR55-overexpressing KPCY cells in culture. However,

our ISH findings indicated that KPCY tumor cells, although hardly

expressing GPR55 mRNA in culture (Figure 2A), upregulated GPR55

mRNA in situ (Figure 3). Importantly, we observed that GPR55 was

present in several types of immune cells of the TME, suggesting that

GPR55 may influence tumor growth via actions of these cells. In line

with this hypothesis, we previously reported smaller tumors and

higher infiltration of CD3+, CD4+, and CD8+ T cells, but lower

infiltration of myeloid suppressor cells into tumors of GPR55 KO vs.

WT mice with colorectal cancer, indicating a possible T cell-

suppressive role of GPR55 (18). A pronounced immune response

could also be the reason why KPCY55-induced tumors grew slower

(appropriate tumor size for harvesting after 29 days) than KPCY-

induced tumors in GPR55 KO mice (harvested after 21 days).
4.2 GPR55-deficiency favors an anti-
tumorigenic immune cell profile

Next to KPCY and KPCY55 tumor cells, we identified GPR55 in

numerous immune cells of the TME (CD4+ and CD8+ T cells,

macrophages, and CD11b+ myeloid cells) indicating a role for

GPR55 in immune cell functions, such as migration and cytokine

release (16, 46). Although similar changes in tumor weight and

volume were measured for KPCY and KPCY55 tumor-bearing

GPR55 KO mice, we observed differences in the composition of

their immune TME. Lack of GPR55 in the TME of KPCY55 tumors
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from KO mice caused a shift in the immune cell profile towards

increased numbers of CD8+ T and NK cells, which are known for

their cytotoxicity against cancer cells (3, 47). Among T cell subtypes,

CD4+ effector T cells and CD8+ memory T cells were increased,

indicating enhanced adaptive immune response (48). In KPCY

tumors of GPR55 KO mice, we also detected a decrease of

neutrophils vs. WT tumors, which fits with the mostly pro-

tumorigenic role of neutrophils in pancreatic cancer (49). In

addition, KPCY tumors from GPR55 KO mice had a higher

number of pan-dendritic cells than tumors from WT mice.

Dendritic cells are known to cross-present antigens to CD8+ T cells

(50), and to enhance T cell priming (51). Spleen from healthy GPR55

KOmice do not show increased levels of CD3+ T cells as compared to

healthy WT mice (Supplementary Figure S9) indicating that the

regulation of the immune cell profiles were tumor specific.
4.3 RNA-seq data indicate enhanced
immune cell functions in KPCY55 tumors
of GPR55 KO mice

By employing pathway analysis of differentially-expressed

genes, we noticed strong shifts, in particular, towards pathways

related to immune cell functions, such as antigen processing/

presentation and T cell signaling in KPCY55 tumors of

GPR55 KO mice. We further observed upregulation of the

immunoproteasome genes Psmb8, 9 and 10, which are known to

be involved in enhanced immunogenicity in PDAC (52). These

findings may be of importance, as restoring immunity, such as the

expression of MHC I on the pancreatic tumor cell surface (53), is of

prime interest for new immunotherapies against PDAC. It therefore

seems that GPR55 deficiency in the TME favors an anti-

tumorigenic environment by overriding T cell suppression.
4.4 GPR55 is involved in the migration of T
cells towards CXCL9

Although macrophages, neutrophils, mast cells, and tumor cells

treated with a GPR55 antagonist decrease their migratory behavior

(17, 19, 46, 54), we observed increased migration of pan-T cells,

isolated from healthy GPR55 KO mice. This is well in line with a

previous study that showed enhanced migration of gd T cells in

GPR55 KO mice, indicating that GPR55 can also function as a

migration-inhibitory receptor (16). Our RNA-seq data revealed

upregulation of the T cell chemokines Cxcl9/Cxcl10 and their

receptor, Cxcr3, in KPCY55 tumors of GPR55 KO mice. CXCL9,

CXCL10 and CXCL11 have been previously shown to be effective in

supporting an adequate antitumoral response in various cancers

(55), although results in pancreatic cancer have been conflicting (56,

57). CXCR3 is almost exclusively expressed in immune cells (36),

and together with its ligands, it has been demonstrated to play an

important role in anti-tumor T cell development in the spleen (57).

Our RNA-seq data showed significantly upregulated Cxcr3

transcripts in KPCY55 tumors of GPR55 KO vs. WT mice,

despite the decrease of CXCR3 protein on CD3+ and CD8+ T
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cells in the TME. This observation may be explained by a study

showing that expression of CXCR3 on T lymphocytes decreases as a

consequence of internalization and degradation in the presence of

its ligands (58). With regard to the source of CXCL9, we identified

monocytes and macrophages as main producers (59), which is in

line with a report demonstrating that depletion of CXCL9-

expressing tumor-associated macrophages hamper anti-tumor

responses (60).
4.5 GPR55 influences anti-PD-1
antibody treatment

Pancreatic cancer has one of the lowest response rates to

immunotherapy, recently demonstrated in a clinical trial, where

3.1% of patients with metastatic PDAC responded to dual

immunotherapy with durvalumab (PD-L1 blocking antibody) and

tremelimumab (CTLA-4 blocking antibody), and 0% to durvalumab

monotherapy (61). It is known that tumor mutational burden and

expression of PD-L1 on tumor cells are robust predictive factors for

the success of immunotherapy (37). Our RNA-seq and RT-qPCR

data revealed upregulated PD-L1 and PD-1 expression in KPCY55

tumors of GPR55 KO mice. In addition, flow cytometry revealed

higher PD-L1 expression on macrophages in KPCY55 tumors from

GPR55 KO mice, which suggested a favorable response to

immunotherapy. Interestingly, anti-PD-1 antibody treatment

increased the tumor burden in WT, but not GPR55 KO mice. The

treatment did not further decrease tumor growth in GPR55 KOmice,

most likely because it had already been robustly reduced by GPR55

deficiency alone. Regarding the increase in tumor burden in GPR55

WT mice, it should be noted that cancer patients can paradoxically

respond with increased tumor progression to immune checkpoint

inhibitor therapy (hyperprogressive disease) (62, 63), something that

has been now also reported for advanced pancreatic cancer (64). This

phenomenon describes an increase in tumor growth post PD-1/PD-

L1 blockade, and was observed in several cancers with solid tumors

(rev. in Champiat et al.) (62). Reported frequencies lie between 9-29%

and are associated with poor outcome (62). Mechanisms for

hyperprogressive disease have not been clarified yet but several

explanations are discussed, such as T cell exhaustion, a modulation

of pro-tumorigenic T cells, or enhanced oncogenic signalling. A case

study in advanced pancreatic cancer with hyperprogression treated

with PD-1 blockade and chemotherapy identified amplification of

MDM4 (a p53 regulating protein) as a risk factor (65). From our

experiments, it is not clear what caused hyperprogression. We can

only speculate that overexpression of GPR55 in tumor cells may have

taken part in the tumor progression of WTmice after PD-1 blockade.
4.6 Limitations of the study

One of the limitations of our study is that we only performed

mouse experiments but did not use human samples. GPR55,

however, has been found to be highly expressed in human PDAC

specimens and patient-derived xenografts (20), suggesting that the
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receptor may also play an important role in human PDAC. In

addition, the abundance of CD8+ T cells, in particular of the PD-1

CD8+ T cell population, in tumors of mouse models injected with

KPCY cells, can clearly predict the response to immunotherapy

with checkpoint blockers (27). This is in accordance with the

situation in human tumors, where a high CD8+ T cell population

is crucial for a successful immunotherapy with checkpoint

inhibitors (47). The findings indicate that our KPCY mouse

model can recapitulate the situation of human PDAC, therefore

being of high translational value.
5 Conclusions

We can demonstrate that deficiency of GPR55 in the TME of

murine PDAC tumors leads to improved immune cell infiltration

and upregulation of genes involved in T cell activity and function,

indicating that TME-derived GPR55 may promote a “cold” tumor.

A CXCR3/CXCL9/CXCL10 axis could drive T cell infiltration into

KPCY55 tumors of GPR55 KO mice, suggesting that GPR55

suppresses this pathway in PDAC, thereby promoting tumor

growth. Tumor cell-derived GPR55 does not seem to play a role

in the differences seen in tumor burden between GPR55 KO and

WT mice, but we cannot exclude that stromal TME cells like

fibroblasts or endothelial cells, which are known to express

GPR55, may contribute to it. Finally, our data suggest that

GPR55 could be an interesting target for immunotherapies

against PDAC by using GPR55 inhibitors as an immune

adjuvants to promote T cell trafficking and infiltration, or in an

adoptive immunotherapy approach.
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