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Periodontitis is a multifactorial disease characterized by chronic destruction of

the periodontal supporting tissues and is closely associated with the dysbiosis of

the plaque biofilm. It is the leading cause of tooth loss in adults. Bacterial

extracellular vesicles (BEVs) are released from bacteria, which range in size

from 20 to 400 nm. These vesicles contain various components derived from

their parent bacteria, including nucleic acids, proteins, lipids, and other

molecules, which facilitate functions such as molecular transfer, metabolic

regulation, bacterial interactions, biofilm formation, and immune modulation.

BEVs participated in the pathophysiological process of periodontitis. Recently

emerging evidence also showed that the contents of EVs in saliva and gingival

crevicular fluid (miRNAs, mRNAs, and proteins) could be used as potential

biomarkers for periodontitis. While most current research focuses on human-

derived components, much less is known about BEVs. Therefore, this review

introduces the formation mechanisms and components of BEVs related to

periodontitis. Then, this review summarizes the current information about the

mechanism, the diagnostic and theraputic value of periodontal pathogen-

derived extracellular vesicles in the development of periodontitis. Furthermore,

the future challenges of exploring the role of BEVs in periodontitis are

also discussed.
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1 Introduction

Periodontitis is a common chronic inflammatory condition,

primarily characterized by the progressive destruction of the

periodontal ligament and alveolar bone. It has a high prevalence,

affecting more than 60% of adults worldwide, while the prevalence of

severe periodontitis is over 20% (1, 2). This condition imposes a

significant economic and health burden on patients, severely impacting

their quality of life (3, 4). Periodontitis is recognized as a multifactorial

disease, closely linked to dysbiosis within the plaque biofilm. The

complex crosstalk between multiple pathogenic microorganisms and

the host immune system plays a crucial role in the pathogenesis of

periodontitis (5–7). However, the exact mechanisms has yet to be fully

elucidated. In the absence of timely intervention and treatment,

periodontitis has the potential to induce tooth mobility and even

tooth loss. By now, periodontits has become the leading cause of tooth

loss in adults and may also trigger systemic inflammatory responses (2,

8). Early-stage periodontitis often remains undiagnosed due to subtle

symptoms and limitations in radiographic imaging, and once the

disease progresses, periodontal tissue regeneration treatments may

yield less-than-ideal outcomes. Thus, addressing the potential

pathogenic mechanisms, diagnostic methods, and prevention and

treatment strategies for periodontitis remains an urgent challenge in

periodontal care.

Extracellular vesicles (EVs) are nanoscale particles enveloped by a

lipid bilayer, released by both host and microbial cells, including

bacteria and fungi (9). As the concept of the human microbiome in

relation to health and disease becomes mature gradually, there is an

increasing recognition of microbe-derived EVs, specifically bacterial

EVs (BEVs) and their function in facilitating communication between

microbes and their hosts (10). BEVs contain various components

derived from their parent bacteria, including nucleic acids, proteins,

lipids, and other molecules, which facilitate functions such as molecular

transfer, metabolic regulation, bacterial interactions, biofilm formation,

and immune modulation (11). Pathogenic BEVs play a pivotal role in

enhancing pathogenicity due to their small size, structural stability,

inclusion of multiple virulence factors, and ability to evade immune

detection and facilitate distant dissemination (12, 13). They are

considered key novel mediators of bacterial interaction, either

between bacteria themselves or with the host.

This review provides an overview of biogenesis and classification

of BEVs related to periodontitis and their pathogenic mechanisms in

periodontal diseases. Moreover, this review also summarizes the

diagnostic and theraputic value in the development of

periodontitis. Furthermore, the future challenges of exploring the

role of BEVs in periodontitis were also discussed. The review may

offer new insights into the role of periodontal pathogen BEVs in

disease progression and the development of novel strategies for

periodontal diagnosis and therapy.
2 Biogenesis and classification of BEVs

Both Gram-negative and Gram-positive bacteria produce

extracellular vesicles (BEVs), which range in size from 20 to 400

nm (14). The composition and mode of BEVs production vary
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among different bacteria. Gram-positive bacteria typically produce

cytoplasmic membrane vesicles (CMVs), while Gram-negative

bacteria secrete outer membrane vesicles (OMVs) (15).
2.1 BEVs produced by Gram-
negative bacteria

Although a considerable body of research has been carried on

the formation of BEVs, the underlying mechanisms remain

incompletely understood. Key periodontal pathogens are mostly

Gram-negative obligate and facultative anaerobic bacteria,

including Porphyromonas gingivalis (P. gingivalis), Fusobacterium

nucleatum (F. nucleatum), Aggregatibacter actinomycetemcomitans

(A. actinomycetemcomitans), Tannerella forsythia (T. forsythia),

and Treponema denticola (T. denticola) (16). The cell walls of

Gram-negative bacteria are composed of lipopolysaccharides

(LPS) and a thin layer of peptidoglycan, characterized by an outer

membrane and an inner membrane separated by the periplasm. The

production of Gram-negative bacterial membrane vesicles (MVs)

involves mechanisms such as non-lytic vesicle formation (Type B)

and explosive cell lysis with subsequent membrane fragment fusion

into vesicular structures (Type E) (17). Bacterial outer membrane

vesicles (OMVs) represent the primary form of BEVs released by

periodontal pathogens. OMVs formation occurs when the

expansion of the outer membrane outpaces the peptidoglycan

layer, often due to the loss or repositioning of covalent bonds

between these two structures (18) (Figure 1). Additionally,

peptidoglycan fragments or misfolded proteins may exert

expansive pressure on the outer membrane, leading to OMVs

formation (19, 20). Specific phospholipids, LPS, and other

molecules that accumulate in the bacterial outer membrane can

also induce OMVs production by altering membrane curvature

(21). For example, OMVs formation in P. gingivalis may be

facilitated by the upregulation of certain inner or outer leaflet

lipids, linked to the selective incorporation of anionic

lipopolysaccharides (A-LPS) and the C-terminal domain (CTD)

family of proteins on the bacterial surface (22). Another proposed

mechanism involves the VacJ/Yrb ABC phospholipid transporter

system, which may regulate OMVs formation (23). OMVs lack

DNA and RNA but are enriched in periplasmic proteins and lipids.

Conversely, outer-inner MVs contain cytoplasmic components,

likely due to the weakening of the bacterial peptidoglycan layer

by endolysins (12, 21) (Figure 1). The expression of phage-related

endolysins can degrade the peptidoglycan layer, leading to explosive

bacterial lysis and the formation of Type E MVs, which include

explosive OMVs (EOMVs) and explosive outer-inner MVs

(EOIMVs), both containing cytoplasmic contents (24) (Figure 1).
2.2 BEVs Produced by Gram-
positive bacteria

Among periodontal pathogens, Gram-positive bacteria are

relatively rare. However, recent oral microbiome studies have

highlighted Filifactor alocis (F. alocis), a Gram-positive, obligate
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anaerobe, as an important periodontal pathogen (25). F. alocis has

been frequently detected in chronic periodontitis, aggressive

periodontitis and peri-implantitis (21, 26). Gram-positive bacteria,

which possess a thick peptidoglycan cell wall, typically release EVs

through explosive cell lysis, producing cytoplasmic MVs, a process

referred to as “bubbling cell death.” (12, 27) (Figure 1).
3 Composition of periodontal
pathogen-derived EVs

The composition of BEVs is influenced by the biogenesis

mechanism, bacterial species, growth stage, and environmental

conditions. Their cargo plays a critical role in disease progression,

biofilm modulation, and immune evasion. However, the precise

mechanisms governing cargo selection during BEVs release remain

elusive. Periodontal pathogen-derived EVs contain proteins, lipids,

nucleic acids and other biomolecules, and carry numerous virulence
Frontiers in Immunology 03
factors such as toxins, LPS, adhesins, and proteolytic enzymes,

which contribute to periodontal diseases.
3.1 Proteins

Proteins found in BEVs originate from the outer membrane,

periplasm, and cytoplasm of the parent bacteria (18). Proteomic

analyses have revealed a diverse array of proteins in BEVs, including

structural proteins, porins, and transporters involved in various

biological processes (28–30). Under specific conditions, certain

proteins may be preferentially loaded into EVs. Gingipains, lysine-

specific (Kgp) and arginine-specific (RgpA) proteases, are major

virulence factors in P. gingivalis OM and OMVs (31, 32). The

absence of RgpA reduces OMV secretion (33). Studies comparing

P. gingivalis OMVs and outer membrane protein cargo have shown

that CTD proteins derived from gingipains are concentrated on

OMVs and lipoproteins involved in iron acquisition are also
FIGURE 1

Extracellular vesicles produced by Gram-negative bacteria and Gram-positive bacteria. As for Gram-negative bacteria, blebbing of the outer
membranes and explosive bacterial lysis are two main mechanisms in BEVs formation. Typical OMVs generated by Gram-negative
periodontopathogens are produced by blebbing of the outer membranes without carrying cytoplasmic components. OIMVs are formed by autolysin
and contain cytoplasmic components. EOMVs and EOIMVs are produced by phage-derived endolysin and contain cytoplasmic contents from cells
exposive. Gram-positive bacteria which lack an outer membrane generate extracellular vesicles called CMVs mainly by explosive cell lysis. OMVs
outer membrane vesicles, OIMVs outer-inner membrane vesicles, EOMVs explosive outer membrane vesicles, explosive outer-inner membrane
vesicles, CMVs cytoplasmic membrane vesicles..
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selectively sorted into OMVs (34). Under conditions of hemin excess,

some moonlighting cytoplasmic proteins, with adhesive potential, are

preferentially loaded onto OMVs, promoting P. gingivalis

proliferation and co-aggregation with other bacteria in specific

environments (35). Peptidylarginine deiminase (PPAD), detected in

P. gingivalis OMVs (36), has been shown to be associated with OMV

biogenesis through citrullination activity (37). PPAD also facilitates

immune evasion and has been implicated in autoimmune diseases,

such as rheumatoid arthritis (38).

OMVs produced by A. actinomycetemcomitans are rich in

leukotoxin, which selectively kills host immune cells (39, 40).

LtxA can be selectively sorted into large OMVs(>300 nm) due

to surface-associated DNA driving (41). Additionally, A.

actinomycetemcomitans OMVs can deliver cytolethal distending

toxin (CDT) to HeLa cells and human gingival fibroblasts (HGFs),

causing the characteristic cytolethal distending effect (42). CDT, a

genotoxin, induces DNA damage in mammalian cells, leading to G2

cell cycle arrest, progressive cell enlargement, and/or apoptosis (43,

44). CDT toxicity has been linked to GSK-3-dependent cell cycle

arrest in gingival keratinocytes (45).

OMVs derived from T. denticola contain adhesins and serine

proteases necessary for adhering to and degrading host cells and

mammalian matrix proteins (46). OMVs from T. forsythia harbor

several virulence factors, including leucine-rich-repeat family

virulence factor BspA, a Toll-like receptors 2 (TLR2) agonist, as

well as non-TLR2 agonist virulence factors such as sialidase and

GroEL (47).
3.2 Lipids and lipopolysaccharides

Lipids are important structural components of BEVs, but their

specific composition remains understudied. It has been shown that P.

gingivalis can synthesize sphingolipids, which are delivered via OMVs

and suppress host immune responses (48, 49). Lipid rafts play a

crucial role in OMV-mediated endocytosis by host cells, as seen in

both P. gingivalis and A. actinomycetemcomitans OMVs (42, 50).

LPS is the most abundant surface antigen in Gram-negative

bacteria and also a critical structural and toxic component of BEVs

(51). LPS consists of lipid A, a core oligosaccharide, and an O-antigen

polysaccharide chain (52). P. gingivalis expresses two types of LPS:

neutral O-LPS and anionic A-LPS, the latter of which is involved in

OMV formation (22, 53). In addition, T. forsythia and T. denticola

OMVs express low-molecular-weight lipooligosaccharides (54, 55).
3.3 Genetic material

BEVs carry genetic material, including DNA, mRNA, sRNA,

and other non-coding RNAs from the parent bacteria, which can

mediate horizontal gene transfer (HGT) between species (56). HGT

is a crucial driver of gene and genome evolution (57). DNA and

RNA have been detected in OMVs from P. gingivalis, T. denticola,

and T. forsythia, meanwhile, they can activate TLR7, TLR8, and

TLR9 receptors (54). Extracellular DNA (eDNA) has also been

identified on OMV surfaces, forming an eDNA/OMV network that
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may aid in nutrient capture for pathogens residing on the surface of

polymicrobial biofilms (54).

A. actinomycetemcomitans-derived OMVs contain extracellular

RNA (exRNA), which is protected from enzymatic degradation in

body fluids by encapsulation within the EVs (58). exRNA is

transferred into host cells via OMVs and may be integrated into

the host RNA-induced silencing complex, regulating host target

transcripts. A. actinomycetemcomitansOMVs and exRNA influence

not only local immune responses but may also cross the blood-brain

barrier (59). Furthermore, A. actinomycetemcomitans, T. denticola,

and P. gingivalis secrete small RNAs of microRNA size (miRNA-

size, small RNAs or msRNAs) via OMVs, which are stably

transferred to host cells, modulating immune responses and

apoptosis (60, 61).
4 Roles of periodontal pathogen-
derived BEVs in the progression
of periodontitis

As BEVs serve as media of communication between bacteria

and host cells, they can mediate the interaction between bacteria to

affect plaque biofilm formation as well as interact with cell receptors

or enter cells to exert pathogenic effects. The specific molecular

mechanism of BEVs internalization by host cells remains to be

further elucidated. Currently, there are several internalization

pathways for EVs, including endocytosis, internalization through

lipid rafts, membrane fusion, and receptor-mediated signal

transduct ion (62) . Endocytosis is the most common

internalization pathway for BEVs internalization (63). Moreover,

BEVs can also communicate with host cells through signal

transduction mediated by toll-like receptors (TLRs) such as TLR2

and TLR4 (15). The internalization of BEVs triggers a series of

responses in host cells, including immunomodulation and

periodontal tissue destruction.
4.1 Regulation of plaque biofilm

Plaque biofilm formation plays a central role in the onset and

progression of periodontitis (64), and bacterial interactions are

critical to the formation of subgingival biofilm. Periodontal

pathogens can communicate with one another or with other

bacteria via BEVs, influencing biofilm formation, bacterial

survival, and enhancing their invasive capabilities (65) (Figure 2).

A series of studies have shown that OMVs from P. gingivalis,

enriched with gingipains or adhesins, significantly promote co-

aggregation of various oral pathogens, such as Streptococcus spp., F.

nucleatum, Actinomyces naeslundii (A.naeslundii), and Actinomyces

viscosus (A. viscosus) (66). Additionally, P. gingivalisOMVs mediate

co-aggregation with T. denticola and Lachnoanaerobaculum

saburreum (L.saburreum), and enhance the motility of non-motile

bacteria, aiding the formation of a multispecies plaque biofilm (67).

Moreover, P. gingivalis OMVs enhance T. forsythia adhesion to and

invasion of epithelial cells, contributing to its virulence (68). Zhang
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(69) et al. reported that proteases in P. gingivalis OMVs reduce the

expression of adhesion-associated proteins, such as FadA and

FomA, on the surface of F. nucleatum, inhibiting its invasion of

oral epithelial cells and its auto-aggregation. However, it has no

impact on the morphology or proliferation of F. nucleatum. During

co-infection with F. nucleatum and P. gingivalis, F. nucleatum

paradoxically enhances the invasive capacity of P. gingivalis. By

preventing F. nucleatum degradation within cells and maintaining

its bioactivity, P. gingivalis promotes deeper infection. Furthermore,

periodontal pathogen-derived BEVs have the function of inhibiting

and dispersing competitor biofilms. For example, P. gingivalis

OMVs appeared to have a negative impact on biofilm formation

and the maintenance of Streptococcus gordonii (S. gordonii) in a

gingipain-dependent manner, creating a more favorable

environment for its own survival (70).
4.2 Immunomodulation

BEVs from periodontal pathogens have significant

immunomodulatory effects on host cells including both triggering
Frontiers in Immunology 05
the activation of the immune system and contributing to immune

evasion (Figure 3).

4.2.1 Induction of immune-
inflammatory responses

Periodontitis is an immune-inflammatory reactive disease

initiated by plaque biofilm (71). EVs produced by various

periodontal pathogens play a pivotal role in inducing host

immune-inflammatory responses similar to their parent bacteria,

thereby contributing to the pathogenesis of periodontitis (72). Host

cells that internalize BEVs and trigger immune responses include

both immune and non-immune cells.

Cecil (54) et al. found that EVs produced by periodontal

pathogens can activate TLRs and nucleotide-binding

oligomerization domain (NOD) pattern recognition receptors

(PRRs) in gingival epithelial cells, potentially triggering significant

inflammatory responses via multiple signaling pathways. Another

study demonstrated that P. gingivalis OMVs activate Erk1/2, JNK,

MAPK, STING, and NF-kB signaling pathways, leading to

enhanced expression of interleukin (IL)-6 and IL-8 in human

gingival epithelial cells (73). F. alocis OMVs have the function of
FIGURE 2

Roles of Periodontopathogen-Derived BEVs in Plaque Biofilm Regulation. (A) P. gingivalis OMVs aggregate Streptococcus spp., F nucleatum, A
nucleatum, A viscosus, T. denticola and L. saburreum. (B) P. gingivalis OMVs enhance the ability of T. forsythia to adhere to and invade epithelial
cells. (C) P. gingivalis OMVs reduce FadA and FomA on the surface of F nucleatum, inhibiting its invasion of oral epithelial cells and its auto-
aggregation. During co-infection, F nucleatum paradoxically enhances the invasive capacity of P. gingivalis. (D) P. gingivalis OMVs inhibit and
disperse S. gordonii biofilm formation in a gingipain-dependent manner.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1513983
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1513983
promoting the production of G-CSF, GM-CSF, IL-6, and IL-8 in

human oral keratinocytes (HOK-16B cell lines). These bioactive

molecules may act as potent immune stimulators, leading to

periodontal inflammation (74). Apart from cells in the epithelial

layer, BEVs can also act on the cells within the deep connective

tissue, thereby triggering inflammatory responses. For example, the

OMVs of T. forsythia stimulate the release of IL-6, IL-8, and

monocyte chemoattractant protein-1 (MCP-1) from human

periodontal ligament fibroblasts (hPDLCs) in a dose-dependent

manner, and these pro-inflammatory factors levels are much higher

than those induced by T. Forsythia itself (75).

As key effector cells in host defense, macrophages play a crucial

role in combatingmicrobial invasion, primarily through phagocytosis

(76). Upon external stimulation, macrophages in the M0 basal state

can polarize into distinct subtypes (77). M1 macrophages produce

pro-inflammatory cytokines and promote osteoclasts formation,

exacerbating periodontal inflammation, while M2 macrophages

release anti-inflammatory cytokines to counteract the disease (78).

OMVs from F. nucleatum promote macrophage polarization towards

the pro-inflammatory M1 phenotype, further exacerbating the

inflammatory environment and enhancing the toxicity of F.

nucleatum OMVs toward mouse gingival fibroblasts (MGFs) (79).

Host monocytes, as well as M (naïve) and M (IFNg)-polarized
macrophages, bind and phagocytose periodontal pathogen-derived

OMVs, including those from P. gingivalis, T. forsythia, and T.

denticola (80). This process activates NF-kB and inflammasome

complexes, increasing the expression of inflammatory mediators

such as tumor necrosis factor (TNF)-a, IL-8, and IL-1b. In another

study, the stimulatory impacts of P. gingivalis EVs on macrophages

were further verified. It was found that P. gingivalis OMVs could

prompt macrophages to generate significantly higher levels of TNF-

a, IL-12p70, IL-6, and IL-10, as well as interferon b (IFNb) and nitric
oxide (NO), compared with P. gingivalis alone. Simultaneously,

OMV-stimulated macrophages were effectively able to activate

caspase-1, resulting in the production of substantial amounts of IL-

1b and IL-18. These macrophages released lactate dehydrogenase and
Frontiers in Immunology 06
exhibited 7-Aminoactinomycin D (7-AAD) positivity, which are

clear indications of pyroptotic cell death (81). OMVs from T.

forsythia activated the human monocytic cell line U937, producing

inflammatory mediators with more pronounced inflammatory

responses than those triggered by T. forsythia cells alone (75). F.

alocis OMVs can also significantly increase the expression of

cytokines such as C-C motif chemokine (CCL)1, CCL2,

macrophage inflammatory protein-1 (MIP-1), CCL5, IL-1b, IL-6,
IL-8, and TNF-a in human monocyte-derived THP-1 cells (74).

4.2.2 Promotion of immune evasion
In addition to their pro-inflammatory effects, certain

per iodonta l pathogens also secre te EVs that inhib i t

inflammation, allowing them to evade host immune defenses. It

has been shown that P. gingivalis OMVs promote the loss of the

LPS receptor CD14 on macrophages, with gingipains playing a

key role in this process (82). This procedure impairs the

macrophage response to LPS from Escherichia coli (E. coli) and

reduces inflammation. Waller (83) et al. demonstrated that P.

gingivalis EVs selectively promoting TNF tolerance via a TLR4-

and mTOR-dependent mechanism, blocking host immune

responses to the parent cells and facilitating local immune

evasion. Moreover, P. gingivalis OMVs can selectively trap and

activate neutrophils, initiating degranulation without being

destroyed (84). They also degrade antimicrobial granule

components, such as antimicrobial peptide LL-37 and

myeloperoxidase, thereby protecting bacteria from being killed

(84). OMVs from A.actinomycetemcomitans can act as decoys for

immune cells, activating the complement system in an LPS-

dependent manner and consuming complement components to

protect susceptible bacteria in host serum (85). Such function has

also been demonstrated for OMVs released by P. gingivalis (86).

Choi (60) et al. found that OMVs secreted by major periodontal

pathogens (A. actinomycetemcomitans, P. gingivalis, T. denticola)

can transfer msRNAs to T cells, suppressing the expression of

certain inflammation-related cytokines.
FIGURE 3

Roles of Periodontopathogen-Derived BEVs in Immunomodulation. (A) Periodontopathogen-Derived BEVs induce immune-inflammatory responses
in host cells including immune and non-immune cells. (B) BEVs help periodontal pathogens escape from host immune system by acting on immune
cell membrane receptors and serving as decoys to consume complement components.
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4.3 Periodontal tissue destruction

In addition to their immunomodulatory effects, periodontal

pathogen-derived BEVs can also exert the ability to destroy

periodontal tissues through various mechanisms. The process of

periodontal destruction by BEVs includes direct damage and

invasion of the epithelial barrier, inhibition of angiogenesis, and

the creation of an immunological microenvironment that induces

bone resorption (Figure 4).

4.3.1 Direct damage to periodontal tissues
EVs produced by Gram-negative bacteria can directly fuse with

target cells or be internalized via lipid rafts, micropinocytosis, and

clathrin-dependent endocytosis (87). Upon entering host cells,

BEVs exhibit multiple virulence factors, exerting toxic effects on

periodontal tissue cells, including gingival epithelial cells, vascular

endothelial cells, and gingival fibroblasts (31).

Gingival epithelial cell layer is the first barrier to prevent

periodontal pathogens from invading deep periodontal tissues (88).

The close connection between the gingival epithelial cells ensures the

integrity of the gingival epithelial barrier. OMVs from P. gingivalis

rapidly enter host epithelial cells, such as HeLa cells and immortalized

human gingival epithelial cells, via endocytosis (50). Gingipains

associated with OMVs degrade functional molecules like transferrin

receptor (TfR) and integrin-related signaling molecules (such as

paxillin and focal adhesion kinase (FAK)), inhibiting the migration

and proliferation of gingival epithelial cells and leading to cellular

impairment (89). T. denticolaOMVs can also disrupt and penetrate the

epithelial layer (90). OMVs from A. actinomycetemcomitans fuse with

lipid rafts on the plasma membranes of HeLa cells and HGFs, releasing

cytolethal distending toxin (CDT), which remains biologically active in

the nucleus and exerts cytotoxic effects (42).

Additionally, P. gingivalis OMVs dose-dependently inhibit the

proliferation of human gingival fibroblasts (HGFs) and human
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umbilical vein endothelial cells (HUVECs), reducing their

capillary formation ability and promoting periodontal disease

progression, thus negatively affecting periodontal tissue

regeneration (91).
4.3.2 Mediation of alveolar bone resorption
and destruction

BEVs from periodontal pathogens can influence osteoblasts and

osteoclasts through various mechanisms, leading to an imbalance in

periodontal bone homeostasis and exacerbating alveolar bone

resorption. Indirectly triggering bone destruction by inducing

inflammatory responses is a common mechanism. Studies have

shown that EVs from P. gingivalis, T. forsythia, Streptococcus oralis

(S. oralis), and F. alocis preferentially activate TLR2 to induce

osteoclastogenesis, with aberrant osteoclast activation,

consequently cause bone metabolism imbalance and eventual

alveolar bone loss (92, 93). Likewise, BEVs produced from Gram-

negative periodontal pathogens act on TLR2 primarily through

lipoproteins and/or LPS (93). Additionally, F. alocis effectively

activates the MAPK and NF-kB signaling pathways downstream

of TLR2 and increases the RANKL/OPG ratio in bone-derived

mesenchymal stromal cells (BMSCs), thus promote osteoclast

differentiation, inhibit osteoblast differentiation, and lead to

enhanced bone resorption (94). OMVs from P. gingivalis can also

be internalized by human periodontal ligament cells (hPDLCs),

inducing apoptosis and promoting alveolar bone resorption, a

process regulated by microRNA-sized small RNAs (msRNA) such

as sRNA45033 in P. gingivalis OMVs, which modulate DNA

methylation (61). F. nucleatum OMVs enter human periodontal

ligament stem cells (hPDLSCs) through endocytosis and activate

the NLRP3 inflammasome via the NF-kB (p65) signaling pathway.

This activation stimulates a series of cascade reactions, which

subsequently results in osteogenic differentiation and

mineralization impairment of hPDLSCs. Rat periodontitis models
FIGURE 4

Roles of Periodontopathogen-Derived BEVs in Periodontal Tissue Destruction. (A) BEVs cause periodontal tissue destruction by impairing bioactivity
of periodontal tissue cells such as gingival epithelial cells, human gingival fibroblasts (HGFs) and human umbilical vein endothelial cells (HUVECs).
BEVs can also disrupt and enter the epithelial layer to play toxic roles. (B) BEVs induce bone destruction by releasing virulence factors and
influencing the function of bone marrow stromal cells (BMSCs) and osteoclasts, to promote osteoclastogenesis and inhibit osteogenesis. BEVs can
also be endocytosed by human periodontal ligament stem cells (hPDLSCs) and activate the NLRP3 inflammasome via the NF-kB (p65) signaling
pathway. influencing osteogenic differentiation and mineralization.
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also proved F. nucleatum OMVs are important stimulators for

alveolar bone loss (72).
5 Applications of BEVs in periodontitis

BEVs embody the dual nature of a double-edged sword. On the

one hand, they contribute to the pathogenesis and are implicated in

the onset and progression of diseases. On the other hand, they play

a role in therapeutics, paving the way for innovative approaches to

the diagnosis and treatment of related conditions.
5.1 BEVs for diagnosing periodontitis

Oral biofluids, such as saliva and gingival crevicular fluid

(GCF), are rich of biomolecules from both host cells and resident

microorganisms, and are commonly used to identify diagnostic

markers for periodontitis (95). EVs found in these fluids are

emerging as potential biomarkers for periodontal diseases

(96–102). While most current research focuses on human-derived

components, much less is known about BEVs. Han (102) et al.

utilized LPS to label bacterial OMVs in saliva and found a

significant increase in the amount of LPS+ OMVs in the saliva of

patients with periodontitis compared to healthy individuals.

Quantitative PCR analysis of genomic DNA from saliva small

EVs (sEVs) indicated a marked increase in four periodontal

pathogens (T. denticola, E. corrodens, P. gingivalis, and F.

nucleatum) in the periodontitis group, with P. gingivalis and T.

denticola being the most sensitive. These findings suggest that LPS+

OMVs, along with OMVs from P. gingivalis and T. denticola,

could serve as potential diagnostic biomarkers for periodontitis.

However, this study had a small sample size, and pure OMVs from

specific periodontal pathogens were not isolated, warranting

further investigation.

Other studies have explored the expression of virulence factors

in OMVs as a diagnostic tool. For example, monoclonal antibodies

have been developed to recognize the conserved P. gingivalis

virulence factor RgpA-Kgp complex, forming the basis for a

saliva-based diagnostic kit to detect P. gingivalis and its OMVs

(103). However, the challenge remains in distinguishing BEVs from

human-derived EVs in saliva or GCF due to the lack of specific

markers (104). Therefore, separating BEVs for clinical diagnosis

remains complex and difficult.
5.2 BEVs in vaccine development for
periodontal diseases

BEVs are highly stable under various temperature and

treatment conditions, and do not possess the ability to self-

replicate, thus providing strong biosafety profiles (105). Due to

their nanoscale size, BEVs are preferentially taken up by dendritic

cells (DCs) (106). They also contain numerous immunogenic

surface- and membrane-associated components of their parent

bacterium, which can induce host immune responses (107, 108).
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Consequently, BEVs hold great promise as immunogenic biological

agents that activate the immune system to combat bacterial

infections. Moreover, BEVs can be bioengineered to express target

antigens with reduced toxicity (109), making them promising

candidates for vaccine development (110, 111).

For example, OMVs derived from P. gingivalis maintain the

immunodominant epitopes of the bacterium, while animal studies

by Nakao et al. (112) have demonstrated that intranasal

administration of P. gingivalis OMVs in mice induced the dose-

dependent production of salivary IgA, as well as serum IgG and IgA.

Previous studies have estabilished that Poly(I:C), a TLR3 agonist,

significantly increased antibody production and enhanced the

clearance of P. gingivalis (112, 113). Moreover, the study

confirmed the safety of low-dose intranasal immunization for

adjacent organs and the central nervous system (113). The strong

immunogenicity of P. gingivalis OMVs mainly originates from LPS

and A-LPS-modified proteins, such as gingipains in the OMVs,

while immune reactivity was significantly reduced after serum

absorption of LPS (114).

Despite the promising progress, BEVs are still far from being

used in clinical settings for the prevention of periodontal diseases.

This is primarily due to the high toxicity of BEVs, as well as

difficulties in isolating and characterizing them. Therefore, standard

methods are urgently needed to isolate and characterize BEVs.
5.3 BEVs for drug delivery

Traditional antibiotic administration delivers drugs

systemically via the bloodstream, allowing them to target

pathogenic bacteria located in different parts of the body.

However, this approach often lacks specificity, requiring higher

doses and increased frequency to reach therapeutic concentrations

at the infection site, which can lead to side effects and accelerate the

development of antibiotic resistance (115). In recent years, the use

of nanoparticle-based drug delivery systems has been extensively

studied. These systems can enhance drug solubility, modulate drug

release, target specific sites, and simultaneously deliver multiple

therapeutic agents (116). Compared to synthetic nanoparticle

carriers, naturally derived BEVs offer several advantages,

including small particle size, stable cargo-carrying capacity, and

high biocompatibility (117). BEVs possess immunogenic antigens

on their surface, which can elicit robust immune responses against

invading pathogens (107).

Additionally, BEVs are involved in signal transduction, facilitating

inter-bacterial communication and exchange, and can easily fuse with

bacterial membranes (118), delivering bioactive molecules to their

parent bacteria and surrounding microbes. Through genetic

engineering of parent bacteria, BEVs can be modified with targeting

ligands, enhancing drug accumulation at desired sites (119). BEVs

themselves can also be surface-modified to improve cellular or site-

specific targeting (120). Accordingly, BEVs have been explored as drug

delivery vehicles to enhance bacterial uptake of loaded antibiotics.

Previous evidence suggests that BEVs are more potent in delivering

autolysins and peptidoglycan hydrolases, resulting in higher bacterial

killing efficiency compared to gentamicin (121). Another study
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developed a novel antibiotic delivery system using OMVs isolated from

E. coli as a shell and rifampicin-loaded mesoporous silica nanoparticles

(MSNs) as the core. In contrast to conventional antibiotics, BEVs could

enhance antibiotic uptake and achieve superior antibacterial

effects (122).

Currently, the mechanisms of BEV-mediated delivery are not

fully understood, and there is a need to improve purification

processes and production yields, as well as to standardize the

techniques and analyses (123). While the application of BEV-

based drug delivery systems in clinical practice remains distant,

BEVs hold great promise as novel antibiotic delivery vehicles or

potential antimicrobial agents to effectively kill or inhibit

periodontal pathogens.
5.4 BEVs inhibitors for
inflammation control

Periodontopathic bacteria-derived EVs contain various toxic

factors that contribute significantly to periodontal tissue

destruction, as discussed previously. Inhibiting the release of these

EVs from periodontal pathogens could represent a therapeutic

approach to managing periodontitis. Peptidylarginine deiminases

(PADs), a group of calcium-activated enzymes, serve as toxic

components in P. gingivalis EVs. PADs convert arginine residues

into citrulline residues, which lead to the citrullination of host

proteins such as fibrinogen and a-enolase. This modification is

crucial for various physiological processes, including the biogenesis

of OMVs and the initiation of pathological inflammation (124). The

use of PAD inhibitors, such as GSK 199, BB-Cl-amidine, Cl-

amidine, and AMF30a, has been shown to effectively reduce BEVs

production (125, 126). Additionally, cannabidiol (CBD) has been

reported to inhibit the release of BEVs from Gram-negative

bacteria, potentially reducing antibiotic resistance (127).

Given BEVs’ ability to mediate immune-inflammatory responses

and promote periodontitis progression and tissue damage, finding

agents to reduce the release of pro-inflammatory factors induced by

BEVs opens new therapeutic avenues. Hop bract polyphenol (HBP),

for example, has been shown to inhibit the expression of

cyclooxygenase (COX)-2, IL-6, IL-8, and matrix metalloproteinases

(MMP)-1 and -3 in human gingival epithelial (HGE) cells challenged

with P. gingivalis EVs in a dose-dependent manner. This makes HBP

a promising inhibitor of the cell inflammatory response induced by P.

gingivalis EVs. Key active components of HBP, such as 2-[(2-

methylpropanoyl)-phloroglucinol]1-O-b-D-glucopyranoside

(MPPG) and kaempferol 3-O-b-glucopyranoside (astragalin), have

been identified as effective in mediating these anti-inflammatory

effects (128). Curcumin also shows notable efficacy, significantly

inhibiting P. gingivalis OMV-stimulated gene expression and

protein production of IL-6, IL-1b, and TNF-a in HGE cells, in a

dose-dependent manner. Additionally, curcumin attenuates the

cytotoxic effects of OMVs on cell migration and reduces OMV

adhesion, cell entry, and apoptosis, also in a dose-dependent

manner (129).

Probiotic therapy aimed at neutralizing the toxic effects of

periodontal pathogen-derived EVs may represent an emerging area
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of research. Microbial dysbiosis is critical in the progression of

periodontitis, typically involving a reduction in probiotic bacteria

and/or an increase in periodontal pathogens (130). Lactobacillus

reuteri (L. reuteri) is one of the most extensively studied probiotics

and shows potential as an adjunctive treatment for chronic

periodontitis (131). L. reuteri has been found to downregulate key

virulence factors of periodontal pathogens, interfere with interspecies

communication among pathogens, inhibit pathogenic adhesion and

invasion, and reduce virulence (132). Probiotic-derived EVs also

possess anti-infective properties (133). Notwithstanding current

evidence on the efficacy of probiotic-derived EVs in periodontal

inflammation control is limited, this approach does indicate a

promising direction for future research.
6 Conclusion and outlook

Extracellular vesicles (EVs) secreted by key periodontal

pathogens play a pivotal role in the interactions between bcteria

and between bacteria and the host, thereby influencing periodontal

homeostasis and contributing to the progression of periodontitis.

This review summarizes the production, composition, and

biological characteristics of BEVs from periodontal pathogens and

discusses recent advances regarding their involvement in the

pathogenesis, diagnosis, treatment, and prevention of periodontitis.

BEVs originate from parent bacterial cells, which carry and

transmit a variety of virulence factors. On one hand, BEVs can

induce local immune-inflammatory responses, while on the other,

they promote immune evasion by suppressing immune surveillance

and facilitating the proliferation of parent bacteria. BEVs promote

bacterial co-aggregation and play a role in biofilm pathogenicity. In

periodontitis, BEVs can directly damage periodontal connective tissues

and, through various mechanisms, indirectly mediate alveolar bone

resorption and destruction, thus contributing to disease progression.

Given their widespread presence in gingival crevicular fluid and

saliva, BEVs have been investigated as potential biomarkers for

periodontitis. Moreover, their biological properties suggest they are

promising candidates for vaccine development and drug delivery

systems. However, current research on the components and

pathogenic mechanisms of BEVs remains insufficient. Specific

markers for distinguishing and isolating EVs from different

sources are lacking, and standardized protocols for the

production and purification of BEVs still need to be developed.

In the future, further research on BEVs is expected to deepen our

understanding of their role in periodontal diseases. More efforts should

be made to clarify the detailed composition and specific pathogenic

mechanisms of BEVs. This knowledge could guide the development of

targeted therapies thatmitigate BEV-mediated inflammation and tissue

destruction. Identifying specific molecular markers that are unique to

periodontal pathogen-derived BEVs is crucial to enhance diagnostic

precision and therapeutic targeting. Developing cost-effective and

standardization of BEVs preparation processes will enhance the

reliability and reproducibility of their applications as vaccine

candidates and drug delivery materials.

Moreover, exploring new strategies to modulate the activity

of BEVs may provide novel therapeutic approaches for
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periodontitis. For example, developing novel drugs that can

block the harmful effects of BEVs or enhance their beneficial

functions could hold promise. The immunomodulatory

potential of probiotic-derived EVs represents an innovative

area for managing chronic periodontitis. Future research

should assess the anti-inflammatory effects and mechanism of

action of probiotic-derived EVs to determine their potential as

adjunct therapies in periodontitis treatment. Additionally,

combining BEVs with other advanced technologies such as

nanotechnology and immunotherapy, may lead to more

effective treatment options.

As our knowledge of BEVs continues to expand, their potential

applications in periodontal diagnosis, treatment, and prevention

will become more prominent, ultimately contributing to better

management of periodontal diseases and improve oral health.
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