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In recent years, tumors have emerged as amajor global health threat. An increasing

number of studies indicate that the production, development, metastasis, and

elimination of tumor cells are closely related to the tumor microenvironment

(TME). Advances in artificial intelligence (AI) algorithms, particularly in large

language models, have rapidly propelled research in the medical field. This

review focuses on the current state and strategies of applying AI algorithms to

tumor metabolism studies and explores expression differences between tumor

cells and normal cells. The analysis is conducted from the perspectives of

metabolomics and interactions within the TME, further examining the roles of

various cytokines. This review describes the potential approaches throughwhich AI

algorithms can facilitate tumor metabolic studies, which offers a valuable

perspective for a deeper understanding of the pathological mechanisms of tumors.
KEYWORDS
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1 Introduction

The tumor is characterized by the uncontrolled growth of abnormal cells, invasion of

adjacent parts of the body beyond normal boundaries, or metastasis to other organs,

ultimately leading to death (1). According to the World Health Organization, malignant

tumors have become one of the major threats to human health (2). Every year, millions of

people die from cancer, with lung cancer, colorectal cancer, liver cancer, breast cancer, and

cervical cancer being the most common types (3). During the development and progression

of tumors, tumor cells are exposed to harsh conditions (4). To survive and sustain growth,

cells must adapt to the environment. Cellular metabolic reprogramming is a mechanism by

which cells promote cell proliferation and growth by altering metabolic patterns to meet
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energy needs. Metabolic reprogramming not only helps tumor cells

resist external stress but also endows them with new functions, e.g.

immune suppression and evasion (5, 6). However, it is still difficult

to discover the signaling pathways and mechanisms that control the

metabolic reprogramming of tumor cells and immune cells.

To explore the above challenges, research on tumor metabolism

has gradually entered metabolomics. Metabolomics is the collection

of metabolites, or low molecule chemicals involved in metabolism,

and can directly reflect the functional readouts of biochemical

reactions, providing insight into many aspects of cell physiology.

Metabolomics has been applied in many aspects of tumor research,

including tumor pathology discovery, biomarker discovery, and

treatment efficacy evaluation (7, 8). Changes in the metabolic

spectrum reflect the process of tumor occurrence and

development. Another important area is the exploration of

personalized treatment strategies, namely the recognition of

personalized tumor biomarkers (9, 10). Moreover, tumor

metabolomics analysis can integrate biomolecular information,

kinetic data, and other omics data to further study the activity of

metabolites within tumor cells and track deep changes in metabolic

pathways (11).

With technological advancements, artificial intelligence (AI)

has increasingly been applied in tumor metabolomics research. AI

technology offers significant advantages in handling large-scale

data, uncovering complex biological networks, and improving

research accuracy. Specifically, AI can be utilized in various

research stages, including data preprocessing, feature extraction,

pattern recognition, and data integration. For example, deep

learning algorithms can identify feature peaks in mass

spectrometry data, increasing the accuracy of metabolite

identification. Machine learning methods can perform integrative

analysis of multi-omics data, helping to reveal intricate biological

networks and pathways. By integrating AI technology, researchers
Frontiers in Immunology 02
have achieved a more comprehensive and in-depth understanding

of tumor metabolism processes. These technologies not only

increase the efficiency and accuracy of data analysis but also offer

new perspectives for personalized medicine and precision therapy.

As AI technology continues to advance, further breakthroughs in

tumor metabolism research are anticipated, driving significant

progress in biomedical research.
2 Tumor microenvironment

Tumors are caused by the accumulation of genetic mutations

and global epigenetic changes in chromatin that regulate gene

expression (12). Genetic alterations in tumor suppressor genes or

oncogenes can lead to dramatic changes in gene expression leading

to cancer (13). Epigenetic modifications of chromatin, including

DNA methylation, histone modifications, nucleosome positioning,

and non-coding RNAs, can regulate DNA access to transcription

factors and other cis-regulatory elements, thereby affecting gene

expression (14). Genetic and epigenetic factors complement each

other to drive tumor initiation and progression. Figures 1A, B show

a graphical representation of various patient characteristics (e.g.,

gender, age, and dietary), environment (e.g., water, air, and stress),

tumor-intrinsic factors, and extrinsic factors affecting the cancer

cells and thereby regulate the tumor microenvironment (TME)

(13). Both intrinsic and extrinsic factors of tumors regulate the

immune response in the TME. Genomic mutations, chromatin

modifiers, and non-coding RNAs, among other intrinsic factors

of cancer cells, regulate tumorigenesis, metastasis, and

immunogenicity. Epigenetic modifications (such as DNA

methylation and histone acetylation) regulate gene expression

(15). Non-coding RNAs (including long non-coding RNAs,

microRNAs, and circular non-coding RNAs) regulate gene
FIGURE 1

Interactions between the influencing factors of tumor, tumor microenvironment, and tumor immunity. (A) The different influencing factors of tumor:
patient characteristics and environment. (B) The different influencing factors of tumor: tumor intrinsic and extrinsic factors. (C) The tumor
microenvironment with different cell types and their interactions directly affects cancer progression. They provide tumors with abundant nutrients
(including glucose, amino acids, lipids, proteins, etc.) and an immunosuppressive environment for tumor growth. (D) Immune checkpoint proteins
between immune cells and tumor cells are summarized.
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transcription and mRNA stability (16). Other intrinsic mechanisms

of cancer cells include the expression of immunosuppressive

cytokines to evade anti-tumor immunity, expression of

immunosuppressive molecules such as PD-L1 and PD-L2, and

inhibition of antigen processing and presentation mechanisms

and tumor-associated antigens (17). Extrinsic factors of cancer

cells include tumor-infiltrating immune cells, fibroblasts, stromal

cells, and endothelial cells (18). Extrinsic factors also include

secreted factors such as cytokines, chemokines, metabolites,

growth factors, and immune checkpoint molecules (19). Tumor-

associated antigens presented by antigen-presenting cells such as

macrophages and dendritic cells can activate CD8+ T cells and

thereby induce effective anti-tumor immunity. However, immune

checkpoint molecules expressed by cancer cells regulate the

inflammatory state of tumors and suppress inflammation

(Figure 1D) (20).

Tumor cells interact with normal cells and other factors to

create TME (21–23). TME contains blood vessels, immune cells,

stromal cells, fibroblasts, signaling molecules, and extracellular

matrix (Figure 1C) (20). The TME plays an important role in the

occurrence and development of tumors . Most ly , the

microenvironment of early-stage tumors tends to exert anti-

tumor effects, while the microenvironment of late-stage tumors

tends to worsen conditions (24). Moreover, the metabolism of

tumor cells is complex and heterogeneous, involving the

metabolism of glucose, lactate, pyruvate, glutamine, and fatty

acids (25). Tumor cells adapt to changes through remodeling in

different TME, including the production of ATP bioenergy, oxygen

balance, and nutrient absorption (26). Damaghi et al. (24) found

through their study of ductal carcinoma in situ cells that the harsh

TME promotes the Warburg effect through transcriptional

reprogramming. Due to the potential complex metabolic

interactions between the TME and tumor cells, studying the

relationship between the TME and metabolism can help elucidate

the remodeling mechanism of tumor tissue and the metabolic

changes in tumor cells.

The metabolic characteristics and preferences of tumor cells

constantly change during the development of tumors. Meanwhile,

the TME is a complex and constantly changing entity whose

composition varies depending on the type and location of the

tumor (27). The communication between the tumor cells and

TME results in specific patterns of tumor cell growth and

development and has spawned various ways to help tumor cells

evade immune surveillance (28). Fibroblasts regulate the

production of extracellular matrix and tumor signaling molecules,

promoting tumor growth, invasion, and metastasis (29). Tumor

cells and specific cells of the TME avoid or inhibit immune

responses by inhibiting the proliferation of helper and cytotoxic T

cells or by promoting the recruitment of immune suppressive

regulatory T cells (Treg) and bone marrow-derived suppressive

cells (MDSC) mediated by inflammation (30). Chekulayev et al. (31)

discovered the “reverse Warburg effect” when studying the crosstalk

between colon cancer cells and stromal cells. Rossi et al. (32)

reported that microbial metabolites can be important regulatory

factors in the TME, regulating inflammation, proliferation, and cell

death in a positive or negative manner. In pancreatic
Frontiers in Immunology 03
adenocarcinoma, stromal-associated pancreatic stellate cells

secrete alanine, which provides carbon and nitrogen for tumor

cell proliferation (33).
3 Tumor metabolism

Metabolites are extremely sensitive to internal signals and

external stimuli, which means that metabolomics has the

potential to become a probe of biological phenotypes, revealing

what is happening inside cells. Metabolomics can systematically

identify and quantify all metabolites in biological samples at high

throughput, providing key information about the state of cancer

that other omics technologies cannot. Metabolic perturbations can

lead to characteristic metabolic phenotypes that can be used for

early cancer diagnosis, surveillance, and as targets for cancer

therapy. Studying tumor metabolism involves analyzing a series

of biochemical reactions in tumor cells, which involve various types

of reactants and their related enzymes (34–36). Therefore, studying

changes in metabolism-related substances is the foundation of most

tumor metabolism research.

Analytical methods to study metabolomics include the use of

classical chemical analysis (37, 38), nuclear magnetic resonance

(NMR) (39–41), and mass spectrometry (MS) (42–44). These

methods have the advantage of high identification and

quantitative accuracy when studying biochemical reactions related

to tumor metabolism. However, there are also some disadvantages.

For example, NMR spectroscopy requires high purity samples,

which limits its applicability in analyzing the fine structure of

metabolites (45). MS has been fueled by combining with highly

efficient separation techniques such as gas chromatography or

liquid chromatography, which improve the resolution of analytes

by increasing sensitivity and specificity (46). Although these

combinations allow the detection of more analytes with high

sensitivity and specificity, MS-based techniques still face several

challenges, such as the chromatographic separation of isomers, the

elimination of exogenous contaminants, the lack of a complete

reference database, and the identification of unknown

metabolites (47).

Advances in single-cell sequencing, spatial transcriptomics,

proteomics, and artificial intelligence have propelled tumor

metabolomics into a new era. AI significantly contributes to

elucidating tumor metabolism mechanisms, identifying diagnostic

and prognostic biomarkers, and facilitating clinical applications.

For example, Zhao et al. (48) successfully demonstrated the utility

of machine learning algorithms in enhancing diagnostic accuracy

for early-stage esophageal squamous cell carcinoma (ESCC). The

study employed Uniform Manifold Approximation and Projection

(UMAP) and Hierarchical Clustering Analysis (HCA) to categorize

tissue samples into distinct groups. Orthogonal Partial Least

Squares Discriminant Analysis (OPLS-DA) revealed significant

metabolic differences between ESCC tumors and normal mucosa.

Additionally, Random Forest analysis was utilized to identify

critical metabolic biomarkers, such as glutamate, which effectively

distinguished early-stage ESCC from normal tissues. Support

Vector Machine (SVM) models were further applied to develop
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simplified metabolite panels, achieving an area under the curve

(AUC) of 0.984 in serum samples. These findings illustrate that AI

algorithms have become integral to nearly every aspect of tumor

metabolism research (48). The emergence of advanced algorithms

has significantly enhanced our understanding of tumorigenesis. For

instance, Deng et al. (49) developed an explainable deep learning

algorithm, DeepMSProfiler, which effectively removes batch effects

by systematically excluding batch-related information through

hidden layers. Building on this algorithm, the integration of

metabolomics and methylation data in the study verified the

associations between the PLA and UGT gene families and

disease-specific metabolites. Su et al. (50) revealed the drug

resistance pathway in melanoma cells through single-cell multi-

omics analysis, providing a key and unique tool for addressing the

signaling pathway function and metabolic changes in the adaptive

development of drug resistance in tumor cells. Sun et al. (51) used

spatial metabolomics to locate and analyze metabolites of different

metabolic pathways in the tissues of 256 esophageal cancer patients,

revealing the molecular level of tumor occurrence from metabolites

to enzymes and providing a new perspective for understanding the

metabolic reprogramming of tumors. Jin et al. (52) established a

relationship between metabolic characteristics and oncogenic

mutations of receptor tyrosine kinase by integrat ing

metabolomics and transcriptomics, providing a basis for

metabolic targeted therapy of specific tumor genotypes.

Almost all malignant tumors exhibit uncontrolled cell

proliferation (53). To support cell growth, tumor cells must

adaptively adjust their metabolism to meet their material and

energy needs (54). Otto Warburg and colleagues first discovered

that tumor cells tend to convert oxidative metabolism into

fermentation metabolism (55). In normal cells, most of the

pyruvate formed by glycolysis enters the tricarboxylic acid cycle

and is oxidized through oxidative phosphorylation (OXPHOS) (56).

In contrast, in tumor cells, most pyruvate is converted into lactate

through fermentation, a phenomenon known as the “Warburg

effect” (57, 58). Through competitive uptake of glucose, cancer

cells gain a survival advantage over normal cells through metabolic

adaptations in oxygen-limited conditions. Moreover, cancer cells

need to use their nutrient inputs as cellular building blocks. Thus,

cancer cells switch from OXPHOS (nutrient-consuming) to

glycolysis (biomass-building) pathways to support their rapid,

uncontrolled proliferation. Hu et al. (59) found that the overall

metabolic status of different tumors was similar, such as the

upregulation of nucleotide biosynthesis and glycolysis. However,

the expression of specific metabolic pathways, such as OXPHOS, is

heterogeneous among different tumors (60).
4 Metabolic modulation of cell-
mediated immunity

With the deepening of research, researchers have discovered

that tumors are essentially a metabolic disorder, in which several

major metabolic pathways are altered to accommodate increased

proliferation of tumor cells, and the reprogrammed metabolic

pathways include glucose, amino acids, lipids, and other
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metabolism. The metabolic reprogramming not only meets the

nutritional or energy needs of tumor cells but also affects the

function of immune cells (61). Understanding the metabolic

modulation of tumor immunity may provide therapeutic insights

into immunotherapy resistance and facilitate the development of

new strategies for tumor therapy.
4.1 Glycolysis metabolism

Glycolysis (2 mol APT/mol glucose) is a less efficient pathway for

ATP production than mitochondrial OXPHOS (36 mol ATP/mol

glucose). However, the rate of glycolysis is 10~100 times faster than

the rate of mitochondrial TCA cycle and OXPHOS. Therefore, the

amount of ATP produced by the two metabolic pathways of glucose

is similar at the same time. In tumor cells, glucose is metabolized by

glycolysis, producing lactate and nicotinamide adenine dinucleotides

under aerobic conditions. The low-yielding but high-rate ATP

production mode is more conducive to the competition of tumor

cells for nutrients and meets their energy demand for rapid growth.

Tumor cells take up a large amount of glucose from the environment

with a strong competitive advantage, ensuring their energy supply

and self-growth, depriving immune cells of glucose utilization, and

inhibiting their tumor cell-killing effect. In addition, glucose

metabolism including glycolysis, pentose phosphate pathway,

hexosamine pathway, and glycogen synthesis are reprogrammed in

tumor cells (62). As shown in Figure 2, pyruvate kinase M2 (PKM2),

which is highly expressed in tumors and promotes the Warburg

effect, is upstream of the decision point between glycolytic and

oxidative metabolism. PKM2 converts phosphoenolpyruvate (PEP)

into pyruvate, which can be metabolized either to lactate or acetyl-

CoA (63). Moreover, PKM2 also functions as a transcriptional

coactivator, PKM2 interacts with HIF-1a in the nucleus and binds

to the PD-L1 promoter region, enhancing the expression of PD-L1 in

tumor cells (64). The interaction between the immune checkpoint

PD-L1 and B7-H3 activates the classic aerobic glycolytic pathway

PI3K-AKT mTOR in tumor cells (65). Moreover, due to glucose

deprivation and downregulation of mTOR activity, the glycolytic

signaling pathway PI3K-AKT mTOR is inhibited in T cells (66). In

addition, the CTLA-4 pathway competitively inhibits CD28-

mediated co-stimulation and reduces Akt phosphorylation and

activation, thereby impairing T-cell glucose metabolism and

mitochondrial remodeling (67). Moreover, the interaction between

immune checkpoints and their ligands (such as PD-1/PD-L1 and

CTLA-4/CD86) further participates in the metabolic reprogramming

of tumor cells and immune cells (68). In summary, the synergistic

effect of tumor metabolism regulation and inhibition of immune

checkpoints in the TME can activate the host anti-tumor

immune response.

Compared with normal cells, tumor cells utilize a large amount

of glucose to produce lactate under aerobic conditions and provide

the amino acids and intermediate metabolites of the pentose

phosphate required for tumor cell proliferation. The

accumulation of lactate in the TME has profound effects on

immune cells. In Figure 3A, tumor cells consume large amounts

of glucose, which is associated with poor CD4+ and CD8+ T cell
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infiltration (69). High glucose depletion leads to the production and

secretion of lactate into the TME, where lactate acts in an

immunosuppressive manner, reduces the cytolytic activity of

natural killer (NK) cells, and enhances PD-1 expression and the

immunosuppressive capacity of Treg. In addition, lactate increases

the frequency of MDSC in tumors and spleen and induces “M2-

like” polarization in tumor-associated macrophages. Additionally,

the accumulation of lactate in tumors leads to a pH decrease and

hinders the ability of dendritic cells (DC) to recognize and present

antigens, as well as the stability of antigen MHC-I complexes

(Figure 4) (20). Acidification also reduces the ability of mannan

receptors (MR) to bind to antigens, inhibits glycolysis, and

promotes monocyte differentiation into monocyte-derived

dendritic cells. Moreover, lactate in tumors inhibits toll-like

receptor 3 (TLR3) and stimulator of interferon genes (STING)

leading to interferon-g reduction, accelerates antigen degradation,

and impairs cross-presentation. Pilon-Thomas et al. (70) reported

that neutralizing the acidity of TME with bicarbonate can increase T

cell infiltration and improve response to immunotherapy in

immune checkpoint inhibition and adoptive cell transfer therapy.
4.2 Amino acid metabolism

Amino acids are essential for maintaining the rapid

proliferation of tumor cells. Besides as substrates for protein

synthesis, amino acids play an important role in energy
Frontiers in Immunology 05
production, lipid and nucleic acid synthesis, and cellular redox

homeostasis maintenance. The increased demand for amino acids

results in tumor cells becoming strongly dependent on exogenous

amino acids or reprogramming of amino acid metabolism.

Alterations in amino acid metabolism can be used not only as

clinical biomarkers of cancer progression but also as

therapeutic targets.

Glutamine is an important metabolic fuel that helps meet the

high demand for energy, biosynthetic precursors, and reducing

agents in rapidly proliferating cancer cells (71). In Figure 2,

glutamine is transported to the cytoplasm through the solute

carrier family 1, member 5 (SLC1A5) (72), and is converted to

glutamate in the mitochondria through a deamination reaction

catalyzed by glutaminase. Glutamate is converted to the TCA cycle

intermediate a-ketoglutarate (a-KG) by glutamate dehydrogenase

(73). a-KG is a critical metabolite that serves in both ATP

production and in replenishing TCA cycle intermediates (74).

Glutamine metabolism is essential for developing effector T cells

(75). The overexpression of inhibitory receptors (such as CTLA-4

or PD-1) can inhibit the upregulation of glucose and glutamine

metabolism after TCR involvement and co-stimulation (76, 77).

The interaction between PD-1 and PD-L1 or PD-L2 can inhibit the

PI3K-Akt mTOR pathway (78) and disrupt T cell metabolic

reprogramming, including glutaminolysis (79). Huang et al. (80)

reported that SLC1A5 overexpression can stimulate the growth and

survival of colon cancer cells. In Figure 3B, glutamine depletion in

cancer cells decreases the activation and infiltration of CD8+ T cells
FIGURE 2

Metabolic regulation of tumor cells and immune cells. T cell immunometabolism and tumor metabolism are displayed. Crosstalk between
intracellular metabolic and immune checkpoints is indicated by a transparent black line.
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and enhances the recruitment of MDSC by increasing the secretion

of granulocyte-colony stimulating factor (69).

Arginine is a versatile amino acid. In addition to being a building

block in protein synthesis, it is a precursor of nitric oxide (NO),

creatine, and polyamines. The arginine metabolic pathway is shown in

Figure 2, and there are two main metabolic pathways: Arginine is

metabolized into citrulline and NO by nitric oxide synthase, and into

ornithine and urea by arginase. Ornithine is an important resource for

putrescine, which is a key precursor for polyamines. NO plays a

diverse role in tumorigenesis and metastasis, and the promotion or

inhibition of tumors depends on sensitivity to NO, exposure time, and

NO concentration (81). Low concentrations of NO (<100 nmol/L)

may promote tumor development by inhibiting apoptosis and

stimulating endothelial cell proliferation. In contrast, high

concentrations of NO (400-1000 nmol/L) would disrupt the cell

cycle and accelerate cellular apoptosis (82). Because tumor cells rely

on arginine in the TME, depriving tumors of arginine has emerged as

a novel anti-tumor therapy and has shown encouraging efficacy in

clinical trials against certain types of cancer. However, simply

depriving arginine not only starves tumor cells but also impairs the

anti-tumor immune response. Geiger et al. (83) reported that the

reduction of intracellular arginine negatively affected the survival of T

cells. When arginine is completely depleted in the medium, the cell
Frontiers in Immunology 06
cycle of T cells is arrested in the G0-G1 phase. Arginine

supplementation, while enhancing the anti-tumor immune response,

may support tumor growth. Both deprivation and supplementation

alter arginine levels in the TME, which influences all cells. To achieve

tumor-specific arginine restriction without influencing immune cells,

an in-depth study of differences in arginine metabolism between

tumor cells and immune cells is needed.

Tryptophan, an essential amino acid, plays a vital role in protein

biosynthesis and serves as a precursor for the synthesis of a variety

of important bioactive compounds. As shown in Figure 2,

tryptophan is first converted to N-formyl kynurenine, which is

deformylated by arylformamidase to kynurenine (Kyn) (84). Kyn

then activates the transcription factor aryl hydrocarbon receptor

(AhR). Activated AhR could upregulate levels of PD-1 in T cells,

inhibiting the anti-tumor immune response (85). Tryptophan

metabolism and its key enzymes affect a variety of cell biology

functions, including immune response, cell proliferation, and

migration, through interactions with downstream molecules or

pathways. Le Naour et al. (86) found that tryptophan is

associated with restricting immune response in the TME and is

often upregulated in human tumors. Targeted therapy based on

tryptophan metabolism provides a new and potentially

advantageous therapeutic strategy for cancer.
FIGURE 3

Metabolic reprogramming is associated with immunosuppression and evasion. (A) Tumor cells consume large amounts of glucose, which is
associated with poor T cell infiltration. High glucose depletion leads to the production and secretion of lactate into the TEM, where lactate acts in an
immunosuppressive manner, reduces the cytolytic activity of NK cells, and enhances PD-1 expression and the immunosuppressive capacity of Treg
cells. In addition, lactate increases the frequency of MDSCs in tumors and spleen and induces "M2-like" polarization in tumor-associated
macrophages. (B) glutamine depletion in cancer cells decreases the activation and infiltration of CD8+ T cells and enhances the recruitment of
MDSCs by increasing the secretion of G-CSF.
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4.3 Lipid metabolism

Lipids are essential nutrients for cells, the main structural

components of cell membranes, signal molecules, and energy

providers. The most common lipids include fatty acids,

triglycerides, sphingolipids, phospholipids, and cholesterol (87).

In addition, abnormal fatty acid metabolism is related to the

occurrence and development of tumors, such as liver cancer,

gastric cancer, ovarian cancer, and cervical cancer (88–90).

The sterol regulatory element binding protein pathway in lipid

metabolism controls lipid synthesis in cells (91). In Figure 2, De

novo synthesis of lipids can promote high expression of PD-L1 and

tumor immune suppression through palmitoylation of the immune

checkpoint PD-L1 (92). In addition, PD-1 stimulates the AMP-

activated protein kinase activity, inhibits glycolysis, and promotes

fatty acid oxidation by upregulating activated CD4+ T cells, thereby

inhibiting the development of effector T cells (93). The lipid

transporter protein CD36 mediates intracellular fatty acid uptake

and lipid droplet growth (94). CD36-mediated fatty acid uptake in

tumor-infiltrating CD8+ T cells activates lipid peroxidation and iron

apoptosis, while CD36 deficiency inhibits tumor growth (95). In

addition, CD36 on the surface of CD8+ TILs takes up oxidized low-

density lipoprotein and induces lipid peroxidation, thereby

promoting CD8+ T cell dysfunction in tumors (96). Cholesterol
Frontiers in Immunology 07
metabolism regulates the antitumor activity of CD8+ T cells.

Inhibition of acetyl-CoA acetyltransferase-1 increases plasma

membrane cholesterol levels and enhances the effector and

proliferation function of CD8+ cells (97).
5 Metabolic modulation of
humoral immunity

The phenotype and function of T cells in the TME have been

extensively studied, but the role of immune metabolism in B cell

function, differentiation, and its impact on tumor immunity

remains elusive, perhaps partially due to their range of actions

and heterogeneity. B cell activation triggered by antigen binding to

the B cell receptor (BCR) triggers naive B cell proliferation and

differentiation into plasma cells that produce specific antibodies.

This process requires increased energetic activity to supply

sufficient energy and raw material. Upon receiving antigenic

stimulation, the metabolic requirements of B cells undergo

significant changes. Activated B cells rapidly increase glycolysis,

the TCA cycle, and oxidative metabolism, whereas naive B cells

exhibit metabolic quiescence (98). Upon activation of the BCR, B

cells tend to aerobic glycolysis and produce more lactate. Antigen-

stimulated B cells undergo glycolysis mainly before the S phase.
FIGURE 4

Nutrient regulation of immune responses in the tumor microenvironment. In the tumor microenvironment, a decrease in nutrients and an increase
in immunosuppressive metabolites can impair the immune response to tumors.
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Once in the S phase, B cells skew to the pentose phosphate pathway,

possibly to provide ribose-5-phosphate for nucleotide synthesis and

NADPH for redox homeostasis (99). Additionally, plasma cells

utilize amino acid metabolism, mitochondrial respiration, and the

TCA cycle to maintain antibody secretion (100). Glycolysis is

increased in regulatory B cells and their differentiation is

associated with hypoxic environments, but their metabolic profile

remains incompletely understood (101).

In the TME, B lymphocytes can exhibit anti-tumor or pro-

tumor characteristics depending on localization, tumor type, TME,

and antibody isotype (102). For example, B lymphocytes in

hepatocellular carcinoma can express anti-tumor cytokines, e.g.,

IFN-g, IL-12, TRAIL, and granzyme B (103). In contrast, B cells can

also secrete anti-inflammatory molecules, e.g., TGF-b, IL-10, and
IL-35, and release immunosuppressive factors, such as PD-L1, Tim-

1, and FASL (104–106).

In B-cell lymphoma, the redox state of tumor cells is

imbalanced due to rapid proliferation. To avoid cell damage and

apoptosis caused by abnormal oxidative stress, the pentose

phosphate pathway is selectively activated by serine/threonine

protein phosphatase type-2A to produce NADPH to maintain

redox homeostasis. There are “metabolic checkpoints” during the

development of B cells to avoid overactivation and malignant

transformation. For example, the transcription factors paired box

5 and Ikaros family zinc finger 1 in B cells can limit intracellular

energy metabolism. This process reduces glucose uptake and ATP

synthesis, limiting cell proliferation by restricting energy

metabolism (107). The use of agonists of paired box 5 and Ikaros

family zinc finger 1 increases the expression of glucose feedback

sensor thioredoxin interacting protein and cannabinoid receptor 2

restricting the glucose uptake and limiting the B cells glycolysis, in

combination with glucocorticoids, and has a potential therapeutic

effect in B-cell lymphoma. Additionally, Feist et al. (108) reported

that the aspartate aminotransferase glutamic-oxaloacetic

transaminase 2/signal transducer and activator of transcription-3/

p65 signaling pathway is essential for lymphocyte malignant

proliferation. Xiong et al. (109) reported that MYC-phosphate

cytidylyltransferase 1 choline-a induced abnormal choline

metabolism and hindered necrosis in B-cell lymphoma. These

studies reveal the potential clinical application prospects of using

exogenous metabolic modulators to limit the proliferation of

malignant tumors. In summary, tumor metabolism affects tumor

therapy by altering the TME and resetting immune cells. Tumor

metabolomics is becoming a new research hotspot.
6 Advanced artificial intelligence
methods in tumor metabolomics

Tumor metabolism and the TME are complex, dynamic

systems that play pivotal roles in tumor progression and immune

evasion. Traditional methods for studying tumor metabolism, such

as chemical screening, gene knockout, and mass spectrometry

imaging, have provided valuable insights but also face limitations

in terms of operational complexity and personalized metabolic

analysis (110). To overcome these challenges, AI has emerged as
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a powerful tool, revolutionizing the field of metabolomics by

enabling more robust and comprehensive data analysis.

The study of tumor metabolism requires the integration of

various omics technologies, including metabolomics, epigenomics,

and proteomics, with a primary focus on metabolomics.

Metabolomics is a technique used to analyze small molecule

compounds and can be divided into four categories based on

research objectives: metabolite target analysis, metabolite

fingerprint analysis, metabolite profile analysis, and metabolomics

analysis. With advancements in sequencing technology and AI,

researchers are developing more robust methods for metabolite

analysis and quantification via data-driven approaches

(Figure 5) (111).

AI encompasses a range of tools and mathematical methods

that enable computer systems to perform tasks and make decisions

that typically require human intelligence. AI technologies can be

classified into several main categories. Unsupervised learning

involves modeling the underlying structure of unlabeled data via

techniques such as principal component analysis (PCA) (112), t-

SNE (113), and autoencoders (112). On the other hand, supervised

learning learns from labeled datasets to focus on predictive tasks.

Deep learning, which includes multilayered neural networks such as

artificial neural networks (ANNs) (112), automatically learns

hierarchical features from raw data and has greatly supported

metabolomics research. Additionally, natural language processing

(NLP) models such as BERT and GPT have introduced new

approaches to metabolomics research (114, 115). These AI

advancements aid biologists and medical researchers in various

aspects of omics studies, including experimental design, data

preprocessing, metabolite annotation, data analysis, multi-omics

integration, and clinical applications. This study summarizes the

main steps in metabolomics research and the development of AI

technologies (Table 1).
6.1 Data preprocessing

After acquiring mass spectrometry data, several processing

steps are typically performed before the data can be annotated.

These steps include format conversion, peak detection, peak

alignment, calculating peak areas, and filtering to eliminate

redundancies (111, 146).

Several deep learning algorithms are particularly suitable for

preprocessing mass spectrometry data. For example, convolutional

neural networks (CNNs) excel at capturing local features by

detecting patterns such as peaks and characteristic signals

through convolution operations (43, 112, 147). Furthermore,

CNNs achieve scale invariance through pooling operations,

enabling the model to recognize the same features at different

scales, thus enhancing robustness and generalization (148).

Melnikov et al. (111) developed the “peakonly” algorithm,

utilizing CNNs to enhance peak detection and integration in LC-

MS data for metabolomics, achieving high precision and flexibility

in managing noisy peaks. Similarly, research by Risum A.B (117).,

Kantz (119), and Lim (120) demonstrates the application of CNNs

for tasks such as peak identification and alignment. Improved RNN
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TABLE 1 Available ML algorithms of metabolomics.

Tool/Algo-
rithm Name

Data
Processing
Stage

Omics
Type

Functionality Method
Category

Specific
algorithm

Publication
Year

Reference

Sample
collection &
Pre-Processing

NMR Spectrum Reconstruction & Peak
Intensity Calibration

ML/DL LSTM, DNN 2019 (116)

Sample
collection &
Pre-Processing

GC-MS Peak Detection, Peak Classification ML/DL CNN 2019 (117)

(Continued)
F
rontiers in Immuno
logy
 09
FIGURE 5

Applications of AI in tumor metabolomics. AI technologies play crucial roles in various stages of tumor metabolomics research, including
experimental design, data preprocessing, metabolite annotation, data analysis and omics integration, and clinical applications. Three AI technologies
—machine learning, deep learning, and natural language processing—contribute significantly to each stage.
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TABLE 1 Continued

Tool/Algo-
rithm Name

Data
Processing
Stage

Omics
Type

Functionality Method
Category

Specific
algorithm

Publication
Year

Reference

konly Sample
collection &
Pre-Processing

LC-MS Peak Detection, Peak Integration ML/DL CNN 2020 (111)

ChromAlignNet Sample
collection &
Pre-Processing

GC-MS Peak Alignment, Peak Filtering ML/DL LSTM (Long
Short-
Term
Memory)

2019 (118)

Sample
collection &
Pre-Processing

LC-MS Peak Detection, Artifact Elimination ML/DL CNN 2019 (119)

Metabolite
Annotation

Raman
spectra

Component Identification ML/DL CNN 2018 (120)

Metabolite
Annotation

FTIR, MS Structure Identification, Functional
Group Prediction

ML/DL Autoencoder,
MLP (Multi-
Layer
Perceptron)

2020 (121)

Metabolite
Annotation

LC-MS Spectral Prediction,
Fragmentation Prediction

ML/DL ANN 2016 (122)

NEIMS Metabolite
Annotation

GC-MS Spectral Prediction ML/DL MLP 2019 (123)

DeepCCS Metabolite
Annotation

IMS CCS Value Prediction ML/DL CNN 2019 (124)

DarkChem Metabolite
Annotation

MS m/z and CCS Value Prediction,
Structure Prediction

ML/DL VAE
(Variational
Autoencoder)

2020 (125)

MSHub Sample
collection &
Pre-Processing

GC-MS Auto-deconvolution, Fragmentation
Pattern Analysis, Data Sharing,
Molecular Networking,m/z and
Retention Time Shift Analysis

ML/DL One-Layer
Neural
Network

2021 (126)

Combat Data Analysis/
Omics
Integration

MS Batch Correction ML/DL Empirical
Bayes
Framework

2007 (127)

MNN Data Analysis/
Omics
Integration

MS Batch Correction ML/DL Mutual
Nearest
Neighbor
(MNN)

2018 (128)

Spec2Vec Data Analysis/
Omics
Integration

LC-MS Spectral Similarity Calculation, Library
Matching, Molecular Networking

LLM/NLP Word2Vec 2021 (129)

METLIN Metabolite
Annotation

LC-MS Compound Identification ML/DL Input-Output
Kernel
Regression
Model

2018 (130)

MassBank Metabolite
Annotation

GC-MS Compound Identification,
Data Repository

ML/DL Weighted
Cosine
Correlation

2010 (131)

SIRIUS 4 Metabolite
Annotation

LC-MS Isotope Pattern Scoring, Fragmentation
Tree Computation, Element Detection,
Structure Prediction

ML/DL DNN/
Bayesian
Network
Scoring

2019 (132)

CANOPUS Metabolite
Annotation

LC-MS Compound Class Annotation ML/DL DNN (Deep
Neural
Network)

2020 (133)

(Continued)
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structures, like long short-term memory (LSTM) networks and

gated recurrent units (GRUs), can capture long-range

dependencies, aiding in analyzing temporal correlations in mass

spectrometry data (149). For instance, Li and colleagues developed

ChromAlignNet based on LSTM, a deep learning model that

significantly improves peak alignment in GC-MS data,

outperforming existing methods and requiring no user input for

reference chromatograms and parameters (118). Metabolomics

spectral and mass spectrometry data, essentially continuous two-

dimensional data, can be encoded for processing by large language

models. However, there currently lacks a dedicated natural

language processing model for this preprocessing task, which

warrants attention.
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6.2 Metabolite annotation

Metabolite annotation involves translating spectral patterns

into matching chemical molecules. The most common approach

involves matching mass spectra (GC-MS’s electron ionization (EI)

and LC-MS’s tandem MS) with reference library spectra of known

molecules (150). This step is currently the most widely applied

machine learning application in metabolomics, as AI can enhance

both matching and reference library generation.

The main steps in spectral matching involve comparing the

query spectrum with the library spectrum and calculating similarity

scores. Machine learning models, such as the DNN-based SIRIUS 4

(132), the MLP-based MSNovelist (142), and the CNN-based
TABLE 1 Continued

Tool/Algo-
rithm Name

Data
Processing
Stage

Omics
Type

Functionality Method
Category

Specific
algorithm

Publication
Year

Reference

MS2Mol Metabolite
Annotation

LC-MS De Novo Structure Prediction, Unknown
Metabolite Identification

LLM/NLP Transformer 2023 (134)

Mmvec Data Analysis/
Omics
Integration

– Microbe-Metabolite Association LLM/NLP Word2Vec 2013 (135)

MetGem Metabolite
Annotation

LC-MS Molecular Network Visualization,
Spectral Similarity Calculation

ML/DL t-SNE 2018 (113)

iMet Metabolite
Annotation

LC-MS Structural Annotation, Novel
Metabolite Identification

ML/DL Radan forest 2017 (136)

MassGenie Metabolite
Annotation

LC-MS De Novo Structure Prediction,
Molecular Identification

LLM/NLP Transformer 2021 (114)

MIST (Metabolite
Inference with
Spectrum
Transformers)

Metabolite
Annotation

LC-MS Small Molecule Structure Elucidation LLM/NLP Transformer 2022 (137)

RT-Transformer Metabolite
Annotation

LC-MS Metabolite Identification LLM/NLP Transformer 2024 (138)

BERT-m7G Data Analysis/
Omics
Integration

– Identification of RNA Modifications LLM/NLP Transformer 2021 (139)

Bert2Ome Data Analysis/
Omics
Integration

– Identification of RNA Modifications LLM/NLP Transformer/
CNN

2023 (140)

IDSL_MINT Metabolite
Annotation

LC-MS Annotation of Untargeted Metabolomics
and Exposomics Data

LLM/NLP Transformer/
CNN

2024 (141)

MSNovelist Metabolite
Annotation

LC-MS De Novo Structure Prediction, Small
Molecule Structure Elucidation,
Fingerprint Prediction

ML/DL MLP 2022 (142)

MS2Prop Metabolite
Annotation

LC-MS Property Prediction,
Compound Identification

LLM/NLP Transformer/
CNN

2022 (143)

Mass2SMILES Metabolite
Annotation

LC-MS Chemical Structure Prediction,
Functional Group Prediction, Molecular
Formula Prediction

LLM/NLP Transformer/
CNN

2023 (144)

MS2DeepScore Metabolite
Annotation

LC-MS Structural Similarity Prediction, Spectral
Similarity Calculation, Spectral
Library Matching

ML/DL Siamese
neural
network

2021 (145)
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1514977
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hai et al. 10.3389/fimmu.2024.1514977
DeepCCs (124), are widely used for spectral prediction,

fragmentation prediction, and structure identification. Notably,

large language models (LLMs), a type of deep learning AI model,

excel in various tasks, particularly natural language processing

(NLP) (151). LLMs, such as OpenAI’s GPT-X and Google’s

BERT, are composed of neural networks with numerous

parameters and trained on vast amounts of unlabeled data via

self-supervised or semi-supervised learning (151). These models are

also used in protein structure prediction and drug screening (151).

LLMs’ capabilities in handling complex data, pattern recognition,

and reading scientific literature make them suitable for spectral

matching and metabolite annotation. For example, Fakouri Baygi

et al. (141) developed IDSL_MINT, a cheminformatics deep learning

framework based on transformer models, which predicts molecular

fingerprint descriptors from MS/MS fragmentation spectra and

facilitates the training of predictive models from various mass

spectral libraries. RT-Transformer is another deep neural network

model that uses graph attention networks and 1D-Transformer to

predict retention times via various chromatographic methods,

showing competitive performance and excellent scalability, thus

increasing the accuracy of metabolite identification in liquid

chromatography (138).

Although still in the early exploration stages and limited by the

number of tokens in semantic libraries, LLMs present a promising

solution for handling larger databases and various forms of

metabolomics annotation sources.
6.3 Multi-omics joint analysis

We are in an era of data explosion, where the advancement of

sequencing technologies has accumulated an unimaginable volume

of data over the past few decades. This includes genomics,

transcriptomics, epigenomics, proteomics, and microbiomics.

Several successful examples have demonstrated the powerful effect

of integrating multi-omics in biological and medical research. For

instance, Chakraborty et al. (152) integrated ChIP-Seq and RNA-

Seq data to study head and neck squamous cell carcinoma

(HNSCC), finding that tumor-specific histones H3K4me3 and

H3K27ac are associated with transcriptional changes in HNSCC

driver genes, such as EGFR, FGFR1, and FOXA1. Additionally,

Vaske et al. (153) used the path recognition algorithm

(PARADIGM) integrated with genomic model data to infer the

activity of patient-specific biological pathways from multi-omics

data, better identifying changes in tumor-related metabolic

pathways in glioblastoma multiforme (GBM) and breast cancer

datasets. Mo et al. (154) hypothesized that different molecular

phenotypes can be predicted through a set of orthogonal latent

variables, which represent different molecular driving factors. They

proposed a new framework that uses generalized linear regression

to construct a joint model of categorical and numerical variables

(both continuous and discrete) from integrated genomics,

epigenomics, and transcriptomics data (154). In another study,

integrating metabolomics and transcriptomics revealed molecular

perturbations underlying prostate cancer. The metabolite

sphingosine demonstrated high specificity and sensitivity for
Frontiers in Immunology 12
distinguishing prostate cancer from benign prostatic hyperplasia.

Downstream of sphingosine, impaired sphingosine-1-phosphate

receptor 2 signaling represents a loss of tumor suppressor

function and a potential key oncogenic pathway for therapeutic

targeting (155).

The combined effect of multi-omics analysis exceeds the sum of

its parts, thus necessitating the integration and joint analysis of

various omics data. However, different omics data have distinct

analysis workflows and information densities. For example,

transcriptomics data provide gene expression levels characterized

by their quantitative nature, while proteomics and metabolomics

data are obtained through mass spectrometry, which is more

complex and diverse (156).

This integration presents several challenges, requiring robust

computational methods to handle these challenges and effectively

extract inter-omics relationships from heterogeneous, large-scale,

and noisy biological data generated across different platforms,

technologies, tissues, and species (149, 156). AI is a promising

approach to address these challenges.

In metabolomics, AI technologies can be applied in multiple

areas, including data preprocessing, feature extraction, pattern

recognition, and data integration. For instance, deep learning

algorithms can identify feature peaks in mass spectrometry data,

enhancing the accuracy of metabolite identification (111, 117, 149).

Additionally, machine learning methods can be used for the

integrative analysis of multi-omics data, helping to uncover

complex biological networks and pathways (156).

The analysis of metabolomic data and the integration of multi-

omics typically involve steps such as correcting batch effects,

inferring networks, reducing data dimensionality, and recognizing

patterns. Batch effects, which result from differences in

experimental conditions and personnel, can mask true biological

variations, thereby impacting the accuracy and reliability of

analyses (157).

AI is especially suited for exploring complex patterns and

interpreting non-linear effects within such data. AI techniques, by

learning the hidden structures and relationships in large, high-

dimensional datasets, help researchers uncover complex biological

signals that might be overlooked by traditional statistical methods

(151). This capability is crucial for effectively integrating diverse

omics data, providing a comprehensive view of biological systems.

ComBat, an algorithm operating within an empirical Bayesian

framework, is commonly used for batch correction (127). It

adjusts batch effects by estimating and modifying batch-specific

parameters to align them closer to pooled estimates, harmonizing

data across different batches while preserving biological signals.

Another sophisticated method for batch correction is the Mutual

Nearest Neighbors (MNN) technique (128), which uses shared

nearest neighbor information to correct batch discrepancies. By

aligning nearest neighbors across batches, MNN effectively

harmonizes datasets.

In terms of data correlation network, MMvec, inspired by

word2vec, uses matrix factorization to analyze the co-occurrence

patterns of microbes and metabolites, offering insights such as the

metabolites produced by microbes in specific diseases (135).

Similarly, Similarity Network Fusion (SNF) integrates multiple
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omics datasets by creating separate networks for each data type and

merging them using non-linear fusion techniques based on

message-passing theory (158). This integration deepens as the

networks converge through successive iterations. Network-Based

Multi-group Data Integration (NetICS) provides a strategy for

integrating diverse group data in tumor gene sequencing (159). It

utilizes network diffusion models on directed functional interaction

networks to predict the impacts of genetic, epigenetic, and miRNA

variations on downstream genes and proteins.

Multi-omics datasets encompass a wide range of data types and

sizes, from gene or metabolite abundances in hundreds of samples

to additional dimensions like sample origin and clinical data in

single-cell studies, posing the ‘curse of dimensionality’ (160).

Moreover, the high correlation among variables can introduce

multicollinearity, complicating the identification of significant

biological markers. Specific machine learning methods for

metabolomics, such as PCA (112), t-SNE (161), and NMF (162),

facilitate data reduction and visualization. However, deep learning

and large language models surpass these methods by offering

superior capabilities for feature learning and contextual

understanding, thus expanding potential applications in complex

biological data analysis.
6.4 Biomarker research

Metabolomics not only provides crucial insights into metabolic

pathways and physiological states but also plays a significant role in

disease diagnosis, drug development, and nutritional research.

However, the development of biomarkers faces considerable

challenges, as traditional methods are time-consuming, costly,

and often lack accuracy (163, 164). The rapid advancement of AI

technologies, particularly machine learning and deep learning, has

significantly increased the efficiency and accuracy of biomarker

development. Machine learning and deep learning algorithms, such

as convolutional neural networks (CNNs), recurrent neural

networks (RNNs) (112), and ANNs (112), excel in handling

complex and high-dimensional data, capturing patterns and

relationships that traditional methods might overlook. Compared

with conventional models, the incorporation of these technologies

has improved the predictive capabilities of biomarkers.

For instance, in a study on gastric cancer diagnosis and prognosis

prediction, Chen et al. (165) utilized a machine learning random

forest model to analyze plasma samples from 702 participants across

multiple centers. They developed a diagnostic model comprising ten

metabolites, achieving a sensitivity of 0.905, significantly surpassing

the sensitivity of traditional cancer protein marker methods (less than

0.40) (165). Similarly, in a study by Kuwabara et al. (166) liquid

chromatography-mass spectrometry (LC-MS) and the alternative

decision tree (ADTree) algorithm were used to analyze 2602 saliva

samples for colorectal cancer detection. Their model achieved an

AUC value of 0.870 in distinguishing colorectal cancer from healthy

controls, whereas traditional detection methods typically have AUC

values around 0.70 (166).

The methods for establishing predictive and diagnostic models

in metabolomics primarily include traditional machine learning
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algorithms and deep learning algorithms (167, 168). Among

traditional machine learning algorithms, logistic regression (LR)

is widely used for binary classification problems due to its

simplicity, ease of interpretation, and fast computation (169). It

has shown good performance in disease prediction based on

metabolites. For example, in a study on endometrial cancer (EC)

by Bahado-Singh et al. (170) a logistic regression model was

developed using multiple metabolites and demographic

characteristics. This model combined C14:2, phosphatidylcholine

with acyl-alkyl residue sum C38:1 (PCae C38:1), and 3-

hydroxybutyric acid, achieving an AUC (95% CI) of 0.826 (0.706-

0.946), with a sensitivity of 82.6% and specificity of 70.8% (170).

However, logistic regression is less capable of modeling complex

non-linear relationships and may underperform when handling

high-dimensional data with complex interactions.

Random forest (RF), on the other hand, improves model

robustness and resistance to overfitting by constructing multiple

decision trees and averaging their results, making it suitable for

high-dimensional data processing. For instance, in a study on

colorectal cancer by Telleria et al., RF and logistic regression

models were used to develop an accurate predictive model based

on several metabolites. This model combined hemoglobin (Hgb),

bilirubin E,E, lactosyl-N-palmitoyl-sphingosine, glycocholenate

sulfate, and STLVT, achieving an accuracy of 91.67% (95% CI

0.7753-0.9825), with a sensitivity of 0.7 and specificity of 1 (171).

Support vector machine (SVM) constructs hyperplanes for

classification, making it suitable for small samples and high-

dimensional data with good generalization ability. In a study on

breast cancer by An et al., an SVM model was developed based on

47 metabolites. This model achieved high accuracy in breast cancer

prediction (AUC = 1), with an AUC of 0.794 for breast cancer vs

healthy controls (HC), and 0.879 for benign vs HC in the testing

cohort (172).

Bayesian methods, based on Bayes’ theorem, can handle

uncertainty in data and are suitable for small sample learning,

although they require high computational complexity and rely on

prior information. In a study on early lung cancer by Xie et al., a

Naive Bayes algorithm was used to develop a predictive model

based on six plasma metabolites. This model significantly

distinguished early lung cancer patients from healthy individuals,

achieving an AUC of 0.989, with a sensitivity of 98.1% and

specificity of 100.0%. The study also identified the top five

important metabolites as potential biomarkers for early lung

cancer screening (173).

CNN uses combinations of convolutional layers, pooling layers,

and fully connected layers to extract spatial features, making them

suitable for image and time-series data processing. In metabolomics

research, CNNs have demonstrated excellent feature extraction and

prediction performance, although they require large amounts of

data and high computational resources. In a study on

cholangiocarcinoma and pancreatic adenocarcinoma by Urman

et al., a neural network (NN) algorithm was used to develop

predictive models based on multiple lipid and protein biomarkers.

This model differentiated between benign strictures and

cholangiocarcinoma patients with an AUC of 0.984, a sensitivity

of 94.1%, and a specificity of 92.3%. The same method was also used
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TABLE 2 AI-based metabolomics studies for disease prediction and diagnosis.

Value Sensitivity Specificity Reference

0.9464 – (176)

0.826 0.708 (170)

0.968 0.833 (170)

0.7 1 (171)

, 0.892 – – (177)

0.954 0.916 (178)

– – (179)

-0.900 – – (180)

0.67 – – (181)

-0.934 – – (182)

53%-66% 0.95 (182)

0.848 0.924 (183)

0.981 1 (173)

(diagnosis),
(efficacy)

– – (184)

0.9645 0.9487 (185)

1 1 (186)

– – (187)

0.90 – – (188)

0.69 – (189)

0.9656 0.9479 (190)

– – (191)
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Disease Category Discovery
Cohort Size

Validation
Cohort Size

Metabolomics
Technique

Feature
Count

Feature
Types

Modeling
Method

AU

Cancer cachexia 192 – NMR 15 Mixed Metabs RF, LR 0.99

Endometrial cancer 116 47 NMR 181 Mixed Metabs LR 0.82

Colorectal cancer 130 344 Targeted
Metabolomics

3 Amino Acids LR 0.95

Colorectal cancer 60 60 UPLC-MS/MS 25 Mixed Metabs RF, LR 0.91

Breast cancer 114 75 NMR 3 Lipoprotein LASSO 0.99

Breast cancer 75 – LC-MS 19 Lipids SVM 0.94

Colorectal cancer 82 79 UHPLC-HRMS 10 Lipids OPLS-DA, SVM 0.94

Gastric
cardia adenocarcinoma

276 588 UPLC-MS/MS 25 Mixed Metabs RF, LR, SVM,
Cox regression

0.86

Rectal cancer 106 – UHPLC-QTOF-MS 8 Mixed Metabs ANOVA,
PLS-DA

0.54

Lung cancer 131 – LC-MS 241 Mixed Metabs LR 0.88

Colorectal adenomas,
Colorectal cancer

71 81 LC-MS/MS 8 Proteins LR –

Hepatocellular carcinoma,
chronic liver disease

110 – LC-MS 12 Mixed Metabs RF 0.84

Lung cancer 110 43 LC-MS/MS 6 Mixed Metabs NB 0.98

Non-small cell lung cancer 360 201 UPLC-MS/MS 8 Mixed Metabs RF 0.98
0.95

Breast cancer 282 – SELDI-TOF-MS 3 Proteins SVM –

Breast cancer 91 20
(healthy controls)

LC-MS 1269 Mixed Metabs RF 1

Primary central nervous
system lymphoma

68 34 UHPLC-MS/MS 14 Amino Acids LR 0.83

Colorectal cancer 514 – LC-MS/MS 5 Mixed Metabs LR 0.89

Gastric cancer 72 29 LC-TOF-MS 8 Lipids SVM 0.91

Non-small cell lung cancer 112 123 SELDI-TOF-MS 3 Proteins SVM –

Intrahepatic
Cholangiocarcinoma

100 100 LC-MS/MS 10 Lipids LR 0.99
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TABLE 2 Continued

AUC Value Sensitivity Specificity Reference

0.85 – – (192)

0.85 – – (193)

0.91, 0.94 – – (194)

0.91 – – (195)

– 0.907 0.895 (196)

0.912 – – (197)

– 0.8767 0.899 (198)

0.973 – – (199)

>0.80 – – (200)

0.81 – – (201)

0.99 – – (202)

0.784 – – (203)

– 0.9515 0.9397 (204)

0.945 – – (205)

0.865 (oral), 0.973
(breast), 0.993 (pancreatic)

– – (206)

0.88, 0.81, 0.84 0.88,
0.81, 0.84

– (207)

– 0.73, 0.70 – (208)

0.996 0.993 0.938 (209)

0.94 0.885 – (210)
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Disease Category Discovery
Cohort Size

Validation
Cohort Size

Metabolomics
Technique

Feature
Count

Feature
Types

Modeling
Method

Gastric cancer 181 66 UPLC-QTOF-MS 6 Bacterial Genera RF

Chronic Pancreatitis 160 502 GC-MS 8 Mixed Metabs NB

Non-small cell lung cancer 250 250 UHPLC-QTOF-MS 24 Mixed Metabs LR

Oral Squamous
Cell Carcinoma

68 – GC-MS 3 Mixed Metabs RF

Pancreatic Cancer 55 16 GC-MS/MS 16 Mixed Metabs LR

Non-Small Cell
Lung Cancer

251 103 LC-MS/MS 7 Mixed Metabs LR

Breast Cancer 113 99 LC-IT-MS 31 Nucleosides SVM

Breast Cancer 55 55 UHPLC/Q-TOF-MS 16 Mixed Metabs LASSO

Cervical Cancer, CIN 69 – UPLC-QTOF-MS 28 Mixed Metabs LR

Maternal
Pregnancy Smoking

894 – High-resolution
metabolomics (HMR)

7 Cotinine
and
Hydroxycotinine

LR

Prostate cancer 247 139 GC-MS 22538 Mixed Metabs LR

Pancreatic cancer 82 82 LC-MS 3 Mixed Metabs LASSO

Papillary
Thyroid Carcinoma

108 116 SELDI-TOF-MS 3 Proteins SVM

Thyroid Nodules 78 – Untargeted
Metabolomics

15 Mixed Metabs DNN

Oral, Breast,
Pancreatic cancer

215 – CE-TOF-MS 57 Mixed Metabs LR

Rectal cancer 106 – LC-MS 57 Mixed Metabs PLS-DA, LR

Type 2 diabetes, Coronary
artery disease

1538 2521 LC-MS 111 Mixed Metabs PLS-DA, LR

Colorectal cancer 282 291 GC-MS 29 Mixed Metabs LR

Lung cancer 51 – SPME-GC-MS 19 Mixed Metabs RF

NB, naive bayes; LASSO, LASSO regression; LR, logistic regression; SVM, sSupport vector machine; RF, random forest.
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to distinguish pancreatic adenocarcinoma patients from control

groups, achieving an AUC of 0.98, a sensitivity of 88%, and a

specificity of 100% (174). Furthermore, the study evaluated the

performance of other machine-learning algorithms. The authors

used a Bayesian variant of the general linear model (BGLM) and the

C5.0 decision tree algorithm on the same data. Both C5.0 and

BGLM demonstrated good performance in feature selection and

prediction, although their predictive power was slightly lower than

that of the NN algorithm.

ANN simulates the structure of human brain neurons and

learns complex features and patterns through multiple layers of

neurons and weight adjustments (116). ANN has strong feature

extraction capabilities and is suitable for processing large-scale data,

but it requires extensive data for training and high computational

resources, and the model interpretability is poor. In a study on oral

cancer by Monedeiro et al., an ANN model was developed based on

nine relevant volatile organic compounds (VOCs). These

compounds included 1-octen-3-ol, hexanoic acid, E-2-octenal,

heptanoic acid, octanoic acid, E-2-nonenal, nonanoic acid, 2,4-

decadienal, and 9-undecenoic acid. The model’s performance was

assessed using 10-fold cross-validation and receiver operating

characteristic curves, achieving an overall accuracy of 90%, with

100% sensitivity and specificity for oral cancer cases (175).

In Table 2, we summarize the recent applications of different AI

technologies in establishing predictive or diagnostic models through

metabolomics. Various predictive models have achieved very high

performance in their respective cohorts. It is important to note that

most studies have employed cross-validation with separated cohorts

and lack independent external validation cohorts. Most cohorts

consist of around a hundred samples, which may lead to overfitting

when using AI models to build predictive models, potentially

resulting in poor validation performance in real-world external

cohorts (167). The main reasons for the lack of external validation

cohorts are data acquisition difficulties and high costs. Establishing

comprehensive and interconnected channels and large integrated

databases through AI technology may be a feasible approach in

the future.
7 Discussion

This review highlights the current state and strategies for

applying AI algorithms to tumor metabolism studies. By

exploring metabolic differences between tumor and normal cells,

particularly from the perspectives of metabolomics and TME

interactions, this study demonstrates the significant advantages of

AI in data preprocessing, feature extraction, pattern recognition,

and data integration. These technologies not only enhance the

efficiency and accuracy of data analysis but also offer new

perspectives for personalized medicine and precision therapy.

Compared to existing studies, this review emphasizes the

unique advantages of LLMs in tumor metabolism research. LLMs

can handle complex data, identify patterns, and utilize their

strengths in natural language processing to improve metabolite

annotation and multi-omics integration (151). This innovation
Frontiers in Immunology 16
provides a more comprehensive understanding and higher

analytical precision in tumor research.

Despite the significant potential of AI technology in tumor

metabolism research, there are some limitations. First, the training

of AI models relies on large-scale, high-quality datasets, but the

acquisition and standardization of such data remain challenging

(151). Second, the complexity and black-box nature of AI

algorithms may lead to difficulties in interpreting results,

necessitating further algorithmic improvements and transparency.

Additionally, the complexity and heterogeneity of the TME remain

a research challenge, requiring more effective simulation and study

of this complex system (211).

To address these limitations, future research should focus on

several key areas. Firstly, further refinement of AI algorithms,

especially in improving data quality and sample size, is essential

to enhance their reliability in practical applications. Secondly,

broadening the application of AI in the integration of multi-

omics data will allow for the exploration of synergistic effects

between different omics data and the revelation of more complex

biological networks. Thirdly, deepening the study of the interaction

between the TME and metabolism, using AI technology to simulate

complex biological systems, will advance tumor research toward

more refined and personalized directions.

The application of AI in tumor metabolism research discussed

in this review holds significant theoretical importance and shows

great promise in practical applications. AI technology can

significantly improve the efficiency of tumor diagnosis and

treatment, particularly in personalized and precision medicine

(212). With continuous advancements in AI technology, future

breakthroughs in clinical applications will further drive the

development of biomedical research.
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