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Anti-tumor immunity, including innate and adaptive immunity is critical in

inhibiting tumorigenesis and development of tumor. The adaptive immunity

needs specific lymph organs such as tertiary lymphoid structures (TLSs), which

are highly correlated with improved survival outcomes inmany cancers. In recent

years, with increasing attention on the TLS in tumor microenvironment, TLSs

have emerged as a novel target for anti-tumor therapy. Excitingly, studies have

shown the contribution of TLSs to the adaptive immune responses. However, it is

unclear how TLSs to form and how to more effectively defense against tumor

through TLS formation. Recent studies have shown that the inflammation plays a

critical role in TLS formation. Interestingly, studies have also found that gut

microbiota can regulate the occurrence and development of inflammation.

Therefore, we here summarize the potential effects of gut microbiota-

mediated inflammation or immunosuppression on the TLS formation in tumor

environments. Meanwhile, this review also explores how to manipulate mature

TLS formation through regulating gut microbiota/metabolites or gut microbiota

associated signal pathways for anti-tumor immunity, which potentially lead to a

next-generation cancer immunotherapy.
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1 Introduction

Anti-tumor immunity, including innate and adaptive immune responses is critical in

inhibiting tumorigenesis and tumor development. Notably, anti-tumor adaptive immunity

needs specific lymph organs such as lymph nodes (secondary lymphoid organs) and

tertiary lymphoid structures (TLSs), also known as ectopic lymphoid structures (ELSs) or

tertiary lymphoid organs (TLOs) (1). When TLSs are located in close vicinity of tumor, they

are active sites of inducing adaptive immune responses against tumor (2, 3). Indeed,
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emerging studies have already revealed the contribution of the TLSs to

adaptive immune response against tumor (4) such as the production

of antibodies that can mark tumor cells for complement-mediated

lysis, antibody-dependent cellular cytotoxicity or opsonization (5).

Increased activation markers has also been observed on the T cells in

TLSs, as compared with other tumor-resident T cells in melanoma

(6). These TLSs were highly correlated with improved survival

outcomes in many tumors, such as breast cancer, hepatocellular

cancer (HCC), colorectal cancer (CRC), melanoma, gastric cancer,

head and neck squamous cell cancer (HNSCC), lung cancer and

sarcoma (7, 8). However, TLS formation remains to be further clear.

Although the factor(s) and mechanism(s) influencing TLS

formation are incompletely clear, some studies have shown that TLSs

are generally derived from hematopoietic LTi (lymphoid tissue

inducers), which can interact with stromal cells known as LTo

(lymphoid tissue organizers) to form mature TLS through immature

TLS (Figure 1) (2, 8, 9). The stromal cells can express adhesionmolecules

and chemokines to recruit immune cells from adjacent high endothelial

venules (HEV) for TLS formation. Notably, LTi is also converted from

nature killer (NK) cells under the stimulation of transforming growth

factor (TGF)-b and IL-12 (10–13). In addition, chronic inflammation

also plays a critical role in TLS formation (14). It not only induces

immune cells such as T helper cells secreting IL-17 (TH17) to become

LTi but also produces widely cytokines and chemokines, which are

necessary to TLS formation (14). The requirement of chronic

inflammation for TLS formation not only emerges from cancer mouse

models but also from clinical observations (15–17).
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Gut microbiota can regulate the occurrence and development of

inflammation, which potentially affect TLS formation. Indeed, the gut

microbes, which appear in tumor tissue can promote TLS formation.

For example, Helicobacter pylori (H. pylori) inside tumors could

promotes the formation of TLS to trigger anti-tumor immune

responses (18). The gut microbiota Lachnoclostridium was also

related to the existence of intratumoral TLSs in hepatocellular

carcinoma (19). Besides the microbes from gut microbiota in

tumor tissues, the metabolites derived from gut microbiota also

potentially affect the TLS formation. These metabolites can enter

tumor tissues through bloodstream. Since gut microbiota and its

metabolites (microbiota/metabolites) are one of the major

environmental factors that affects TLS formation (20), we here

summarize the potential contribution of gut microbiota/metabolites

mediated inflammation or immunosuppression on the TLS

formation in tumor environments, especially on the different

immune cells such as macrophages (Macs), dendritic cells (DCs),

Tregs (regulatory cells), LTi, Tfh (follicular helper T cell) and B cell in

TLSs (21). Since there exists the association of TLS with a favorable

response to immunotherapy against tumor, studies are employing

different approaches to induce TLS formation in vivo. This review

also explores the potential opportunity to promote TLS formation for

defensing against tumor through regulating gut microbiota/

metabolites or their signal pathway(s) in immune cells. Notably,

the effects of gut microbiota/metabolites on TLS formation have only

just begun. Of course, besides gut microbiota, others such as tumor-

derived factors also influence TLS formation.
FIGURE 1

Formation of TLS. In tumor environment, lymphoid tissue inducers (LTi) can produce cytokines to work on lymphoid tissue organizers (LTo). These
LTo express adhesion molecules and chemokines to recruit immune cells from adjacent high endothelial venules (HEV) for mature tertiary lymphoid
structure (mTLS) formation through immature TLS (iTLS) containing a lot of immunosuppressive cells such as T regulatory cells (Tregs). MTLSs can
produce antigen-specific T and B cells to promote anti-tumor immunity. Notably, natural killer (NK) cells could be converted into LTi. ITLS can cause
immunosuppression through immunosuppressive cells such as Treg.
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2 TLSs in tumor environments

TLSs, as ectopic lymphoid organs develop in non-lymphoid

tissues at the sites of chronic inflammation such as tumors (22).

They share the vasculature, chemokines, cellular compartments,

spatial organization, and function with secondary lymphoid organs,

especially lymph nodes, where adaptive anti-tumor cellular and

humoral responses can be generated (23).

TLSs in cancer tissues are heterogeneous (7). Their cell

composition and distribution is also different in different cancer

types (24), ranging from disorganized cellular aggregates such as early

TLS or immature (iTLS) to well-organized and structured organs

which are similar to secondary lymphoid organs (SLOs) such as

lymphoid nodes (2, 25). Thus, TLSs include multiple lymphoid

structures, from immune cell aggregates to organized structures,

which form primary follicle (PFL) or secondary follicle (SFL) with

a germinal center (GC) in the tumor microenvironment (TME) (2).
2.1 Lymphoid aggregate and immature TLS

Lymphoid aggregates are composed of a few B cells and T cells

without any follicular dendritic cells (FDCs) (23). In immature TLS

(iTLS), besides T, B cells and FDCs, there often are aggregates

of immune suppressive cells that suppress anti-tumor immunity

such as higher programmed death-ligand 1 tumor-associated Macs

(26), immature DCs (26), regulatory T cells (26, 27), PD-1high CD8

T cells (26, 28) and PD-1highCD4 T cells (28). Typically, a low CD8/
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Treg cell ratio in lung squamous cell carcinoma (LUSC) (29),

interleukin (IL)-10 expressing monocytes and T cells in pancreatic

ductal adenocarcinoma (PDAC) (30) and phosphoprotein 1 (SPP1)+

Macs in the lung cancer activation modules (LCAMs) (31) have also

been reported. Notably, one study also exhibited that there were only

minor differences in immune cell frequencies in immature versus

mature TLS with the exception of B cells (28).
2.2 Mature TLS

Signatures of mature TLSs have been described in other papers

(2, 23). They have typical structures comprised of an internal B-cell

zone surrounded by T cell-rich area, which includes CD8 cytotoxic

T, CD4 Th-1 and Tfh lymphocytes, as well as LAMP3+ DCs (32).

The B cell zone has a network of follicular DCs (FDCs), which

express CD21 in PFL as well as CD23 in SFL. These TLSs reveal

clear active GCs within the B-cell area with the mature DCs (33),

antigen-experienced CD4, CD8 and B cells (34).
2.3 Inflammation and TLS formation

Inflammation plays a critical role in TLS formation (Figure 2).

TLS formation relies on the cytokine signaling network between

heterogeneous cell populations such as lymphocytes, stromal cells

and cancer cells (35). TLSs can be generally derived from LTi, which

can produce cytokines such as lymphotoxin a1b2 (LTa1b2), TNFa
FIGURE 2

Effects of inflammation on TLS formation. In tumor environments, inflammatory cells such as ILC3 (innate lymphoid cell 3), T helper cells secreting
IL-17 (Th17), M1-polarized Macs, effector CD8 T cells and natural killer (NK) cells, as well as B lymphocytes may replace LTi cells. They can interact
with stromal cells to initiate TLS formation in the absence of LTi cells. In addition, inflammation also promotes immature TLSs into mature TLSs
through cytokines and chemokines. Cells in iTLS and mTLS, see Figure 1.
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and IL-17 (8, 36), which interact with the receptors on the LTo cells

such as stromal cells. These LTo cells express adhesion molecules

such as VCAM1, ICAM1, and MADCAM1, and chemokines such

as CXCL13, CXCL12, CCL21 and CCL19, which can recruit

immune cells from adjacent HEV to participate in TLS formation.

Interestingly, HEV can express PNAD (peripheral lymph node

addressin), a L-selectin receptor, which is necessary for leukocytes

to the TLSs. However, in response to chronic inflammatory, several

immune cell populations can potentially replace LTi cells, including

TH17 (37, 38), natural cytotoxicity receptor (NCR)+ ILC3

(NCR+ILC3) (39), M1-polarized Macs (40), effector CD8 T cells

and NK cells (41), as well as B lymphocytes (42). These cells can

interact with stromal cells to induce TLS formation in the absence of

LTi cells. Some local stromal cells such as fibroblasts can be acted as

LTo (43). In addition, inflammation also promotes immature TLSs

into mature TLSs through cytokines and chemokines (23) such as

interleukin-17A (IL-17A), which has been shown to be involved in

the formation of TLSs (44). Indeed, the requirement of chronic

inflammation for TLS formation not only emerges from cancer

mouse models but also from clinical observations (45, 46).
3 Gut microbiota metabolites and
their receptors

Gut microbiota/metabolites play a critical role in the

development of LTO. Since TLSs are similar to secondary

lymphoid organs such as LN (47, 48), it may be useful to predict

the effects of gut microbiota/metabolites on the TLS formation.

Indeed, the microbiota has been shown to promote formation of

TLSs (23). For instance, H. hepaticus promoted enrichment of TLSs

in a mouse model of colorectal cancer (CRC) (18). Notably,

although the effects of gut microbiota/metabolites on the

differentiation and function of immune cells have been widely

studies, the role of gut microbiota/metabolites in TLS formation

has only just begun.

Gut microbiota/metabolites not only affect inflammatory immune

cells but also immunosuppressive cells, which can potentially affect

formation of TLSs, typically metabolites derived from gut microbiota

such as short chain fatty acids (SCFAs) (49, 50), bile acid (BA) (50–52)

and tryptophan (Trp) metabolites (53, 54), and other metabolites,

which have been reviewed by us and others. SCFAs such as butyrate,

propionate, and acetate are from dietary fiber fermentation by gut

microbiota in the cecum and colon (49, 50). The primary BAs cholic

acid (CA) and chenodeoxycholic acid (CDCA) generated in the liver

can conjugate CDCA, DCA or CA to one or more amino acids by

bacteria (55). Four distinct ways including deconjugation, oxidation,

dehydroxylation and epimerization in human are used to transform

BAs (56). While BAs are deconjugated, BAs can be converted into

secondary BAs deoxycholic acid (DCA) and lithocholic acid (LCA)

through bacterial bile acid hydrolases (57) and dehydroxylases (58) to

remove 7a or 7b-hydroxyl groups from primary BAs in the colon. In

addition, a range of oxo-, iso- and epi-derivatives such as 3-oxoLCA, 7-

oxoCDCA, 12-oxoCA, 7-oxoCA, 12-oxo-DCA, 3-oxo-LCA, 3-oxo-
Frontiers in Immunology 04
allo-LCA, iso-LCA, iso-alloLCA, allo-LCA and 3-ketoLCA are also

generated by gut bacteria (56, 59, 60). Gut microbiota also metabolizes

Trp into tryptamine and indole derivatives, such as indole, indole-3-

acid-acetic (IAA), indole acetic acid, indole-3-propionic acid (IPA),

indole-acrylic acid (IA), indole-3-aldehyde (IAld), indole-3-pyruvate

(IPy), indole-3-acetamide (IAM), indoxyl sulfate and tryptamine

(61, 62). In addition, some bacteria also produce kynurenine (Kyn)

and downstream metabolites such as 3-hydroxyanthranilic acid (3-

HAA) through enzymes homologous to those of the eukaryotic kyn

pathway (63).

These gut microbial metabolites can regulate the differentiation

and function of immune cells through various receptors. SCFAs

are through G-protein coupled receptor (GPR)41 (also known

as free fatty acid receptor (FFAR3)), GPR109a (also called

hydroxycarboxylic acid receptor 2 (HCA2)) and GPR43; Whereas

cellular membrane receptors such as G-protein BA receptor 1

(GPBAR1) known as Takeda G protein-coupled receptor 5

(TGR5), and nuclear receptors such as farnesoid X receptor

(FXR), pregnane X receptor (PXR), vitamin D receptor (VDR),

liver-X-receptor (LXR), constitutive androstane receptor (CAR),

and retinoid related orphan receptor (RORgt) (64), are used by BA

derivatives. A variety of Trp-indole metabolites are also through

receptors such as aryl hydrocarborn receptor (AhR) and PXR to

exert their functions (65).
4 Development of lymphoid tissue
organs depends on gut microbiota

The gut microbiota is a complex ecosystem of approximately 100

trillion microorganisms inhabiting the human gut, including bacteria,

viruses, fungi and protozoa (66). The vast majority is represented by

Firmicutes (gram-positive, 60–80%) and Bacteroidetes (gram-

negative, 20–30%) along with Proteobacteria and Actinobacteria

(67), which can induce either inflammation or immunosuppression

in the individuals. The gut microbiota plays a critical role in the

development of lymph organs, including primary lymphoid organs

such as thymus (68) and bone marrow cells (69), and second

lymphoid organs such as lymph node (LN) and Peyer’s patches

(70), spleen, tonsils and mucosa-associated lymphoid tissues, which

support immune surveillance in the mammalian organisms. Indeed,

studies have found that secondary lymphoid organs of germ-free

mice are under-developed (71). Antibiotic treatment, which resulted

in decreased gut microbiota, also reduced DC and effector CD8 T cell

responses, and attenuated responses to immune checkpoint blockade

therapy (72).
5 Promotion of gut microbiota/
metabolites on mature TLS formation

Since inflammation plays a critical role in TLS formation,

inflammation-associated gut microbiota/metabolites can

potentially promote TLS formation (Figure 3).
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5.1 Gut microbiota and
structural components

Multiple bacteria can cause inflammation such as Akkermansia

muciniphila (A. muciniphila) (73, 74), Prevotella spp (75), Klebsiella

(76), Bifidobacterium (77, 78), Bacteroides fragilis (B. fragilis) (79),

B. fragilis (80), Ruminococcus gnavus (81), Segmented filamentous

bacteria (SFB) (82), IgA-coated adherent-invasive E. coli (AIEC)

(83), Clostridiales (84), Faecalibacterium (85), Enterococcus hirae

(86, 87) and Eleven strains (79). A. muciniphila could produce

cdAMP to activate stimulator of interferon genes (STING)-

interferon pathways of immune cells such as DCs and Macs to

produce cytokines (73, 74). Prevotella spp up-regulated pro-

inflammatory responses in Macs (75). Klebsiella activated NF-kB
and promoted the secretion of pro-inflammatory IL-1, IL-6 and

TNF-a in Macs (76). Bifidobacterium could alter the functional

capacity of DCs to induce CD8 T cell proliferation and Th1

differentiation, and also IFNg production (77, 78); Bacteroides

fragilis (B. fragilis) could stimulate DC maturation to induce IL-

12-dependent Th1 cell immune responses (79). B. fragilis also

induced Mac polarization to M1 (80). Ruminococcus gnavus

induced TNF-a secretion of DCs through pro-inflammatory

polysaccharide (PSA) (81). Segmented filamentous bacteria (SFB)

induced differentiation of Tfh cells in Peyer’s patches thorough DC-

mediated inhibition on IL-2-related pathway, and also directed Tfh

trafficking to lymphoid tissues responsible for antibody production

(82). IgA-coated adherent-invasive E. coli (AIEC) triggered Th17
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cells activation to increase systemic immune responses (83);

Clostridiales promoted antigen presentation to promote CD4 and

CD8 T cell function in melanoma patients (84). Faecalibacterium

increased CD4 T cell proportion in peripheral blood in metastatic

melanoma patients (85). Enterococcus hirae could induce the

polarization of immune cells towards a Th1 phenotype in

secondary lymphoid organs in P815 mastocytomas established in

syngenic DBA2 mice (86, 87). Eleven strains robustly induced IFN

g+CD8 T cells in syngeneic tumor models (79). Bacteria C.

rodentium induced pro-inflammatory Th17 cells (88).

Bacterial structural components also modulate immune cells

through different receptors such as Toll-like receptors (TLR) and

nod-like receptors (NLR). There have existed considerable

literatures on various TLR and NLR ligands from gut microbiota

impacting immune cells. For example, lipopolysaccharides (LPSs), a

component of the Gram-negative bacterial outer membrane, was

identified as a key contributing factor in the initiation and

progression of inflammation (89). It could promote production of

pro-inflammatory cytokines (TNF, IL-17, IL-22, etc.) in immune

cells such as monocytes, Macs, and Kupffer cells, which expressed

LPS receptors such as Toll-like receptor 4 (TLR4) (90). Bacterial-

derived lipoteichoic acid could exert strong effects on immune cells

via host receptors and targeted molecules. Microbial peptides also

activated tumor-infiltrating lymphocytes in the tumor such as

glioblastoma (91).

In conclusion, since the gut microbiota and its structural

components can promote inflammation through stimulating
FIGURE 3

Promotion of inflammation-associated gut microbiota/metabolites on mature TLS (mTLS) formation. Inflammation associated gut microbiota/
metabolites induce and/or promote mature TLS formation through different inflammatory immune cells. mDC, nature dendritic cells; Mac1,
inflammatory macrophages; Th17, T helper 17 cells; Tfh, T follicle helper cells; STING, stimulator of interferon genes; SCFA-A, short chain fatty acid
A. Cells in mTLS, see Figure 1.
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different immune cells, they should be effective in promoting TLS

formation against tumors.
5.2 Gut microbiota derived metabolites

There are a lot of gut microbiota derived metabolites, which can

cause inflammation such as stimulator of interferon gene (STING)

agonists (92), methylglyoxal (93), SCFAs (94), agmatine (95),

kynurenic acid (KYNA) (96), anacardic acid (97), tryptophan

(Trp) metabolites (98), trimethylamine oxide (TMA) (99),

inosine, microbial peptides (91) and b-1, 3 –glucan (100). STING

agonists can promote TLS formation (Figure 4). Chelvanambi et al.

demonstrated that intratumoral administration of STING agonist

ADU-S100 could cause sustained inflammation in the TME of B16

melanomas, and production of cytokines/chemokines (LTa, LTb,
CCL19 and CCL21, as well as LIGHT), which could promote TLS

formation (92). CD11c+ DCs activated by STING agonist ADU S-

100 also upregulated expression of lymphotoxin-a (LTA), IL-36,

chemokines and type I interferons in vitro and in vivo, which could

promote TLS format ion (92) . The cyc l i c guanos ine

monophosphate–adenosine monophosphate synthase (cGAS)-

STING pathway also initiated TLS formation through chemokine

mediated cross-talk between endothelial cells and T cells (101).
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Mechanically, cell-intrinsic cGAS could lead to CCL5 production in

vascular endothelial cells. Then, peripheral CD8 T cells were

recruited to produce CXCL13 and interferon-g to promote TLS

formation (101). Methylglyoxal from gut microbes could boost

radioimmunotherapy in rectal cancer by triggering endoplasmic

reticulum stress and cGAS-STING activation, which could induce

TLS formation (93). There existed a positive correlation between

anti-PD-1/PD-L1 responses and bacteria that produce SCFAs like

Eubacterium, Lactobacillus, and Streptococcus (102). SCFA-A, a

metabolite of gut microbiota was also involved in the activation

of T cells and induction of M1 Macs, thereby enhancing the anti-

tumor effects of anti- PD-1 antibody therapy (103). B.

thetaiotaomicron-derived acetic acid had the potential to

modulate the polarization of pro-inflammatory Macs, which

promoted CD8 T cell function in hepatocellular carcinoma (104).

Gut microbiota-derived butyrate inhibited the immunosuppressive

factors PD-L1 and IL-10 in tumor-associated Macs in gastric cancer

(94). Butyrate also promoted the production of antitumor cytokines

in cytotoxic CD8 T cells by regulating T-cell receptor (TCR)

signaling pathway in patients with non-small cell lung cancer

(NSCLC) (105). Gut microbiota-derived metabolite agmatine

could suppress the Rnf128-mediated ubiquitination of b-catenin
to upregulate the genes, which could activate Wnt pathway,

including Cyclin D1, Lgr5, CD44 and C-myc. The activated Wnt
FIGURE 4

STING agonist promotes TLS formation. The stimulator of interferon genes (STING) promote TLS formation by upregulating the expression of TLS-
promoting factors such as lymphotoxin-alpha (LTa), IL-36, type I IFN, inflammatory chemokines by DC (dendritic cells), vascular normalization, and
CCL5 (CC chemokine ligand-5) production in vascular endothelial cells.
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signaling pathway could upregulate pro-inflammatory cytokines

(IL-6 and TNF-a) and downregulate anti-inflammatory cytokine

(IL-10) in colorectal tumorigenesis (95). Gut microbiota-induced

kynurenic acid induced GPR35-positive Macs to promote

inflammation (96). Anacardic acid could also activate Macs

thorough mitogen-activated protein kinases (MAPKs) (97).

Anacardic acid promoted tumor-infiltrating immune cells such as

tumor-infiltrated NK cells and CTLs through inducing production

of a neutrophil extracellular trap in breast cancer models (97). L.

gallinarum-derived Trp metabolite indole-3-carboxylic acid (ICA)

could compete with Kyn for binding site on AhR on CD4 T cells to

inhibit Treg differentiation in vitro (98). I3AA, a Trp metabolite

made by a gut microbia induced pro-inflammatory T cells, and

reduced Treg subset in vivo and iTreg development in vitro via

regulating response to TGFb (106). IPA derived from L. johnsonii,

could enhance the differentiation of CD8 T cells through H3K27

acetylation at the super-enhancer (SE) of Tcf7 gene in pan-cancer

(107). In mice and humans, PSA generated by L. delbrueckii could

induce CCR6+CD8 T cells (108). The choline or carnitine in foods

were metabolized to generate trimethylamine (TMA) by the gut

microbiota, which enters the liver through portal vein. Then TAM,

which was catalyzed to produce trimethylamine oxide (TMAO) in

liver, was demonstrated to promote CD8 T cell-mediated anti-

tumor immunity in mouse models of triple-negative breast cancer

(99). Inosine, a purine metabolite of A. muciniphila and B.

pseudolongum, strengthened differentiation and proliferation of T

cells (109), induced differentiation of B cells, and antibody

production via activating Macs (109), and promoted antitumor

immunity through Th1 differentiation and effector function of T

cells (77). Some bacterial species, which could produce inosine or its

metabolite hypoxanthine, induced T-helper 1 differentiation and

effector functions via inosine-A2AR-cAMP-PKA pathway (110).

The systemic administration of b-1,3-glucan from a fungal element

promoted cytokine secretion (100). Thus, metabolites derived from

gut microbiota, which can induce inflammation, also potentially

result in mature TLS formation.
6 Suppression of gut microbiota/
metabolites on mature TLS formation

Besides stromal cell and HEVs, mature TLSs are mainly

composed of the different kinds of immune cells, including

Macs, DCs, T cells such as (CD8, Tfh, Th1, Th17, and Treg) and

B cells; Whereas in iTLS, besides T and B cells, there often are

aggregates of immature and immune suppressive cells such as

immunosuppressive Macs, immature DCs and Treg (26, 27),

which can potentially inhibit mature TLS formation. Indeed, in a

mouse LUAD model, Treg cell depletion not only enlarged the

lung area covered by TLS but also increased levels of T cell

proliferation and co-stimulatory ligand expression by DCs in

tumor-associated TLSs (111). Repressing immunosuppressive cells

such as anti-inflammatory macrophage or Breg cells also favored

formation of TLS. Notably, the immunosuppressive cells can be

regulated by gut microbiota/metabolites. Here, we mainly discuss

the effects of anti-inflammatory gut microbiota or gut microbiota
Frontiers in Immunology 07
derived metabolites such as SCFAs, BA and Trp metabolites on

these immunosuppressive cells, which can potentially inhibit the

TLS formation (Figure 5).
6.1 Gut microbiota and
structural components

Some bacteria from gut microbiota are resistant to

inflammation such as Bacteroides (112, 113), Faecalibacterium

prausnitzii (112, 113), Parabacteroides distasonis (114), Segmented

filamentous bacteria (90) and Bacteroides genus (115). Bacteroides,

and Faecalibacterium prausnitzii could inhibit NF-kB to reduce

pro-inflammatory cytokines such as IL-8 and TNF-a (112, 113).

Parabacteroides distasonis inhibited the expression of pro-

inflammatory cytokines (IL-1b, IL-6, IL-17A, and TNF-a),
increased anti-inflammatory cytokines (IL-10), reversed Th17/

Treg imbalance in the mesenteric LN (MLN) of mice with

arthritis, and even induced M2-type polarization of Macs (114).

Segmented filamentous bacteria was involved in the promotion of

maturation of Treg cells, and also performed a mutualistic

interaction with the gut microbiota by anti-inflammatory

cytokines, such as IL-10 and TGF-b (90).

Interaction between segmented filamentous bacteria (SFB) and

epithelial cells promoted formation of endocytic vesicles containing

bacterial cell wall proteins, causing generation of non-inflammatory

helper T (Th) 17 cells (116). Bacteroides genus was correlated with

increased myeloid derived suppression cells (MDSCs) and the

cytokines IL-8 and IL-13, which had roles in MDSC recruitment

and proliferation, respectively (115). Lactobacillus acidophilus

improved intestinal inflammation by modulating the balance of

Th17 and Treg cells (117). The polysaccharide A from Bacteroides

fragilis (118) facilitated the expansion and differentiation of

intestinal Foxp3+ Tregs in addition to the production of IL-10

and TGF-b that regulate the functions of intestinal myeloid cells

(119). Thus, the anti-inflammatory gut microbiota can potentially

inhibit the formation of TLS in tumor environment.
6.2 Gut microbiota metabolites

Gut microbiota metabolites such as SCFAs, BA and Trp

metabolites can inhibit inflammation. After interacting with

GPR43 or GPR109A, SCFAs could regulate the activation of the

NLRP3 and production of IL-18 to inhibit the activation of the

Macs (120, 121). Butyrate also reprogramed Mac metabolism

toward oxidative phosphorylation, causing an anti-inflammatory

tolerant phenotype (122) through oxidative phosphorylation

(OXPHOS) (123). Notably, SCFAs could down-regulate DC-

secreted chemokines such as C-C chemokine ligand 5, up-regulate

anti-inflammatory IL-10 and suppress DCmaturation (124). SCFAs

butyrate and propionate also inhibited LPS-mediated maturation

of human monocyte-derived DCs in vitro (125, 126). SCFAs

could promote differentiation and expansion of Treg cells. SCFA

butyrate induced Treg cell differentiation through histone H3

acetylation at the Foxp3 promoter of the Foxp3 locus (127, 128),
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and fatty acid oxidation (129). Butyrate also supported DC-induced

differentiation of Treg cells through butyrate receptor GPR109 and

the butyrate transporter SLC5A8 in the DCs (130). Notably, the IL-

10 expression in Th1, Th17 and Treg cells was promoted by SCFAs

by suppression of histone deacetylases and regulation of the mTOR-

S6K pathway (117). SCFAs also enhanced the generation of

CXCR5+ T follicular helper cells in vitro and in vivo, which

supported B cell differentiation (131). SCFAs, particularly

butyrate stimulated ILCs via upregulating expression of AhR and

HIF (132), the activation of the PI3K–AKT and mTOR signaling

pathways in a GPR43-dependent manner to promote the

proliferation of intestinal ILC1s and ILC3s (133). SCFA butyrate

and propionate also regulated CD8 T cell activation via inhibiting

IL-12 production in DCs. Taken together, SCFAs such as butyrate

may inhibit TLS formation through immunosuppressive cells.

Through BA receptors TGR5, BA metabolites were essential to

maintain tolerant phenotypes of the Macs (134–136). They

modulated ant i- inflammatory macrophage phenotype

transformation and inhibited pro-inflammatory cytokine

production through cyclic adenosine monophosphate (cAMP)-

protein kinase A (PKA) pathway and regulating NLRP3 (137).

The taurine-conjugated DCA (TLCA) also inhibited the expression

of cytokines, such as IL-12 and TNFa and the expression of

chemokines, CCL2, CCL 3, CCL4, CCL5, CXCL9, and CXCL10 in

LPS-activated human Macs (138). DCA also inhibited the

production of proinflammatory cytokines, such as IL-1b, IL-6, IL-
12, IL-23, and TNF-a from LPS-activated DCs via TGR5 (139),
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whereas LCA suppressed the expression of proinflammatory

cytokines via FXR (139). DC maturation and the inflammatory

cytokine production were inhibited by VDR (140). DCA treatment

also impeded Th1 and Th17 differentiation although LPS-activated

DCs induced the differentiation of naïve CD4 T cells into Th1 or

Th17 (141). BA derivatives isoalloLCA could selectively upregulate

the expression of FoxP3 (142) through NR4A1, which could bind to

500 bp upstream of the Foxp3 transcriptional start site (143, 144). It

also promoted the differentiation of Tregs through mitochondrial

reactive oxygen species (mitoROS) (142, 145, 146). 3-oxoLCA

inhibited the differentiation of Th17 cells through RORgt (142).
Notably, Foxp3 expression was also induced by BA metabolite

isoDCA by reducing DC immune-stimulatory properties (145).

Through increased transcription factors c-Maf and GATA-3, a

shift from the Th1 to the Th2 phenotype was promoted by VDR

activation (147). Through a VDR-dependent mechanism, the CD4

Th1 cell activation was suppressed by unconjugated BA metabolite

LCA, causing diminished TNFa and IFNg (148). BA metabolites

also disrupted intracellular calcium homeostasis. The intracellular

calcium was critical for NFAT (nuclear factor of activated T cells)

signaling, which was necessary for T cells activation (149). The

immune-metabolism in CD8 T cells could be reshaped by 24-

Norursodeoxycholic acid (NorUDCA) to alleviate inflammation

(150). Thus, these BA derivatives can also potentially inhibit the

formation of TLS.

Trp metabolites from gut microbiota were essential in

regulating the function of Macs via receptor AhR. Through
FIGURE 5

Suppression of anti-inflammation gut microbiota/metabolites on TLS formation. Anti-inflammation gut microbiota/metabolites can potentially inhibit
the TLS formation by immunosuppressive cells or immature immune cells through their receptors such as short chain fatty acid (SCFA) receptors
such as G-protein coupled receptor (GPR)43 and GPR109, bile acid (BA) derivative receptors such as farnesoid X receptor (FXR), VDR (Vitamin D
receptor), retinoid related orphan receptor (RORgt), and tryptophan-indole metabolites receptors such as aryl hydrocarborn receptor (AhR). mDC,
mature dendritic cells; iMac, inflammatory macrophages; Th17, T helper 17 cells; Tfh, T follicle helper cells; Treg, T regulatory cells; ILC, innate
lymphoid cells; NLRP3, nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3; OXPHOS, oxidative
phosphorylation; HDAC, histone deacetylase; PI3K, phosphoinositol-3 kinase; AKT, protein kinase B; mTOR, mammalian target of rapamycin; NF-kB,
nuclear factor kappa-light-chain-enhancer of activated B cells; NR4A1, nuclear receptor subfamily 4 group A member 1; cAMP-PKA, cyclic
adenosine monophosphate/protein kinase A; NCOA7, nuclear receptor co-activator protein 7; Nrf/Ho-2, nuclear factor E2-related factor/heme-
oxygenase-2; A2A, A2A adenosine receptor; ROS, reactive oxygen species; RAS/MAPK, rat Sarcoma mitogen-activated protein kinase; AP-1, activator
protein 1; ERK, extracellular-signal regulated kinase; JAK/STAT, Janus Kinase/Signal transducer of activated T-cells; TLCA, taurolithocholic acids;
DCA, deoxycholic acid; LCA, lithocholic acid; 3-HAA, 3-hydroxyanthranilic acid; IPA, 3-indolepropionic acid; IAA, indole-3-acetic acid; Kyn,
kynurenine. Cells in iTLS, see Figure 1.
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suppressing histamine production, Trp metabolites could mediate

suppression on inflammatory responses in the Macs (151). Trp

metabolite 3-HAA inhibited LPS mediated NF-kB (nuclear factor k
gene binding) and PI3K (phosphatidylinositol 3 kinase)/Akt

(protein kinase B)/mTOR (mammalian target of rapamycin)

signaling pathways to reduce inflammatory cytokine production

in the Macs (152). A recent report has demonstrated that the gut-

bacterial-released indole and its metabolites (IPA and IAA)

interacted with myeloperoxidase to inhibit its inflammatory

function in the polymorphonuclear leukocytes at physiological

concentrations (153). The kynurenine (Kyn), as an endogenous

ligand of AhR, could induce AhR activation when generated in the

tumor microenvironment (154), which promote tolerant phenotype

in DCs to mediate the generation and expansion of Tregs.

Through AhR-ligand-Treg axis (155, 156), gut microbiota

derived Trp metabolites promoted differentiation and function of

Tregs. Kyn and its metabolites also enhanced Treg differentiation

through the AhR (157–159), direct transactivation and the

induction of epigenetic modifications, which controlled foxp3

transcription (160–162). 3-HAA in Kyn pathway also induced the

differentiation and production of Treg cells via a nuclear coactivator

7 (NCOA7)-dependent pathway (163), and caused immune

suppression by inducing apoptosis in T-cells through glutathione

depletion (164). The expression of PD-1 in CD8 T cells, an immune

inhibitory molecule, could be upregulated through Kyn (165).

Through ROS pathway, the activity of NK cells was suppressed by

Kyn, which could lead to cell death (166). Kyn also suppressed

cytokine-mediated receptors, which were responsible for NK cells-

mediated killing (167). Thus, Trp-indole derived metabolites also

prevent the TLS formation through immunosuppressive cells.
6.3 Other anti-inflammation metabolites
from gut microbiota

Other some gut microbiota derived metabolites also induce anti-

inflammation responses, such as lactic acid (168), 12-ketolithocholic

acid (169), linoleic acid (170), 5-hydroxyindoleacetic acid (171),

polyamines (putrescine, spermidine, and spermine) (172), inosine

(173) and hydrogen sulfide (174). Gut microbiota derived lactic acid

induced transcriptional repression of macrophage inflammatory

response via histone acetylation (168). It also served as a primary fuel

source to promote histone H3K27 acetylation, which allowed the

expression of immunosuppressive genes (168). Gut microbiota-

derived 12-ketolithocholic acid could suppress the IL-17A secretion

from colonic group ILC3 through down-regulated bile acid receptors,

including vitamin D receptor (VDR) and pregnane X receptor (PXR)

(169). The linoleic acid (LA) pathway in the gut microbiota determined

the degree of inflammation and functions by suppressing Th17

differentiation and promoting Treg cell differentiation via the

phosphorylation of Stat1 at Ser727 (170). Gut microbiota-derived 5-

hydroxyindoleacetic acid alleviated colitis via MAPKs-PPARg/NF-kB
inhibition (171). The spermidine was produced by collective metabolic

pathways of gut bacteria in immune cell regulation. It could facilitate

polarization of Macs toward an anti-inflammatory phenotype, thus

contributing to attenuation of inflammation (172). The inosine was a
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purine metabolite of Akkermansia muciniphila and Bifidobacetrium

pseudolongum (77). The combination of A. muciniphila and inosine

could modulate Treg cells and imbalance of Treg/Th17/Th1 cells

through partly adenosine A2A receptor (173). The bacteria

metabolized taurine or cysteine to form hydrogen sulfide (174). It

could exert significant immune-regulatory roles by inhibiting the p38/

ERK MAPK, p65 NF-kB, and JAK-STAT3 pathways and activating

pathways such as Nrf2/HO-1, PI3K-AKT, and RAS/MAPK/AP-1 (175).

Taken together, besides inflammation associated gut microbiota

and its structural components/metabolites, which can potentially

promote the TLS formation, gut microbiota derived anti-

inflammation metabolites such as SCFAs, BA and Trp

metabolites, and other some metabolites also potentially inhibit

the mature TLS formation through immunosuppressive cells in

tumor environments. Notably, some metabolites derived gut

microbiota such as SCFAs not only promote inflammation but

also induce immunosuppression through different pathways.
6.4 Potential mechanisms of gut
microbiota’s effects on TLS development

In immature TLS, besides T and B cells, there often exist immature

and immune suppressive cells such as immunosuppressive Macs,

myeloid-derived suppressive cells (MDSCs), immature DCs and Treg

(26, 27). These immunosuppressive cells can potentially inhibit mature

TLS formation. Follicular regulatory T cells (TFR cells), characterized by

the expression of CD25, FOXP3, glycoprotein A repetitions

predominant and CXCR5, could suppress TFH cells in B cell follicles

with the involvement of TGF-b (176). DC–lysosome-associated

membrane protein (DC-LAMP)+ mature DCs, which were potent

antigen-presenting cells could form tight cell contacts with T cells, and

were responsible for the activation of naive T cells and reactivation of

TCM cells (177). By contrast, Treg cells found in this zone could disrupt

the cross-talk, inhibiting the anti-tumor immune responses generated

in TLS (111). Interestingly, following Treg cell depletion, increased

proliferation could be observed among CD4+ and CD8+ T cells within

the TLS. Treg cells present within TLS strongly expressed CTLA4 and

CD39, suggesting that two inhibitory pathways were triggered by Treg
cells in TLS, through interaction with DCs and the production of

adenosine, a potent inhibitor of T cells (111).
7 Effects of microbiota in tumor tissue
on TLS formation

Besides gut microbiota metabolites, which can directly enter

bloodstream to arrive in different tissues and organs, the microbes

from the intestines can be transported via the bloodstream to tumor

tissues through damaged blood vessels. Microorganisms include

bacteria, viruses, fungus and others, among which viruses and

bacteria have been found to be linked to the formation of TLSs (19,

178, 179). In tumor tissues, bacteria can release PAMPs (pathogen-

associated molecular patterns) such as flagellins and LPSs to activate

signaling pathways (MAPK, JAK–STAT, NF-kB) to release cytokines

and chemokines, which promote the maturation of TLS. Typically, H.
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hepaticus colonization could induce H. hepaticus-specific T follicular

helper (Tfh) cells, supporting the maturation of H. hepaticus + tumor-

adjacent tertiary lymphoid structures in colorectal cancer (18). In

hepatocellular carcinoma, the enrichment of the gut microbiota

Lachnoclostridium was also associated with the presence of

intratumoral TLS (19). Intra-tumor injection of E. coli MG1655

reprogramed tumor-associated macrophages into M1 phenotype that

produce abundant CCL5, together facilitating tumor infiltration of

adoptively transferred T cells. This effectively eradicated early-stage

melanoma and inhibited the progression of pancreatic tumors (180). In

addition, Salmonella-specific resident CX3CR1(hi) macrophages also

induced tertiary lymphoid structures in situ (181). E. coli strain Nissle

1917, which could deliver cyclic di-AMP (a STING agonist) was shown

to promote antigen presentation and type I interferon production by

DCs, which were necessary for TLS formation (182). Innate immune

cells activated by S. Typhimurium also released cytokines, such as IL-

1b, TNF and IFNg to induce inflammation, hereby transforming

immune ‘cold’ tumors into ‘hot’ ones, which cause TLS (183).
8 Strategies of manipulating mature
TLS formation

Both antigen-specific antibody and T cell responses can be

mounted in mature TLS. Various cancer treatments can also trigger

TLS formation such as immunotherapy and cytokines (184). For

instance, vaccination with human papillomavirus (HPV)

oncoprotein vaccine could induce the formation of TLS (185). In

pancreatic ductal adenocarcinoma (PDAC) mice, an anti-
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fibroblastic protein nanoparticle encoding LIGHT (Tumor

necrosis factor superfamily member 14) induced intra-tumor TLS

to inhibit abnormal collagen secretion (186). Low-dose

radiotherapy could also trigger the development of immature TLS

in a mouse model of lung cancer (184). Given the inextricable link

between the gut microbiota and TLS, several potential strategies can

be used to regulate mature TLS formation (Figure 6).

Regulation on gut microbiome composition. Regulation on the gut

microbiome though diet, FMT (Faecal microbiota transplantation),

probiotics and prebiotics, and antibiotics or bacteriophages can

potentially improve the TLS formation. In murine models of CRC

and melanoma, oral gavage with commensal Clostridiales strains could

potently induce antitumor immunity through infiltration and

activation of intratumoral CD8+ T cells. Accumulating studies have

observed that the diversity and composition of host gut microbiota are

associated with the efficacy of immunotherapy as well as the incidence

of immune-related adverse events (irAEs). The commensal microbial

community could also positively affect patient’s outcomes through

activating CD8+ T cells-dependent antitumor response (187),

enhancing antitumor T cell immunity by activating DCs via toll-like

receptor 4 (TLR4) signaling in melanoma mice receiving radiation

(188). Intact commensal bacteria were also found to support immune

surveillance in mice with lung carcinoma partially via enhancing gdT17
cell response (189). Diet with fructooligosaccharides, the structural

units of inulin fiber, can activate human Macs to produce pro-

inflammatory cytokines (190). In mice, an insulin-based high-fiber

diet upregulates microbiota-derived bile acid metabolites, which

promote IL-33 production (191). Antibiotic therapy in animal

studies has demonstrated its capacity to modify gut microbiota
FIGURE 6

Potential strategies to regulate TLS formation. There are multiple strategies to promote TLS formation such as regulating the composition of gut
microbiome through diet, FMT (Faecal microbiota transplantation), probiotics and prebiotics, and antibiotics or bacteriophages, administrating
inflammation associated gut microbiota metabolites or stimulator to promote inflammation signaling, and eliminating immunosuppressive
metabolites or blocking metabolites-mediated immunosuppressive signaling. Cells in TLS, see Figure 1.
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composition and associated metabolites (192). The next-generation

probiotics, specifically Eubacterium hallii, Faecalibacterium prausnitzii,

Roseburia spp., Akkermansia muciniphila, and Bacteroides fragilis can

have an impact on the development of various diseases (193).

Bacteriophages possess specific characteristics, including specificity

for particular or closely related bacterial species. They can be as

control agents in gut microbiota environments (194).

Administration of inflammation metabolite(s). Intra-tumoral

administration of STING agonist ADU-S100 could promote TLS

formation (92). STING agonist ADU S-100 -activated CD11c+ DCs

also showed upregulated expression of TLS promoting factors in vitro

and in vivo (92). cGAS-STING pathway initiated TLS formation

through chemokine (101). Boosting Tfh cell numbers by initiating

their differentiation, has also been proven as an efficient strategy to

promote establishment of TLS in tumors.

Elimination of anti-inflammation metabolites. Immunosuppressive

metabolites can be eliminated through multiple methods such

as neutralization.

Blockage of immunosuppressive signaling(s). The activation or

inhibition of immune-related signaling may cause immune cell

aggregation and TLS formation, contributing to anti- tumor immunity

(184). Elimination of immunosuppressive metabolites or blockage of

metabolites-mediated immunosuppressive signaling should potentially

improve the TLS formation. Repressing other regulatory cells such as

macrophage subsets or Breg cells may also favor formation of TLS.
9 Conclusion and perspectives

We here summarize the potential effects of gut microbiota/

metabolites on the TLS formation, including inflammation-

associated gut microbiota/metabolites, and also immune-

suppressive gut microbiota/metabolites. Meanwhile, different

strategies to promote the TLS formation also are suggested

through regulating gut microbiota or gut microbiota associated

pathways for anti-tumor immunity such as diet, FMT, probiotics

and prebiotics, and antibiotics or bacteriophages, or administering

inflammation metabolites or immunosuppressive metabolite

inhibitor, or regulating inflammation or immunosuppressive

mediated signaling. Notably, further studying the relationship

between TLSs and microorganisms in cancer, especially the

molecular network between them, will be helpful to fully

understand the etiology and immune environment of cancer,

and search for effective biomarkers and new treatments.

Spatial transcriptomics can offer us a powerful tool to study the

regulation of gut microbiota on TLS formation, which can capture

the spatial distribution of RNA transcripts within the TME to
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phenotype all cell types and study their spatial organization

within the tumor niche. Advancements in these technologies have

paved the way for a deeper understanding of TLS, and hold great

promise for precision medicine initiatives.
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