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Background: Liver hepatocellular carcinoma (LIHC) ranks as the foremost cause

of cancer-related deaths worldwide, and its early detection poses considerable

challenges. Current prognostic indicators, including alpha-fetoprotein, have

notable limitations in their clinical utility, thereby underscoring the necessity

for discovering new biomarkers to improve early diagnosis and enable

personalized treatment options.

Method: This investigation employed single-cell analysis techniques to identify stem

cell-associated genes and assess their prognostic significance for LIHC patients, as

well as the efficacy of immunotherapy, utilizing nonnegative matrix factorization

(NMF) cluster analysis. A diagnostic model for LIHC was developed and validated

through multiple datasets and various machine learning clustering methods. The

XGBOOST algorithm identified MRPL17 as the most significant prognostic gene

among those associated with stem cells. Additionally, the research explores the

relationship between MRPL17 expression and immune cell infiltration.

Immunofluorescence staining of LIHC tissue samples was conducted to evaluate

the expression and prognostic value of MRPL17, as well as its correlation with KI67.

Results: Through single-cell analysis, this study identified 14 essential stem cell-

related genes, highlighting their significance in the diagnosis, prognostication,

and potential treatment strategies for LIHC patients. Various machine learning

algorithms indicated that MRPL17 is particularly associated with patient prognosis

and responses to immunotherapy. Furthermore, experimental results

demonstrate that MRPL17 is upregulated in LIHC and correlates with poor

prognosis, as well as positively correlating with KI67.

Conclusion: Cancer stem cells are pivotal in the mechanisms of immune evasion

within the tumor microenvironment and have a substantial impact on treatment

results. This study experimentally validated MRPL17 as a promising prognostic

biomarker, emphasizing the need to target liver cancer stem cells to improve

patient prognosis and enhance treatment effectiveness.
KEYWORDS

cancer stem cell, hepatocellular carcinoma, single cell analysis, MRPL17,
machine learning
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1 Introduction

Liver hepatocellular carcinoma (LIHC) is recognized as one of

the most lethal malignant tumors worldwide (1). The World Health

Organization has reported that liver cancer is the third leading

cause of cancer-related deaths, particularly in developing nations

and regions endemic to hepatitis, where both morbidity and

mortality rates remain alarmingly high (2, 3). Despite recent

progress in early detection, surgical interventions, and local

ablation techniques, the insidious nature of LIHC, coupled with

its nonspecific early symptoms, often results in diagnoses at

advanced stages. This delay frequently leads to suboptimal

treatment outcomes and a poor prognosis (4). Thus, there is an

urgent need to discover new prognostic markers that can facilitate

timely intervention and management during the early phases of

the disease.

Currently, the most commonly employed prognostic

assessment tools for liver cancer include alpha-fetoprotein (AFP),

liver function tests, and imaging modalities (5). However, these

traditional markers exhibit notable limitations in clinical practice.

For example, not all patients with liver cancer present elevated AFP

levels, and false positives may arise in certain benign liver

conditions (6). Additionally, the heterogeneous nature of liver

cancer makes it challenging for a single marker to adequately

reflect a patient’s prognosis. Therefore, the establishment of

diverse prognostic markers with clearer biological relevance is

crucial for improving early detection rates of liver cancer and

laying the groundwork for personalized therapeutic strategies.

Recent advancements in single-cell sequencing technologies allow

researchers to analyze the tumor microenvironment and its

heterogeneity at a granular level, identifying gene expression

patterns linked to the progression of liver cancer (7–9). This

innovative approach provides new avenues for the identification

of prognostic markers. By utilizing advanced data analysis

techniques, such as machine learning, it is possible to extract

potential biomarkers from complex genomic datasets, thereby

predicting patient outcomes and treatment responses (10–12).

This methodology not only assists clinicians in evaluating patient

prognoses more accurately but also identifies new targets for

innovative therapeutic development, thereby propelling the field

of precision medicine in liver cancer.

A unique population of cells known as cancer stem cells is defined

by their capability to self-renew and differentiate into various cell types

(13). These cells are crucial in the processes of tumor initiation,

progression, metastasis, and the emergence of drug resistance. In the

context of liver cancer, cancer stem cells are critical contributors to

recurrence and metastasis, making their functional and molecular

study a key focus in contemporary tumor biology (14). These stem

cells exhibit a range of characteristics, including high proliferation

rates, resistance to drugs, and the capability to differentiate. Such traits

enable liver cancer stem cells to survive in various microenvironments

and endure external stresses, like chemotherapy and radiotherapy,

ultimately leading to tumor recurrence (15). Furthermore, research

shows that liver cancer stem cells engage in diverse interactions with

different cell types found in the tumor microenvironment, which

includes immune and stromal cells, through intricate signaling
Frontiers in Immunology 02
pathways that together promote tumor progression (16). As a result,

therapeutic approaches focused on liver cancer stem cells hold

potential for improving patient outcomes and lowering recurrence

rates. Recently, immunotherapy has gained considerable attention in

treating cancer, particularly methods that target the tumor

microenvironment (17, 18). Despite the progress in immunotherapy

research for liver cancer, the disease’s high heterogeneity and the

intricate nature of the tumor microenvironment often lead to less than

optimal treatment results. Studies indicate that cancer stem cells

within the tumor microenvironment not only affect tumor biology

but also influence the immune escape strategies utilized by these

tumors (19). By secreting immunosuppressive substances and

modifying the immune cel l landscape in the tumor

microenvironment, they obstruct the immune system’s ability to

effectively attack the tumors. The distinct immune evasion tactics of

these stem cells present significant obstacles for immunotherapy in

liver cancer. Liver cancer stem cells can actively suppress T cell

function by expressing various immunosuppressive factors (20).

Furthermore, they can exacerbate the immunosuppressive

environment by promoting the infiltration of regulatory T cells and

tumor-associated macrophages. This immune evasion renders

conventional immunotherapy less effective, leading to increased

interest in immunotherapeutic approaches that specifically target

liver cancer stem cells. The objective of our study is to pinpoint

signature genes linked to stem cell markers via single-cell analysis and

explore their implications for prognosis and immunotherapy in LIHC.
2 Materials and methods

2.1 Datasets and patient samples

This study analyzed two LIHC samples (GSM3064818 and

GSM3064821) sourced from the GSE112271 dataset at the single-

cell level. Additionally, we incorporated RNA sequencing data and

clinical details from the TCGA-LIHC dataset. For the development

and validation of diagnostic models, we utilized multiple datasets,

including TCGA-LIHC, GSE45267, GSE39791, GSE112790, and

GSE102079. Furthermore, we included 240 primary liver cancer

samples from the IGCG database in our analysis. We employed

LIHC tissue chips to investigate the expression and correlation of

key genes. After excluding samples with incomplete clinical data

and those lost to follow-up, a total of 92 LIHC tissue samples and 93

normal liver tissue samples were included in this study.
2.2 Processing of single-cell RNA-seq data

For single-cell analysis, we utilized four LIHC samples from the

GSE112271 dataset (21). The Seurat package was employed to

generate objects and filter out low-quality cells, ensuring that only

high-quality data were included in our analysis. We conducted

standard data preprocessing, examining the percentages of gene

count, cell count, and mitochondrial content. Filtering criteria

applied included the exclusion of genes detected in fewer than

three cells and cells with fewer than 200 genes. Each cell’s UMI
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count was normalized using a scale factor of 10,000, standardizing

the data across samples. After log transformation of the data, we

applied the Seurat (v3.0.2) ScaleData function to further enhance

the quality of the normalized data. The top 10 variable genes were

selected for principal component analysis (PCA), identifying key

genes contributing to dataset variability. We retained the first 11

principal components for UMAP visualization and clustering,

which provided insights into the underlying structure of the data.

Cell clustering was performed using the FindClusters function

within the Seurat package, with a resolution set at 0.5 to ensure

distinct clustering patterns among the cells.
2.3 Negative matrix factorization cluster
analysis and differential expression analysis
in the TCGA-LIHC dataset

The NMF algorithm was employed to identify biologically

significant coefficients in the gene expression matrix, organizing

genes and samples to emphasize the internal structural

characteristics of the data, thereby facilitating sample grouping

(22). Differential expression analysis comparing clusters A and B

was conducted using the ‘Limma’ R package, applying criteria of

|logFC| > 0.5 and an adjusted p-value of <0.05. Subsequently, the

‘NMF’ R package was utilized to cluster all samples based on

differentially expressed genes (DEGs) identified within the

subclusters, aiming to uncover potential molecular subtypes. The

‘brunet’ algorithm was applied with 100 iterations for each specified

value and a range of 2 to 10 clusters. The optimal number of clusters

was determined based on cophenetic correlation, dispersion, and

silhouette width (23). The Limma package in R (version 3.40.2) was

employed to analyze the differential expression of mRNA between

cancerous and adjacent non-cancerous tissues in the TCGA-

LIHC dataset.
2.4 Immune infiltration analysis

The immune microenvironment plays a crucial role in tumor

progression and influences the effectiveness of cancer treatments

(24, 25). To ensure the credibility of the immune score results, we

utilized the immunedeconv R package (26). Extensive testing was

performed on each algorithm, revealing unique advantages. The

XCELL method was selected for this study due to its capacity to

assess a broader range of immune cell types (27).
2.5 Constructing diagnostic model

We developed various diagnostic models related to LIHC by

combining multiple machine learning algorithms. The training was

conducted using the TCGA-LIHC dataset, with validation across

the GSE45267, GSE39791, GSE112790, and GSE102079 datasets.

Each combination was evaluated based on its area under the curve

(AUC) value, with the best model selected based on the

combination yielding the highest average AUC. Receiver
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operating characteristic (ROC) curve analysis was performed

using the pROC package [1.18.0], and the results were visualized

using ggplot2 [3.3.6].
2.6 Gene enrichment analysis

Genes associated with relevant pathways were collected

and analyzed using the GSVA package in R. Single-sample

gene set enrichment analysis (ssGSEA) was performed with the

method parameter set to ‘ssgsea’. We examined the correlation

between gene expression and pathway scores using Spearman

correlation analysis.
2.7 Expression and prognostic relevance of
MRPL17 in LIHC tissue microarrays
analyzed by immunofluorescence methods

To prepare tissue sections, paraffin slices were immersed in two

tanks of xylene for 15 minutes each, followed by sequential immersion

in absolute ethanol, 95% ethanol, 85% ethanol, 75% ethanol, and

distilled water, allowing 5 minutes for each solution. The sections were

then placed in a repair box containing pH 9.0 EDTA alkaline antigen

repair solution and heated in a pressure cooker for 2 minutes. After

natural cooling, the sections were washed three times with PBS (pH

7.4) for 5 minutes each while shaking. They were then incubated in a

3% hydrogen peroxide solution at room temperature in the dark for 15

minutes. A blocking solution was applied dropwise to ensure even

coverage of the tissue, and the sections were blocked at room

temperature for 30 minutes. Subsequently, the MRPL17 antibody

(bs-17773R), diluted with antibody diluent, was added to the sections

and incubated overnight at 4°C. The following day, sections were

washed three times with PBS for 5 minutes each, and after gently

shaking the slices dry, a poly-HRP secondary antibody corresponding

to the primary antibody species was applied dropwise and incubated at

room temperature in the dark for 10-20 minutes (28, 29). The solution

containing the TSA fluorescent dye must be uniformly distributed

over the sections and allowed to incubate at room temperature for a

duration of 15 minutes. Subsequently, apply the ready-to-use DAPI

dye onto the sections, and incubate them in the dark at room

temperature for 10 minutes. In the final step, mount the slides and

obtain images using a fluorescence microscope. The intensity of

immunostaining was rated on a scale from 0 to 3 to evaluate the

strength of the reaction, while a second scale from 1 to 4 was utilized to

measure the percentage of positive staining. To arrive at the final

expression score, the intensity score was multiplied by the percentage

scale score.
2.8 Statistical analysis

The expression levels of MRPL17 in both LIHC and normal

tissues were assessed using the Wilcoxon rank-sum test. Prognostic

analysis was conducted using the log-rank test. Spearman

correlation analysis was applied to assess the correlation between
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gene expression and stemness scores. A p-value of less than 0.05 was

established as the threshold for statistical significance.
3 Result

3.1 Screening for stem cell-related genes

Our analysis commenced with two LIHC samples sourced from

the GSE112271 dataset, applying rigorous cell quality control

standards: each cell had to contain at least 200 RNA molecules,

no more than 6000 RNA molecules, and a maximum of 10%

mitochondrial RNA (Figure 1A). Subsequently, we utilized the

HARMONY technique to identify the highly variable genes from

the filtered dataset, and we performed bulk deletion analysis based

on these feature sets (Figures 1B–D). An ANOVA test highlighted

the top 10 genes exhibiting significant differential expression within

the cell samples: SPINK1, IGF2, PEG10, ACTA2, S100A6, CXCL10,

HLA-DRA, CD74, TIMP1, and IGFBP7 (Figure 1E, F). The single-

cell analysis categorized the two LIHC samples into 11 distinct cell

groups, including microglia, Paneth cells, adventitial cells, intestinal

epithelial cells, precursor cells, cancer stem cells, NKT cells,

endothelial cells, dendritic cells, liver bud hepatocytes, monocytes,

and liver cells (Figures 1G, H). Notably, functional analysis

indicated that stem cell populations were associated with

processes such as angiogenesis and epithelial-mesenchymal

transition (EMT) (Figure 1I).
3.2 Screening for stem cell-related
differential prognostic genes

The analysis ofdifferential expression, resulted in the identification

of 2,452 genes that showed significantly increased expression in LIHC

when compared to normal liver tissues (Figure 2A). Following this, we

cross-referenced these genes with those previously recognized as stem

cell-related, assessing their prognostic relevance. In the end, we

pinpointed 14 distinct genes that presented stem cell characteristics

linked to the prognosis of LIHC (Figures 2B, C). Additional

investigations indicated the relative abundance of these 14 genes

across various cell populations (Figure 2D).
3.3 NMF-based non-negative matrix
clustering analysis

For clustering the TCGA-LIHC samples, we employed the NMF

clustering technique. We analyzed co-expression curves to identify the

most appropriate method for partitioning the TCGA-LIHC sample

subgroups. The best grouping was signaled by the point on the curve

that exhibited the most significant decline in the co-expression metrics.

Our analysis suggested that segmenting TCGA-LIHC samples into

seven groups was most appropriate (Figures 3A, B). However, this

division did not meet the analytical requirements for subsequent

studies. Therefore, we opted to categorize the samples into two or

three groups. Analysis of specific stem cell-related gene expression
Frontiers in Immunology 04
across these groups showed that when divided into two groups, cluster

1 exhibited a significantly better prognosis than cluster 2. When

divided into three groups, cluster 1 had the best prognosis, while

cluster 3 had the worst (Figures 3C, D). Notably, significant differences

in gene expression were observed between the groups, with a more

pronounced distinction in the two-cluster grouping (Figures 3E, F).
3.4 Functional analysis of stem cell-
related genes

To evaluate immune cell infiltration in the TCGA-LIHC

samples, we analyzed signature genes associated with 35 immune

cell types using the XCELL algorithm. Sixteen immune cell types

exhibited significant differences in infiltration levels, indicating a

close relationship between stem cell-related genes and immune cell

infiltration in LIHC (Figures 4A, B). A heatmap illustrated the levels

of immune cell infiltration across the two clusters (Figure 4C).

Additionally, we examined patient distribution across various T

stages, N stages, M stages, and genders, revealing differences in the

distribution of patient numbers across T stages and gender groups

in clusters 1 and 2 (Figures 4D–G). Analysis of gene enrichment in

the two clusters indicated that cluster C1 was mainly connected to

fatty acids, ethanol metabolism, and eicosanoid-related processes,

whereas cluster C2 was associated with signaling pathways

including WNT, PDGF, NOTCH3, and opioids (Figures 4H, I).
3.5 Construction of a diagnostic model

To investigate the function of genes related to stem cells in

LIHC, we evaluated their ability to predict LIHC diagnosis in

patients by util izing ROC curves. All genes analyzed

demonstrated notable predictive potential for diagnosing LIHC,

with AUC values surpassing 0.8 (Figure 5A). Consequently, we

focused on developing diagnostic models using five datasets: the

TCGA-LIHC dataset for training and GSE45267, GSE39791,

GSE112790, and GSE102079 for validation. Among the algorithm

combinations tested, the NaiveBayes algorithm proved most

effective for model development, achieving an AUC value of 0.982

in the training set (TCGA-LIHC) and AUC values of 0.832, 0.968,

0.918, and 0.846 in the validation cohorts (GSE39791, GSE45267,

GSE112790, and GSE102079). The average AUC value for the

diagnostic model across all five datasets reached 0.909, indicating

excellent predictive capability (Figure 5B). The diagnostic model

constructed with the NaiveBayes algorithm included 13 genes

associated with biochemical recurrence: TNFRSF4, LAMA4,

RHOC, MRPL17, ATP1B3, SERPINI1, HES4, LGALS1, PKM,

ASAP1, CD63, TMEM50A, and STC2 (Figure 5C).
3.6 Multiple machine learning algorithms
identify the central role of MRPL17

We analyzed stem cell-related genes in TCGA-LIHC and IGCG

samples using the XGBoost algorithm to determine their
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association with OS. The top ten genes significantly associated with

OS were CD63, LGALS1, FKBP1A, PKM, TMEM50A, RHOC,

TNFRSF4, ATP1B3, and MRPL17 (Figures 6A, B). Gosemsim

analysis was employed to rank these stem cell-related genes based

on gene ontology similarities (Figure 6C). We examined expression

differences of these 14 genes across various staging grades in the

TCGA-LIHC dataset, finding significant differences for ATP1B3,
Frontiers in Immunology 05
FKBP1A, MRPL17, SERPINI1, CD63, HES4, and PKM (Figures 6D,

E). To measure the relationships between these genes and tumor

stemness, we employed the one-class logistic regression (OCLR)

algorithm to determine mRNAsi, which serves as a marker for cell

stemness obtained from gene expression data. Our investigation

highlighted molecular signatures associated with cancer progression

and prognosis through the differential expression of particular
FIGURE 1

Identification of genes marking stem cells. (A) Quality assessment of scRNA-seq for various cell sub-populations. (B–D) PCA analysis visuals after the
integrated elimination of batch effects. (E, F) Post-count batch removal conducted to identify highly variable genes. (G, H) Stratification of LIHC
samples utilizing the UMAP technique. (I) Functional analysis of distinct cell populations.
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genes. Initially, we showcased stemness scores alongside the

expression profiles of stem cell marker genes, and subsequently

conducted a correlation analysis that indicated MRPL17 had the

highest correlation with the stemness scores (Figures 6F, G). Taking

these results into account, MRPL17 emerges as the most significant

and important gene among stem cell marker genes for further

studies on the progress of LIHC.
3.7 Analysis of the correlation of immune
infiltration of MRPL17 in LIHC

We sorted the samples from the TCGA-LIHC dataset according

to the levels of MRPL17 expression to analyze variations in immune

cell infiltration. Notable distinctions were found in the quantities of

activated myeloid dendritic cells, M1 and M2 macrophages,

granulocyte-monocyte progenitors, hematopoietic stem cells,

endothelial cells, regulatory T cells (Tregs), mast cells, CD4+ Th2

T cells, and B cells (Figure 7A). We also illustrated the distribution

of tumor-infiltrating immune cells across each TCGA-LIHC

specimen (Figure 7B). A correlation network diagram depicted

the association between MRPL17 expression and the fractions of
Frontiers in Immunology 06
immune cell infiltration, calculated via the XCELL and TIP

algorithms, which included correlation analyses among various

immune cell types (Figure 7C). We analyzed the expression of

immune checkpoint-related genes in groups of high and low

MRPL17 expression, discovering six genes with significant

expression differences (Figure 7D). TIDE scores were computed

for the high and low MRPL17 expression groups using the TIDE

algorithm, revealing that patients with high MRPL17 expression

exhibited elevated TIDE scores, suggesting less effective responses

to immunotherapy (Figure 7E). Finally, through the ssGSEA

algorithm, we assessed enrichment scores for multiple pathways

to explore the association of MRPL17 expression with these

pathways, revealing a positive relationship between MRPL17

expression and tumor proliferation as well as EMT (Figure 7F).
3.8 MRPL17 is highly expressed in LIHC

This study emphasizes the critical role of MRPL17 as a gene

associated with LIHC stem cells. We collected 60 LIHC samples

along with corresponding normal liver tissue samples for
FIGURE 2

14 stem cell-related differential genes identified as associated with LIHC prognosis. (A) Volcano plot showing variance analysis. (B) Expression levels
of differential genes associated with stem cells. (C) Prognostic evaluation of differential genes connected to stem cells. (D) Distribution of stem cell-
related differential genes across various cell populations.
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immunofluorescence staining to investigate differences in MRPL17

expression and its correlation with LIHC patient prognosis. Blue

staining indicated cell nuclei, while red staining represented

MRPL17 expression. Results indicated significantly elevated

MRPL17 expression in LIHC compared to normal liver tissue

(Figures 8A–F). Boxplots illustrated variations in MRPL17

expression between LIHC and normal tissues (Figure 8G).

Furthermore, analysis revealed a correlation between MRPL17

expression and the prognosis of LIHC patients, suggesting that

individuals with heightened MRPL17 levels experienced poorer

outcomes (Figures 8H, I). MRPL17 is positively correlated with

KI67 (Figure 8J).
4 Discussion

LIHC is a notably diverse malignant tumor, displaying significant

variations in biological traits and clinical presentations across different
Frontiers in Immunology 07
patients. This study highlights the essential importance of liver cancer

stemcells in theprogressionof the tumor, its recurrence, and resistance

to therapies. These stem cells not only have the capability to self-renew

and differentiate into several lineages, but they can also endure within

the intricate tumor microenvironment and adjust to different types of

stressors (30). Theunique traits of liver cancer stemcellsmake theman

essential focus for therapeutic strategies against liver cancer. Currently,

the widespread use of single-cell technology has revealed numerous

novel therapeutic targets among cell subtypeswithin tumor tissues (31,

32). In our research, we discovered signature genes linked to liver

cancer stem cell markers utilizing single-cell RNA sequencing and

non-negative matrix factorization cluster analysis. We also examined

the potential implications of these findings for the prognosis and

treatment of LIHC.This study provides freshperspectives andpossible

biomarkers that could enhance early diagnosis, tailored therapies, and

immunotherapeutic approaches for liver cancer.

Through an analysis at the single-cell level, our research

uncovered 14 marker genes associated with stem cells, several of
FIGURE 3

Clustering of LIHC samples based on NMF cluster analysis methods. (A) Evaluation of the performance and stability relating to the clusters via various
methods. (B) Consensus map for NMF clustering results. (C, D) Variations in survival among the different clusters. (E, F) Gene expression differences
associated with stem cells across the various clusters. *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001.
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which have been documented before regarding their regulatory

interactions with stem cells. For example, regulatory T cells

expressing Tnfrsf4 facilitate the immune evasion of stem cells in

chronic myeloid leukemia (33). Moreover, research has

demonstrated that the suppression of RhoC expression can

impede the proliferation, drug resistance, invasion, and metastasis

of stem cells in ovarian cancer (34). In addition, it has been

established that Hes4 plays a role in governing the proliferative
Frontiers in Immunology 08
characteristics of neural stem cells during the developmental stages

of the retina (35). Assessments of the functionality of these cellular

groups revealed a link between stem cell populations and

angiogenesis. There exists a significant relationship between CSCs

and the process of angiogenesis. On one hand, CSCs can play a

direct role in tumor angiogenesis by releasing pro-angiogenic

factors and differentiating into endothelial cells that construct

blood vessels. On the other hand, the tumor vasculature not only
FIGURE 4

Genes marking stem cells are linked to immune cell infiltration. (A, B) Examination of genes associated with stem cells in relation to immune cell
infiltration. (C) Heatmap displaying varying levels of infiltration by different immune cells. (D-G) Variations in the distribution of various subgroups
across different pathological stages of LIHC. (H, I) Analysis of gene enrichment for two distinct clusters. *p< 0.05, **p< 0.01, ***p< 0.001,
****p< 0.0001.
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supplies oxygen and nutrients but also produces factors that

support CSCs, thus encouraging the generation of CSCs. In

summary, a mutual enhancement occurs between tumor

angiogenesis and stemness in tumors, which together contribute

to treatment resistance and promote metastasis (36). Utilizing the

expression patterns of the 14 identified stem cell-related genes, we

implemented the NMF algorithm to conduct cluster analysis on

LIHC samples sourced from the TCGA-LIHC dataset. Regardless of

whether the LIHC samples were organized into two or three groups,

there were notable differences in patient prognosis across the
Frontiers in Immunology 09
various groups. In order to explore the fundamental factors

contributing to the variations in patient outcomes, we performed

a gene enrichment analysis. The findings from this analysis

indicated that several well-known regulatory pathways associated

with tumor stemness were notably enriched in samples from cluster

2, including pathways such as VEGF, WNT, and PDGF signaling.

This observation also clarifies why the samples within cluster 2

exhibit a poor prognosis.

In light of the lack of distinct diagnostic indicators for

individuals suffering from LIHC, a significant number of patients
FIGURE 5

The combination of the NaiveBayes algorithm is regarded as the most effective arrangement for developing diagnostic models. (A) An analysis of the
predictive capabilities of stem cell-related genes for diagnosing LIHC patients. (B) AUC values for diagnostic models generated from different
combinations of algorithms. (C) The number of genes incorporated into diagnostic models that were created using various algorithm combinations.
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are regrettably diagnosed at a later stage of the condition. To tackle

this problem, our study aims to create diagnostic models for LIHC

by employing various machine learning techniques. Within the

training dataset, our model showcases impressive efficacy, achieving

an AUC score of 0.982. In order to evaluate the effectiveness of our

diagnostic method, we analyzed it through four varied datasets that

consistently demonstrated the robustness and reliability of the
Frontiers in Immunology 10
model we developed. XGBOOST is an efficient boosted tree

algorithm that is capable of handling large-scale datasets,

demonstrating speed in both training and prediction. Numerous

prior studies have indicated that XGBOOST typically offers

superior prediction accuracy, particularly in the context of non-

linear relationships. Utilizing the XGBOOST algorithm, we

identified the ten most significant genes associated with OS in
FIGURE 6

MRPL17 is the most critical gene for LIHC prognosis. (A) The XGboost algorithm identifies the 14 genes that are most significantly linked to OS in the
TCGA-LIHC dataset. (B) Similarly, the XGboost algorithm determines the top 14 genes most related to OS in the IGCG-LIHC cohort. (C) Gosemsim
analysis discovers key genes associated with stem cell-related functions. (D, E) The differential expression of genes linked to stem cells across
various staging grades is demonstrated in the TCGA-LIHC dataset. (F, G) An analysis of the correlation between the stemness score and gene
expression is provided. ns=p> 0.05, *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001.
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LIHC patients from a pool of 14 stem cell marker genes. By

integrating the expression levels of these genes across various

pathological stages and conducting correlation analyses with

tumor stemness, we discovered that MRPL17 serves as an

important stem cell marker gene pertinent to the prognosis and

progression of LIHC. Functional analyses revealed that MRPL17 is

connected to cell proliferation in LIHC, EMT, and oxidative
Frontiers in Immunology 11
phosphorylation. Numerous prior studies have recognized

MRPL17 as a significant marker for tumor prognosis. For

instance, Chengcheng et al. identified MRPL17 as a prognostic

marker for lung cancer using bioinformatics analysis (37). Similarly,

Miao et al. highlighted MRPL17 as a crucial pathogenic factor in

endometrial cancer (38). However, its role in LIHC has not yet

been reported.
FIGURE 7

Analysis of MRPL17 Functionality. (A) Heatmap illustrating immune cell scores. (B) Proportion of immune cells infiltrating tumors across samples.
(C) Diagram depicting the relationship between MRPL17 expression levels and the scores of immune cell infiltration. (D) Correlation of immune
checkpoints within groups of high and low MRPL17 expression. (E) Variation in TIDE scores between MRPL17 high and low expression groups.
(F) Functionality assessment of MRPL17 utilizing the TCGA-LIHC dataset. ns=p> 0.05, *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001.
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Despite advances in liver cancer immunotherapy, treatment

efficacy remains limited due to the significant heterogeneity and

complex tumor microenvironment characteristic of this

malignancy. Our study underscores the pivotal role of liver

cancer stem cells in evading immune responses and offers new

insights for the development of immunotherapeutic strategies.

We conducted our research using multiple datasets from the

TCGA-LIHC and GEO databases. Furthermore, while we

confirmed the expression of MRPL17 in 92 LIHC tissue
Frontiers in Immunology 12
samples, the overall sample size is still inadequate. Larger-scale

studies are necessary to validate the effectiveness of MRPL17 as a

prognostic marker.
5 Conclusion

In conclusion, this research uncovered specific genes linked to

liver cancer stem cells utilizing single-cell analysis alongside non-
FIGURE 8

MRPL17 is highly expressed in LIHC. (A-D) Differential expression of MRPL17 in LIHC. (E, F) Correlation analysis between MRPL17 and KI67. (G) Violin
plot of MRPL17 expression. (H) KM curve of overall survival of MRPL17. (I) Predictive ROC curve of MRPL17 expression on prognosis of LIHC patients.
(J) Scatter plot of correlation between MRPL17 and KI67.
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negative matrix decomposition clustering. Additionally, it examined

their prospective roles in prognosis and immunotherapy. The results

not only deepened our comprehension of liver cancer biology but also

provided fresh perspectives for the creation of personalized therapies

and novel immunotherapy approaches. Continued investigation is

essential to further affirm the clinical relevance of these markers and

to explore their potential uses in treating liver cancer.
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