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Introduction: Breast cancer (BC) is the most prevalent malignant tumor in

women, with triple-negative breast cancer (TNBC) showing the poorest

prognosis among all subtypes. Glycosylation is increasingly recognized as a

critical biomarker in the tumor microenvironment, particularly in BC. However,

the glycosylation-related genes associated with TNBC have not yet been defined.

Additionally, their characteristics and relationship with prognosis have not been

deeply investigated.

Methods: Transcriptomic analyses were used to identify a glycosylation-related

signature (GRS) associated with TNBC prognosis. A machine learning-based

prediction model was constructed and validated across multiple independent

datasets. The model's predictive capability was extended to evaluate the

prognosis of TNBC individuals, tumor immune microenvironment and

immunotherapy response. LMAN1L (Lectin, Mannose Binding 1 Like) was

identified as a novel prognostic marker in TNBC, and its biological effects were

validated through experimental assays.

Results: The GRS showed significant prognostic relevance for TNBC patients.

The risk model effectively predicted molecular features, including immune cell

infiltration and potential responses to immunotherapy. Experimental validation

confirmed LMAN1L as a novel glycosylation-related prognostic gene, with low

expression significantly inhibiting TNBC cell proliferation and migration.

Discussion: Our GRS risk model demonstrates robust predictive capability for

TNBC prognosis and immunotherapy response. This model offers a promising

strategy for personalized treatment and improved clinical outcomes in TNBC.
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Introduction

Breast cancer (BC) is the most common malignant tumor in

women (1), with triple-negative breast cancer (TNBC) accounting

for 15-20% of BC cases. TNBC is characterized by poor prognosis,

high recurrence, and limited treatment options, including surgery,

chemotherapy, and radiotherapy (2, 3). Despite advances,

metastatic TNBC has a median overall survival of less than two

years, highlighting the need for improved therapies (4, 5).

Glycosylation, a crucial post-translational modification, plays a

key role in cellular functions such as protein stability, immune

evasion, and signal transduction (6–8). Tumor cells exhibit

abnormal glycosylation patterns, which contribute to cancer

progression, metastasis, and drug resistance (9–13). In BC, altered

glycosylation affects cell signaling, adhesion, and immune

recognition, promoting tumor aggressiveness (14–17).

Suppressing protein glycosylation levels has also been shown to

reduce drug resistance in malignant BC cells (18, 19). Presently,

biomarkers for TNBC prognosis and therapy lack accuracy and

suitability. However, glycosylation patterns in TNBC offer

promising biomarkers for early diagnosis, prognosis, and

treatment monitoring, as well as new therapeutic targets, though

further in-depth research is essential to realize their full

clinical potential.

Our study confirmed the value of glycosylation in TNBC,

defined a set of glycosylation-related genes affecting TNBC

prognosis, and used various machine learning algorithms to

construct a clinical prediction model that can assist in predicting

clinical prognosis and treatment, as well as evaluating the associated

immune environment, responsiveness to immunotherapy, and the

targeted drugs for high- and low-risk groups. Additionally, we

conducted a series of experimental validations and preliminarily

demonstrated its function and value, and innovatively discovered

the potential of the glycosylation-related gene LMAN1L in TNBC.
Abbreviations: AUC, Areas Under the Curve; BC, Breast Cancer; CCLE, Cancer

Cell Line Encyclopedia; DEG, Differentially Expressed Gene; EdU, Ethynyl-2’-

deoxyuridine; ER, Estrogen Receptors; GDSC, Genomics of Drug Sensitivity in

Cancer; GEO, Gene Expression Omnibus; GRS, Glycosylation-related Signature;

GO, Gene Ontology; GSEA, Gene Set Enrichment Analysis; HR, Hazard Ratio;

HER2, Human Epidermal Growth Factor Receptor 2; ICB, Immune Checkpoint

Blockade; KEGG, Kyoto Encyclopedia of Genes and Genomes; LASSO, Least

Absolute Shrinkage and Selection Operator; LMAN1L, Lectin Mannose-Binding

1-Like ; LOOCV, Leave-one-out Cross-va l idat ion ; MHC, Major

Histocompatibility Complex; OS, Overall Survival; PR, Progesterone Receptors;

PD, Progressive Disease; CR, Complete Response; PR, Partial Response; PRG,

Prognosis-related Gene; RNA-seq, RNA Sequencing; RSF, Random Survival

Forest; SD, Stable Disease; TCGA, The Cancer Genome Atlas; TIL, Tumor-

infiltrating Lymphocyte; TIMER, Tumor Immune Estimation Resource; TMB,

Tumor Mutation Burden; TME, Tumor Microenvironment; TNBC, Triple-

Negative Breast Cancer; TPM, Transcripts Per Million.
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Materials and methods

Data collection and preprocessing from
public databases

RNA-seq data and corresponding clinicopathological

information for the SCANB cohort obtained sourced from

Mendeley Data (https://data.mendeley.com/datasets/yzxtxn4nmd/3)

(20, 21). Additionally, genome-wide expression data and

clinicopathological information for two other TNBC cohorts were

retrieved from The Cancer Genome Atlas (TCGA-TNBC) (22) and

Gene Expression Omnibus (GSE103091) (23, 24). RNA-seq data for

BC cell lines were obtained from the Cancer Cell Line Encyclopedia

(CCLE, https://sites.broadinstitute.org/ccle/) (25). Complete RNA-

seq data and clinical characteristics for the IMvigor210 cohort, which

focuses on anti-PD-L1 immunotherapy in bladder cancer, were retrieved

from (http://research-pub.gene.com/IMvigor210CoreBiologies/). RNA-

seq read counts from SCANB, TCGA, and GSE103091 were converted

to transcripts per kilobase million (TPM) and subsequently log2-

transformed. Similarly, RNA-seq read counts from the IMvigor201

cohort were converted to TPM and log2-transformed.
Identification of glycosylation-related
signature in TNBC

Differentially expressed genes (DEGs) were identified (p < 0.05,

log2FC > 1) using the ‘DESeq2’ package in R (26), comparing

TNBC tumor samples with normal breast tissue samples from the

TCGA database. Prognosis-related genes (PRGs) were identified in

all three cohorts (SCANB, TCGA, and GSE103091) via univariate

Cox regression analysis (p < 0.05). Glycosylation-related genes

(GRGs) were sourced from the KEGG BRITE Database (https://

www.kegg.jp/kegg/brite.html) and previous literature (27), with the

complete list provided in Supplementary Table S1. A total of 35

glycosylation-related genes that were both differentially expressed

and prognostically significant were designated as glycosylation-

related signature (GRS) for TNBC. The complete list of GRS is

provided in Supplementary Table S2. The molecular pathways

related to these genes were analyzed using the ‘clusterProfiler’

package (28) in R for Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis.
GRS risk model development using
integrated machine learning techniques

To develop a high-accuracy, stable GRS risk model, we applied

ten machine learning algorithms and 101 algorithmic

combinations, including Lasso, Ridge regression, stepwise Cox

regression, Elastic net (Enet), CoxBoost, random survival forest

(RSF), supervised principal components (SuperPC), partial least

squares regression for Cox (plsRcox), generalized boosted

regression modeling (GBM), and survival support vector machine

(survival-SVM).
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The signature development process involved: (a) applying 101

algorithmic combinations to the GRS to construct prediction models

based on leave-one-out cross-validation (LOOCV) within the

SCANB cohort; (b) evaluating all models across the SCANB

training dataset and two validation datasets (TCGA-TNBC and

GSE103091); and (c) selecting the optimal model based on

Harrell’s concordance index (C-index) across the validation

datasets. The optimal model was defined using regression

coefficients, with the GRS risk score formula as GRS risk score

=on
i=1Coefi*(expression   of  mRNAi). Survival modeling and

Kaplan-Meier (KM) analyses were performed across all datasets

using the ‘survival’ and ‘survminer’ packages in R.
Clinical and molecular significance of
the GRS

Patients in the SCANB cohort were divided into high- and low-

risk groups based on the median GRS risk score. Using PAM50

subtyping, the SCANB and TCGA cohorts were categorized into

basal and non-basal groups. Differences in clinicopathological

features between the two groups were compared across both the

training and validation datasets and visualized using the ‘ggplot2’

package in R. Molecular pathways associated with DEGs between

the two groups [p < 0.05, log2FC > 1, screened using ‘limma’

package in R (29)] further explored through GO and KEGG

pathway analysis. Additionally, the GSEA software (https://

www.gsea-msigdb.org/gsea/login.jsp/) was employed to analyze

significantly enriched pathways of these DEGs.
Evaluation of gene somatic mutations

Somatic mutation and copy number variation data for the

SCANB cohort were retrieved (30). The ‘maftools’ R package (31)

was used to analyze and visualize MAF files of somatic mutation

data for the two groups and calculate the tumor mutation burden

(TMB) score for SCANB patients.
Tumor microenvironment immunological
characteristics analysis

The immune cell infiltration for TNBC patients in the SCANB

cohort was estimated using CIBERSORT (32), XCELL (33), and

TIMER (34). The immune, stromal, and ESTIMATE scores, along

with tumor purity scores, were calculated using ‘estimate’ package in R

(35). Immunomodulators, including major histocompatibility

complex (MHC) molecules, immunostimulators, immunostimulatory

receptors, immunoinhibitors, and immunoinhibitory receptor

markers, were collected from a previous study (36). The results

were visualized using stacked graphs, heat maps, violin plots, and

box plots generated with ‘ggplot2’ package in R. The Hematoxylin-

eosin (HE) staining immunophenotype pathology image data

(Formalin-fixed paraffin-embedding) in TCGA datasets were
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obtained from the Cancer Digital Slide Archive (CDSA, https://

cancer.digitalslidearchive.org/).
Prediction of therapeutic response

The SubMap algorithm (https://cloud.genepattern.org/gp) was

employed to estimate the potential response of SCANB samples to

immunotherapy. Predicted responses to anti-PD-1 and anti-CTLA-

4 therapies were compared between high- and low-risk groups

using annotation file subtype data (37). Additionally, the GRS risk

model was applied to the IMvigor210 cohort to explore its

predictive value for anti-PD-L1 therapy. Patients exhibiting stable

disease (SD) or progressive disease (PD) were categorized as non-

responders, whereas those showing complete response (CR) or

partial response (PR) were categorized as responders. To validate

the predictive robustness of the GRS risk model, we also analyzed a

cohort of 144 melanoma patients treated with anti-PD-1 immune

checkpoint blockade (ICB) (38).
Prediction of potential drugs

Expression profile data of human cancer cell lines (CCLs) were

downloaded from the Broad Institute Cancer Cell Line Encyclopedia

(CCLE) project (39). Drug sensitivity analysis was performed using

estimated AUC and IC50 values from the Genomics of Drug

Sensitivity in Cancer (GDSC) database (40). Using the ‘lolR’

package in R, a nearest centroid classifier was developed to predict

the risk group classification of BC cell lines based on the expression of

essential genes from the SCANB cohort. Prior to drug sensitivity

comparison, missing AUC values were imputed using K-nearest

neighbor (k-NN) imputation, with compounds having over 20%

missing data excluded. The intersections of potential drug candidates

and comparisons between high- and low-risk groups were visualized

using Venn diagrams, box plots, and bar plots created with ‘ggplot2’

package in R.
Cell lines and cell culture

MDA-MB-231 cells were cultured in Leibovitz L-15 medium

with 10% fetal bovine serum (FBS, Sigma, F2442). The LM2 cell

line, derived from MDA-MB-231, was cultured in Dulbecco’s

modified Eagle’s medium (DMEM) with 10% FBS. SUM159PT

cells were maintained in Ham’s F12 medium supplemented with 5%

FBS, 5mg/mL insulin, 1mg/mL hydrocortisone, and 10mM HEPES.

MCF-10A cells were maintained in DMEM/F12 medium

supplemented with 5% HS, 10mg/mL insulin, 0.5mg/mL

hydrocortisone, 20ng/ml EGF, and 100ng/ml Cholera toxin. Cell

lines BT-549, SUM149PT, and HCC1937 were cultured in RPMI

1640 with 10% FBS. All cell lines were cultured in a humidified 5%

CO2 atmosphere at 37°C, except MDA-MB-231, which was

maintained in 100% air. All cell lines were authenticated by short

tandem repeat (STR) profiling.
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Cell transfection and Oligo
RNA transfection

The sequences of small interfering RNA (siRNA)

oligonucleotides (provided in Supplementary Table S3) were

purchased from Shanghai GenePharma Co. Ltd. Oligo RNA

transfection (100nM) was performed using Lipofectamine 2000

following the Reverse Transfection Protocol.
RNA extraction, reverse transcription PCR
and quantitative real-time PCR

Total RNA was extracted using TRIzol reagent (Invitrogen,

Carlsbad, CA) following the manufacturer’s instructions. First-strand

cDNA was synthesized using a Reverse Transcriptase kit (Tiangen,

China). Quantitative Real-Time PCR (RT-qPCR) was performed using

the SYBR Green method (Applied Biosystems, USA) on the 7900 Real-

Time PCR Systemwith the SDS 2.4 software sequence detection system

(Applied Biosystems, USA). Primer sequences are listed in

Supplementary Table S4. b-actin was used as an internal control to

quantify mRNA levels. The relative expression levels of RNA were

calculated using the 2−DDCT method.
Transwell migration assay

Cell migration ability was assessed using Corning transwell

insert chambers (8mm pore size; Corning). A chemoattractant

(600ml of medium containing 10% FBS) was added to the lower

well of each chamber. Approximately 1.5 × 10^4 cells were seeded

into each chamber and incubated for 20–22 hours at 37°C.
Plate colony-forming assay

For plate colony-forming assay, cells were seeded into 3.5 cm

culture dishes (800 cells per dish) and incubated for 7–12 days, with

the medium changed every 3 days. The colonies were stained with

crystal violet (1.5%, w/v; Sigma, St Louis, MO, USA).
CCK-8 cell proliferation assay

For the CCK-8 assay, cells were seeded in 96-well plates (3 ×

10^3 cells per well) and incubated lasting 3 days at 37°C. The

changes of cell proliferation were monitored daily using CCK-8

reagent (Dojindo, Kumamoto, Japan), and the absorbance values

were measured at 450 nm using a Hybrid Reader (BioTek,

Winooski, VT, USA).
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Ethynyl-2’-deoxyuridine
incorporation assay

Cells were seeded in 6-well plates at a density of 3×10^4 cells

per well and cultured for 24 hours. Subsequently, 5mM EdU

(Meilunbio, Dalian, China) was added and incubated for 2 hours.

The remaining steps, including fixation, glycine incubation, and

dilution, were carried out following standard protocols in a light-

protected environment. Fluorescence images were captured using a

fluorescent cell imager (Bio-Rad, Hercules, USA), and at least three

random fields per well were photographed.
Immunoblotting

Cells were lysed in 1× SDS lysis buffer for 15 minutes. Proteins

were separated via SDS-PAGE and transferred to nitrocellulose

membranes (Axygen, Union City, CA). After blocking with 5%

non-fat milk, membranes were incubated overnight at 4°C with

primary antibodies, followed by incubation with horseradish

peroxidase-conjugated secondary antibodies. Signals were

detected using an ECL detection kit (Millipore) and visualized

using the ImageQuant LAS 4000 mini system (GE Healthcare,

Piscataway, NJ, USA).
Tissue samples and immunofluorescence

TNBC patient tissue samples were obtained from our previous

study (41). Tissue sections (4-5 μm) were cut from paraffin-

embedded blocks and mounted on slides. The slides were

deparaffinized in xylene and rehydrated through a graded ethanol

series. Antigen retrieval was performed by heating the slides in

citrate buffer (pH 6.0) in a microwave for 20 minutes. Endogenous

peroxidase activity was blocked with 3% hydrogen peroxide for 10

minutes. After blocking non-specific binding sites with normal

serum, the sections were incubated overnight at 4°C with the

primary antibody, followed by incubation with a fluorescent

secondary antibody. The slides were then mounted and analyzed

using microscopy.
Statistical analysis

All statistical analyses were performed using R software (version

3.6.0) or GraphPad Prism version 10 software. Significance was

calculated using unpaired two-tailed Student’s t test. Data are

represented as mean ± SEM or ± SD with at least three

independent experiments. For all figures, statistical significance

was represented as *P < 0.05, **P < 0.01, and ***P < 0.001.
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Result

Construction of a glycosylation-
related signature

The flowchart of our study was shown in Figure 1A. Initially,

based on the expression profiles of three cohorts (SCANB, TCGA-

TNBC, and GSE103091), we identified 4,434 prognostic-related

genes (PRGs) through univariate Cox regression analysis. In

addition, 9,589 differentially expressed genes (DEGs) were

identified between TNBC tumor samples and adjacent normal

tissues with statistical significance (p < 0.05 and log2FC > 1). We

then integrated glycosylation-related genes from the KEGG BRITE

Database and a previous study (27), resulting in a gene set of 481

glycosylation-related genes. By intersecting the three gene sets, we
Frontiers in Immunology 05
identified a glycosylation-related signature (GRS) with prognostic

significance in TNBC (Figure 1B). Further Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses revealed that the GRS is involved in multiple

glycosylation-associated pathways, including glycoprotein

metabolic processes, protein N-linked glycosylation, O-glycan

processing, oligosaccharide metabolic process and amino sugar

metabolic process (Figure 1C).
Construction of a GRS risk model via
machine learning algorithms

To ensure high accuracy and stability, we utilized multiple

machine learning algorithms to develop a risk model using GRS.
FIGURE 1

Construction of a glycosylation-related signature. (A) Study flow chart. (B) Venn diagram showing the intersection of prognosis-related genes (PRG),
differentially expressed genes (DEG), and glycosylation-related genes (GRG). (C) Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis of the glycosylation-related signature (GRS).
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In the SCANB dataset, 101 prediction models were fitted using the

leave-one-out cross-validation (LOOCV) framework, and the C-

index of each model was calculated across all validation datasets

(Figure 2A). Notably, the optimal model combined Lasso regression

with the Random Survival Forest (RSF), achieving the highest

average C-index (0.752). This combination consistently

outperformed other models in all validation datasets. In the Lasso

regression, the optimal l was determined when the partial

likelihood deviance minimized, based on the LOOCV framework
Frontiers in Immunology 06
(Figures 2B, C). Using these two algorithms, we performed gene

selection and model construction, identifying the 21 genes with the

highest variable importance (Figures 2D, E). A risk score for each

patient was then calculated using the expression levels of the 21

genes, weighted by their regression coefficients. Patients were

stratified into high- and low-risk groups based on the optimal

cut-off value, determined by the ‘survminer’ package. Patients in the

high-risk group had significantly worse overall survival (OS)

compared to those in the low-risk group across the SCANB
FIGURE 2

Construction of a GRS risk model via machine learning algorithms. (A) 101 prediction models were evaluated using the leave-one-out cross-
validation (LOOCV) framework, with the concordance index (C-index) calculated for each model across all validation datasets. (B) The optimal l
value in the SCANB cohort was identified at the minimum partial likelihood deviance. (C) Lasso coefficients were derived for the most informative
prognostic genes. (D) Error rate and (E) variable importance were assessed using random survival forest (RSF) analysis. Kaplan-Meier survival curves
for overall survival (OS) were stratified by GRS risk groups in (F) SCANB, (G) TCGA-TNBC, (H) GSE103091, (I) SCANB-Basal and (J) SCANB-Non-
Basal cohorts.
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training dataset and validation datasets (all P < 0.05) (Figures 2F–

H). Using the basal-like phenotype, we categorized TNBC patients

into basal and non-basal groups and observed that our model

maintained consistent predictive accuracy across the subtypes

(Figures 2I, J, Supplementary Figures S1A, B).
Association of GRS risk model with clinical
characteristics in TNBC patients

In addition, we investigated the relationship between the risk

score and clinical features. In the SCANB cohort, the results

suggested a significant difference in overall stage, N stage, and T

stage (Figure 3A). In the GSE103091 database, we also observed a

significant correlation between risk scores and clinical staging

(Figure 3B). Unfortunately, due to limitations in sample size in
Frontiers in Immunology 07
the TCGA database, we did not observe a significant difference in

clinical characteristics between high- and low-risk groups.

However, it can be seen that the patients in the high-risk group

had more advanced tumor progression, which is consistent with the

results of the other two databases (Figure 3C). Furthermore, we

explored the biological functions and enriched pathways between

low- and high-risk groups. The high-risk group was significantly

enriched for regulation of lymphocyte activation, regulation of

immune response and cytokine production by GO analysis

(Figure 3D). KEGG analysis indicated that the top three pathways

were cytokine-cytokine receptor interaction, NF-kappa B signaling

pathway and Th17 cell differentiation (Figure 3E). To further

confirm the correlation between risk scores and biological

function, we performed Gene Set Enrichment Analysis (GSEA).

The results showed that the risk score was positively correlated with

oxidative phosphorylation and organic acid catabolic process
FIGURE 3

Association of GRS risk model with clinical characteristics in TNBC patients. Circos plots showing survival and pathological differences between two
risk groups in the (A) SCANB, (B) GSE103091, and (C) TCGA-TNBC cohorts (Chi-square test). (D) GO and (E) KEGG analysis of differentially expressed
genes between high- and low-risk groups. (F-I) GO and KEGG terms enriched by differentially expressed genes using GSEA analysis between the
two risk groups.
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(Figures 3F, G), and was negatively correlated with adaptive

immune response, lymphocyte receptor signaling pathway, and

cytokine-cytokine receptor interaction (Figures 3H, I).
Correlation of immune microenvironment
with GRS risk model

The above GSEA revealed that several immune-related

pathways were highly enriched in the low-risk group, and we

consequently investigated the immune landscape and expression
Frontiers in Immunology 08
of immune-related markers between the two groups. We employed

a variety of algorithms, including TIMER, XCELL, and

CIBERSORT to comprehensively investigate the infiltration of

immune cells across two groups within the SCANB cohort

(Figure 4A). We found that the low-risk group exhibited a

relatively higher infiltration abundance of immune cell types,

including B cells, CD4+ naïve T cells, CD8+ T cells and

neutrophils (all p<0.05). However, the high-risk group exhibited

lower immune cell infiltration, with a higher presence of tumor

parenchymal cells. The HE staining immunophenotype also

revealed that high-risk scores were associated with reduced
FIGURE 4

Correlation of immune microenvironment with GRS risk model. (A) Thermogram displaying relationships between GRS risk groups (top 20% samples)
and tumor immune microenvironment components based on CIBERSORT, XCELL, TIMER, and ESTIMATE analyses (Wilcoxon test). The
representative images show the variations in pathological HE staining between the (B) high- and (C) low-risk groups. (D) Boxplot illustrating the
association between GRS risk groups and the mRNA expression levels of various immune-related markers (Wilcoxon test). (E) Histogram depicting
differences in tumor mutation burden (TMB) between risk groups (Wilcoxon test). Waterfall plots of genetic alterations in common mutant genes for
the (F) high- and (G) low-risk groups in the SCANB cohort. *P < 0.05, **P < 0.01, ***P < 0.001.
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immune cell infiltration, whereas low-risk scores were correlated

with increased immune cell infiltration (Figures 4B, C). In addition,

among the immune-related markers, the low-risk group had

significantly higher relative expression levels, such as NECTIN2,

CD70, TNFSF4, TNFSF14, TNFSF18, and CD27 (Figure 4D). In

terms of genomic heterogeneity, we observed that the high-risk

group had a higher tumor mutation burden (TMB) (Figure 4E).

Further, after comparing the two groups of genes with high

mutation frequencies we found that oncogene PIK3CA was

relatively high mutated in the high-risk group and the classical

tumor suppressor gene TP53 was mutated at a higher frequency in

the low-risk group (Figures 4F, G).
Predictive value of GRS risk model
for immunotherapy

Given that patients in the low-risk group had higher levels of

immune cell infiltration, we hypothesized that they would be more

sensitive to immunotherapy. The results of the Subclass Mapping
Frontiers in Immunology 09
(Submap) suggested that the expression patterns of patients in the

low-risk group were similar to those of TNBC patients who

responded to anti-PD-1 immunotherapy (Figure 5A). In addition,

to further explore the predictive efficacy of GRS for anti-PD-L1

therapies, the GRS risk model was applied to the IMvigor210

cohort. Similar to previous results, we observed a high-risk score

in immune desert type and IC0 (lowest immune cell score) type

(Figures 5B, C). We also examined differences in risk scores among

the TC groups (Figure 5D). The low-risk group also showed better

immunotherapy response rates and better prognosis (Figures 5E–

G). Overall, these results demonstrated that the low-risk group was

more likely to benefit from immunotherapy.
Identification of potential therapeutic
agents for the high-risk group

To explore the potential relationship between our GRS risk

model and drug sensitivity, we analyzed half-maximal inhibitory

concentration (IC50) values and AUC values for several drugs from
FIGURE 5

Predictive value of GRS risk model for immunotherapy and identification of potential therapeutic agents. (A) Prediction of immunotherapy responses
between two GRS risk groups in the SCANB cohort. (B) Histogram showing differences in GRS scores across immune phenotypes in the IMvigor210
cohort (Kruskal-Wallis test). (C, D) Histograms displaying variations in PD-L1 expression across immune cell (IC) and tumor cell (TC) subsets in the
IMvigor210 cohort (Wilcoxon test). (E) Stacked histogram of anti-PD-L1 responsiveness between GRS risk groups in the IMvigor210 cohort. Kaplan-
Meier survival curves for GRS risk groups in the IMvigor210 cohort (F) and Liu’s cohort (G). (H) Histogram of area under the curve (AUC) values
between high- and low-risk groups from the GDSC dataset (Wilcoxon test). (I) Boxplot showing variations in IC50 values between risk groups from
the GDSC dataset (Wilcoxon test). (J) Venn diagram showing compounds with significant differences in both AUC and IC50 values in the GDSC
dataset. *P < 0.05, **P < 0.01, ***P < 0.001.
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the Genomics of Drug Sensitivity in Cancer (GDSC) database

(Figures 5H, I). The results demonstrated that four compounds

(including GS-9973, TRAMETINIB, PD-0325901, and

REFAMETINIB) could be the potential therapeutic agents for the

high-risk group (Figure 5J). Among them, TRAMETINIB, PD-

0325901, and REFAMETINIB are all MEK inhibitors. Trametinib is

the first FDA-approved MEK inhibitor. When taken alone or in

combination with other treatments, MEK inhibitors have been

shown to have good anti-tumor activity in melanoma, lung

cancer, and colorectal cancer (42, 43). Thus, our study may
Frontiers in Immunology 10
provide guidance for the treatment of specific TNBC patient

subgroups in the clinic.
Validation of mRNA and protein expression
in GRS risk model

We utilized RT-qPCR analysis to validate the differential mRNA

expression of 21 model genes in TNBC cell lines (Figure 6A). Several

genes were up-regulated in all six TNBC cell lines compared to MCF-
FIGURE 6

Validation of mRNA and protein expression in GRS risk model. (A) The expression of 21 gene mRNA in TNBC cell lines experimented by RT-qPCR
analysis: MAN1A1, LMAN1L, DERL3, CHST1, HS6ST3, FUT2, BCAN, XXYLT1, VEGFB, FUT7, ALG3, CHST7, BGN, MFNG, GCNT2, GALNT13, GAS2,
B4GALNT4, SRD5A3, NEU4, and SCGB1A1. (B) Protein expression in breast cancer and normal tissues validated by the immunohistochemistry
analysis of the HPA database. *P < 0.05, **P < 0.01, ***P < 0.001.
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10A, including LMAN1L, DERL3, CHST1, HS6ST3, FUT2, BCAN,

VEGFB, FUT7, GCNT2, GALNT13, and NEU4. We also observed that

the expression of two genes (LMAN1L and NEU4) was highest in the

more malignant TNBC cell lines (LM2 and SUM159PT), suggesting

that they may play a role in TNBC progression. MAN1A1, CHST7,

BGN, GAS2, and SCGB1A1 were also up-regulated in most TNBC cell

lines. But, the gene SRD5A3 showed a significant down-regulation in all

TNBC cell lines. Additionally, we verified the expression of the model

genes at the protein level between BC and adjacent normal tissues using

the Human Protein Atlas (HPA) database (https://www.proteinatlas.
Frontiers in Immunology 11
org). The majority of genes showed higher staining in BC

samples (Figure 6B).
LMAN1L promotes the malignant
characteristics of TNBC

Among the top five genes ranked in the GRS risk model,

MAN1A1 (44, 45), DERL3 (46), CHST1 (47), and HS6ST3 (48)

have all been reported for their roles in BC, whereas the role of
FIGURE 7

LMAN1L promotes the malignant characteristics of TNBC. (A) RT-qPCR analyzing the knockdown efficiency of LMAN1L in LM2 cells and SUM159PT
cells. (B) The level of overall intracellular O-GlcNAcylation in LM2 cells and SUM159PT cells following treatment with siRNA sequences (siNC,
siLMAN1L#1, siLMAN1L#2). (C) Cell proliferation assays using CCK-8 in LM2 cells and SUM159PT cells with LMAN1L knockdown. (D) Representative
images (scale bar 0.5cm) and quantification (E, F) of plate colony formation assay. (G) Representative images (scale bar 100mm) and quantification
(H, I) of transwell migration assay in LM2 cells and SUM159PT cells with LMAN1L knockdown. (J) Representative images and quantification (K, L) of
EdU assay in LM2 cells and SUM159PT cells with LMAN1L knockdown. EdU (red) and Hoechst 33342 (blue). (M) Representative images of
immunofluorescence assay in TNBC patient samples grouped based on LMAN1L protein expression. LMAN1L (red), DAPI (blue), CD3 (white), CD19
(green), and CD68 (yellow). ***P < 0.001.
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LMAN1L in various cancers, especially TNBC, has not been

investigated. LMAN1L ranks second in importance, making a

major contribution to the model. The qPCR results also

demonstrate a substantial difference in its expression between

TNBC cell lines and normal breast epithelial cells. Therefore, we

performed a series of in vitro experiments to examine the role of

LMAN1L in TNBC. First, we silenced LMAN1L expression in LM2

and SUM159PT cells, which have high levels of LMAN1L, using two

distinct LMAN1L-targeting small interfering RNAs (siRNAs),

siLMAN1L#1 and siLMAN1L#2 (Figure 7A). Subsequently, we

assessed the overall levels of intracellular O-GlcNAcylation after

LMAN1L knockdown in these cells and observed that LMAN1L

likely inhibits O-GlcNAcylation (Figure 7B). Compared to the NC

group we also observed that inhibition of LMAN1L expression

significantly suppressed the proliferation of LM2 and SUM159PT

(Figure 7C). The plate colony-forming assay and transwell

migration assay brought similar results, finding that knockdown

of LMAN1L resulted in a significant attenuation of clone formation

and migration of TNBC cells (Figures 7D–I). Additionally, we

carried out further validation by EdU experiments (Figures 7J–L).

We also analyzed immune cell infiltration in tumor samples from

TNBC patients with different LMAN1L expression levels and found

that high LMAN1L expression correlated with reduced immune cell

infiltration (Figure 7M). In summary, we found that LMAN1L being

a glycosylation-related gene may play an important role in TNBC.

All data were presented as means with standard deviations from

three independent experiments.
Discussion

Glycosylation plays a critical role in tumor biology by

influencing key processes such as cell adhesion, extracellular

matrix interactions, and cell signaling. These processes are

essential for tumor development, including invasion, angiogenesis,

metastasis, and immune response regulation (49–51). In the tumor

microenvironment (TME), abnormal glycosylation often

contributes to immune evasion, leading to immune tolerance.

We observed significant differences in immune cell infiltration

between high- and low-risk groups using the GRS risk model.

Immune cell infiltration, including B cells, CD4+ naïve T cells,

and CD8+ T cells, was higher in the low-risk group. Tumor-

infiltrating lymphocytes (TILs) are increasingly recognized for

their role in TNBC prognosis, and TME remodeling (recruitment

of CD4+ T cells, CD8+ T cells, and NK cells) can enhance the

efficacy of immunotherapy (52–55). These findings suggest that

low-risk group patients may benefit more from immunotherapy. In

the immunotherapy cohort, responders had lower risk scores, likely

due to more effective immune responses, reinforcing that the GRS

risk model can assess the tumor immune microenvironment and

identify glycosylation as a potential biomarker for TNBC.

Our study also highlights the role of glycosylation-related genes

in TNBC. MAN1A1, upregulated in most TNBC cell lines,

participates in the maturation of Asn-linked oligosaccharides.
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Low expression of MAN1A1 often leads to abnormal N-

glycosylation and is associated with cell adhesion and brain

metastasis in BC (44). DERL3, another gene highly expressed in

TNBC cell lines, targets misfolded glycoproteins in the ER and is

associated with lymph node metastasis (56) and poor prognosis

(46). The expression of sulfotransferase CHST1 is related to the

sensitivity of Siglec ligands to carbohydrate sulfation inhibition, and

its high expression is generally associated with poor prognosis in

specific cancers (47). Notably, we identified LMAN1L, a

glycosylation-related gene previously unreported in BC, which

plays a role in TNBC malignancy. LMAN1L is a type I

transmembrane protein involved in transporting glycoproteins

from the ER to the Golgi apparatus. Our results show that

inhibiting LMAN1L suppresses TNBC cell proliferation,

clonogenicity, and migration, and modulates the immune

microenvironment. High expression of LMAN1L is also

associated with poor prognosis in pancreatic cancer (57). These

findings suggest that LMAN1L may contribute significantly to

TNBC progression, though further studies are needed to elucidate

its precise mechanisms.

While our study provides valuable insights, several limitations

must be addressed. TNBC is highly heterogeneous, with diverse

histological phenotypes, necessitating more comprehensive

mechanistic and clinical research on the roles of glycosylation-

related genes in various TNBC subtypes. Although RT-qPCR

confirmed differential mRNA expression of model genes in TNBC

cell lines, protein expression remains unvalidated. Further

investigation into the molecular mechanisms of glycosylation-

related genes in TNBC is essential to fully understand their

impact on tumor biology and treatment responses.
Conclusion

We developed and validated a glycosylation-related risk model

for prognostic stratification in TNBC patients. This model

effectively predicts clinical outcomes and immunotherapy

responses. Future research should explore the mechanisms of

glycosylation-related genes in TNBC, potentially guiding novel

therapeutic strategies.
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