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Background: Cervical cancer is the fourth most common cancer in women

globally, and the main cause of the disease has been found to be ongoing HPV

infection. Cervical cancer remains the primary cause of cancer-related death

despite major improvements in screening and treatment approaches, especially

in low- and middle-income nations. Therefore, it is crucial to investigate the

tumor microenvironment in advanced cervical cancer in order to identify

possible treatment targets.

Materials and methods: In order to better understand malignant cervical cancer

epithelial cells (EPCs), this study used bulk RNA-seq data from UCSC in

conjunction with single-cell RNA sequencing data from the ArrayExpress

database. After putting quality control procedures into place, cell type

identification and clustering analysis using the Seurat software were carried

out. To clarify functional pathways, enrichment analysis and differential gene

expression were carried out. The CIBERSORT and ESTIMATE R packages were

used to evaluate the immune microenvironment characteristics, and univariate

and multivariate Cox regression analyses were used to extract prognostic

features. Furthermore, assessments of drug sensitivity and functional

enrichment were carried out.

Results: Eight cell types were identified, with EPCs showing high proliferative and

stemness features. Five EPC subpopulations were defined, with C1 NNMT+

CAEPCs driving tumor differentiation. A NNMT CAEPCs Risk Score (NCRS)

model was developed, revealing a correlation between elevated NCRS scores

and adverse patient outcomes characterized by immune evasion. In vitro

experiments validated that the prognostic gene PLOD2 significantly enhances

proliferation, migration, and invasion of cervical cancer cells.

Conclusion: This investigation delineated eight cell types and five

subpopulations of malignant EPCs in cervical cancer, establishing the C1

NNMT+ CAEPCs as a crucial therapeutic target. The NCRS model

demonstrated its prognostic capability, indicating that higher scores are
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associated with poorer clinical outcomes. The validation of PLOD2 as a

prognostic gene highlights its therapeutic potential, underscoring the critical

need for integrating immunotherapy and targeted treatment strategies to

enhance diagnostic and therapeutic approaches in cervical cancer.
KEYWORDS

cervical cancer, single-cell RNA sequencing, tumor microenvironment, prognostic
model, immune evasion, therapeutic targets
Introduction

Cervical cancer ranks as the fourth most prevalent malignancy

among women globally, with incidence and mortality rates of 13.1%

and 6.1%, respectively (1, 2). It continues to be the primary cause of

cancer-related mortality in nations with few resources (3), primarily

due to persistent infection with HPV. Although significant reductions

in cervical cancer rates have been achieved in certain developed

regions through HPV vaccination, effective screening programs, and

advancements in diagnostic and adjuvant therapies (4), a study from

2020 revealed that nearly 90% of cervical cancer fatalities occur in

low- and middle-income countries (5). Current treatment modalities

encompass conventional chemotherapy regimens utilizing cisplatin

and paclitaxel, radiotherapy (6), targeted therapies like bevacizumab,

and immunotherapies employing immune checkpoint inhibitors (7).

The dearth of treatment choices for cervical cancer that is advanced,

recurring, or metastatic emphasizes the critical need for additional

research into the tumor microenvironment in order to identify novel

therapeutic targets.

An increasing number of studies have highlighted the critical role

of the tumor microenvironment (TME) in understanding tumor

progression and drug resistance (8). Exploring the TME in different

types of tumors holds significant clinical value (9–11). Techniques

such as high-throughput sequencing and single-cell RNA sequencing

(scRNA-seq) have enabled researchers to deeply analyze cellular

heterogeneity, immune evasion mechanisms, and the tumor’s

response to therapy within the TME (12). ScRNA-seq has

transformed our understanding of tumor heterogeneity, particularly

enhancing the exploration of the TME (13). It has also significantly

advanced our understanding of the mechanisms and evolutionary

pathways underlying tumor development (14), For example, single-

cell sequencing analysis has been widely used in breast cancer

research to analyze intercellular communication within the TME

and explore key factors that influence tumor heterogeneity (15–18),

scRNA-seq has been widely employed to investigate cervical cancer

heterogeneity (19, 20). Our research focuses on malignant epithelial

cells in cervical cancer, as chronic HPV infection primarily targets the

squamous epithelium, and HPV’s life cycle is intricately tied to the

differentiation of host epithelial cells (21).

This study sought to explore the variability of particular cell

types in order to clarify the reasons behind the advancement of
02
cervical cancer. Using scRNA-seq, we performed a thorough

investigation of malignant cervical cancer EPCs and created a

unique predictive model to find possible treatment targets. To

confirm our findings, we also looked at the tumor immune

microenvironment and ran cellular tests. Our study offers new

perspectives on potential cervical cancer treatment approaches.
Methods

Acquisition of cervical cancer
scRNA-seq data

The ArrayExpress database provided the scRNA-seq data for

cervical cancer used in this investigation (accession number E-

MTAB-12305) (22). Additionally, bulk RNA-seq data, which

included information on somatic mutations and clinical variables

(such as age, race, tumor stage, and survival time), were retrieved

from the University of California, Santa Cruz (UCSC, https://

xena.ucsc.edu/).
ScRNA-seq data quality control and cell
type identification

The “Seurat” R package (version 4.3.0) was used to transform

the scRNA-seq data into Seurat objects (23). To identify and

exclude doublet cells, the “DoubletFinder” R package (version

2.0.3) (24) was applied. Subsequent filtering was conducted based

on specific criteria: features between 300 and 6,000 (nFeature),

counts ranging from 500 to 50,000 (nCount), and fewer than 5% of

genes associated with red blood cells. Additionally, cells with

mitochondrial gene expression levels higher than 25% of the total

were not included in the analysis.

The filtered cell data was then normalized using the

“NormalizeData” function, and the “FindVariableFeatures” function

(25–27) was utilized to identify the top 2,000 highly variable genes. The

“ScaleData” function was then used to normalize the data (28, 29). The

“CellCycleScoring” function was utilized to evaluate cell cycle phases,

followed by dimensionality reduction via “RunPCA,” where the first 30

principal components (PCs) were selected for subsequent analysis. To
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mitigate batch effects across samples, the “harmony” R package (v0.1.1)

was implemented (30, 31). The “FindNeighbors” and “FindClusters”

projects were used to cluster cells, and the annotation of the clusters

was done using previously identified marker genes. Visualization of the

clusters was performed using Uniform Manifold Approximation and

Projection (UMAP) (32, 33).
InferCNV analysis

To differentiate tumor cells from non-tumor cells, we utilized

single-cell sequencing data and chromosomal sorting, employing

the CNV algorithm via the “InferCNV” R package (34). EPCs

exhibiting heightened copy number variations were classified as

Cancer-Associated EPCs (CAEPCs). Additionally, we conducted

InferCNV analysis on the identified tumor subpopulations.
Identification and enrichment of DEGs in
CAEPC subpopulations

Differentially expressed genes (DEGs) within CAEPC

subpopulations were identified using the “FindAllMarkers” function

from the Seurat package. We further employed the Ro/e algorithm to

evaluate tissue-specific expression patterns and cell cycle preferences

within these subpopulations. Subsequently, the identified DEGs

underwent Gene Ontology Biological Process (GOBP) enrichment

analysis utilizing the “ClusterProfiler” projects. We used data from

the Molecular Signature Database (MSigDB) to perform Gene Set

Enrichment Analysis (GSEA) in order to identify significantly enriched

pathways that reflect collective gene expression trends.
Single-cell pseudotime analysis

We explored the potential differentiation states and developmental

trajectories of CAEPC subpopulations in cervical cancer through

comparative analyses using CytoTRACE, Monocle 2, and Slingshot

methods. The CytoTRACE analysis (35) predicted the stemness and

relative differentiation states of CAEPC subpopulations using scRNA-

seq data, facilitating the identification of developmental trajectories for

CAEPC cells (36). Employing Monocle 2 (version 2.24.0), we mapped

CAEPC subpopulations along pseudotime trajectories, inferred their

single-cell developmental paths, and generated UMAP plots for

dimensionality reduction (37). To infer cell lineages and

developmental trajectories from gene expression data, we utilized the

“Slingshot” R package (v2.6.0) (38), with the “getlineage” function

specifically identifying cell lineages and tracking trajectories

across subpopulations.
Transcription factor and cell
interaction analysis

To investigate gene regulatory networks in cervical cancer

subgroups, we applied scRNA-seq data in conjunction with the
Frontiers in Immunology 03
pySCENIC package (version 0.10.0) to analyze transcription factor

(TF) enrichment and regulator activity. Using the AUCell tool, we

scored regulator activities, selecting the top five TFs in each

subgroup based on highest scores and examined their expression

patterns across subgroups.

In addition, we used the “cellchat” package (version 1.6.1) (39, 40)

to measure and visualize the intensity of incoming and outgoing

signaling across various cervical cancer cell types. In order to

determine the frequency and strength of intercellular contacts, we

also examined the levels of receptor-ligand expression among

important subgroups.
Development of prognostic features and
nomogram construction

With the purpose of predicting overall survival, we have

identified and validated predictive characteristics using bulk

RNA-seq data from patients with cervical cancer. Using the top

100 highly expressed genes from the CAEPC subpopulations,

univariate Cox regression analysis was used to identify genes

significantly linked with the prognosis of cervical cancer (P <

0.05). We refined the gene set most closely associated with

prognosis by applying Least Absolute Shrinkage and Selection

Operator (LASSO) analysis (41, 42) to determine the optimal l
and prevent overfitting. The coefficients for each prognostic gene

were then found using multivariate Cox regression analysis, and

risk scores were then computed using the following formula: risk

score == on
i Xi� Yi (where Y signifies the degree of gene

expression and X the coefficient. Kaplan-Meier survival curves

were generated using the “Survival” R package (version 3.3.1) to

compare survival outcomes across groups.

To enhance the nomogram’s predictive capacity, we integrated

clinicopathological factors—including age, race, tumor stage, and

survival time—into a multivariate Cox regression analysis. Using

the “rms” R package, we constructed a nomogram to estimate 1-

year, 3-year, and 5-year overall survival (OS) rates for cervical

cancer patients. The model’s performance was subsequently

assessed through receiver operating characteristic (ROC) curve

analysis (43–45).
Immune microenvironment analysis

We analyzed the immune microenvironment utilizing the

“CIBERSORT” R package (version 0.1.0) (46) to quantify the

proportions of various immune cell types present in cervical

cancer. Correlation analyses among immune cell types, prognosis-

associated genes, and risk scores were conducted using the

“corrplot” R package (version 0.92). Additionally, the Immune

Score, Stromal Score, ESTIMATE Score, and tumor purity in

patients with cervical cancer were evaluated using the

“ESTIMATE” R package (version 1.0.13) (47, 48). In addition, we

looked at Tumor Immune Dysfunction and Exclusion (TIDE)

scores from various patient groups.
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Mutation analysis

The “maftools” R package (49) was utilized to examine somatic

mutation data for patients with cervical cancer, hence enabling our

investigation of tumor mutation burden (TMB) (50). To assess the

link between risk scores and TMB, we used a Spearman

correlation analysis.
Functional enrichment and GSVA analysis

The “DESeq2” R program was used to identify DEGs. The

Kyoto Encyclopedia of Genes and Genomes (KEGG) (51–53) and

Gene Ontology (GO) databases (54) were then used for enrichment

analyses, with an emphasis on molecular function (MF), cellular

component (CC), and biological process (BP). We used analyses of

Hallmark gene sets (55) and the “GSVA” R package to further

explore biological states between groups. A statistical significance

threshold of 0.05 was used for the P-value.
Drug sensitivity analysis

Drug sensitivity data were obtained from The Genomics of

Drug Sensitivity in Cancer (GDSC) database. The “pRRophetic” R

package (version 0.5) (56) was utilized to predict the sensitivity of

various chemotherapy drugs for different patient groups, based on

the 50% inhibitory concentration (IC50).
Cell culture

The American Type Culture Collection (ATCC) provided the

SiHa and HeLa cell lines used to treat cervical cancer. Under

standard conditions of 37°C, 5% CO2 and 95% humidity, both

cell lines were kept in a culture medium supplemented with non-

essential amino acids, 10% fetal bovine serum (FBS) and 1%

penicillin/streptomycin.
Cell transfection

GenePharma (Suzhou, China) provided the siRNA constructs

used for PLOD2 knockdown. The study incorporated a negative

control group (si-NC) alongside two PLOD2 knockdown groups

(si-PLOD2-1 and si-PLOD2-2). The Lipofectamine 3000

RNAiMAX (Invitrogen, USA) manufacturer’s instructions were

followed for transfection.
CCK-8 assay for cell viability

A CCK-8 test was used to evaluate the viability of the

transfected SiHa and HeLa cell lines. Cell suspensions were plated

in 96-well plates at a density of 5 × 10³ cells per well and incubated

for 24 hours. Following this, 10 mL of CCK-8 reagent (A311-01,
Frontiers in Immunology 04
Vazyme) was added to each well, and the cells were incubated for an

additional 2 hours at 37°C in the dark. On days 1, 2, 3, and 4, cell

viability was assessed by measuring absorbance at 450 nm using a

Thermo microplate reader (A33978). Optical density (OD) values

were visually represented in line graphs.
Plate cloning assay

SiHa and HeLa cell lines were plated at a density of 1 × 10³ cells

per well in 6-well plates. After a 2-week incubation, cells were washed

with PBS, fixed with 4% paraformaldehyde, stained with 0.1% Crystal

Violet, and photographed for subsequent colony count analysis.
Cell migration and invasion assay

Transwell assays were conducted to evaluate cell migration and

invasion. Cell suspensions were cultured in 24-well plates with

chambers that were either coated with Matrigel (BD Biosciences,

USA) or left uncoated. The lower chamber contained medium

supplemented with 10% FBS. After a 36-hour incubation period,

cells in the lower chamber were fixed with 4% paraformaldehyde

and stained with 0.1% Crystal Violet. Cell counts were performed

using a light microscope.
Scratch assay

A wound healing assay was performed 48 hours post-

transfection. In 6-well plates, transfected cells were cultivated

until 95% confluence was achieved. Using a sterile 200 mL pipette

tip, a linear scratch was made on the cell monolayer. The media was

changed and the cells were incubated some more after a mild PBS

wash. The same region was photographed at 0 and 48 hours, and the

scratch’s breadth was determined.
EDU staining

Transfected SiHa and HeLa cells were seeded in 6-well plates at a

density of 5 × 10³ cells and incubated for 24 hours at room

temperature. An EdU solution was then added to the culture

medium and incubated at 37°C for 2 hours. After washing with PBS,

the cells were fixed with 4% paraformaldehyde. The cells were then

exposed to 0.5% Triton X-100 and 2 mg/mL glycine for 15 minutes. At

last, the cells were incubated for half an hour at room temperature

using 1 milliliter of Apollo and 1 milliliter of Hoechst staining solution.

Cell proliferation was examined using fluorescence microscopy.
Statistical analysis

R software (version 4.3.0) was used to conduct statistical

analysis. Unless otherwise noted, a P-value of less than 0.05 was

considered statistically significant.
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Results

Acquisition of cervical cancer single-cell
data and distribution of major clusters

The scRNA-seq data for cervical cancer were sourced from the

Array Express database, focusing on samples from two distinct tissue

types: tumor (T) and high-grade squamous intraepithelial lesion

(HSIL). By applying unsupervised clustering to the top 2000 highly

variable genes, we successfully identified a range of cell types, the

results of which were visualized in UMAP plots. We categorized

cervical cancer cells into eight distinct types: epithelial cells (EPCs),

endothelial cells (ECs), myeloid cells, Mast Cells (MCs), B plasma

cells, T NK cells, fibroblasts, and neutrophils (Supplementary Figure

S1A). These cells were derived from six sample sources: H1, H2, T1,

T2, T3, and T4, where “H” denoted HSIL and “T” signified tumor

tissue, as illustrated in the lower left of Supplementary Figure S1A.

Notably, T2 served as the primary source of ECs, while T1 and T3

were the main sources of EPCs. In the lower right corner of

Supplementary Figure S1A, we assessed the cell cycle phases (G1,

G2M, and S) for each cell type and found a significant proportion of

EPCs in the G2M phase. This suggests that these EPCs are in a high-

proliferative state, which could impact tumor progression. The

graphs in the top left and upper right of Supplementary Figure S1A

display the distributions of the Cell Stemness AUC and G2M Score

for each cell type, respectively, indicating that certain EPCs exhibited

comparatively high G2M Scores. As shown in Supplementary Figure

S1B, all identified cells originated from HSIL and tumor tissues. The

bar chart in Supplementary Figure S1C illustrates that the majority of

ECs were derived from patient sample T2, with additional

contributions from H2, T1, and T4. Supplementary Figure S1D

highlighted the top five marker genes associated with each cell type

across the various tissue sources.

In the subsequent phase of our research, we delved deeper into

the EPCs subgroups. We conducted InferCNV analysis to identify

malignant cells, categorizing epithelial cells with high Copy Number

Variation as CAEPCs (Cancer-Associated EPCs) (Supplementary

Figure S2A).

Following the identification of CAEPCs, we carried out unbiased

clustering, which, according to their marker genes, identified five

different subpopulations: C0 PI3+ CAEPCs, C1 NNMT+ CAEPCs,

C2 PSORS1C2+ CAEPCs, C3 BIRC5+ CAEPCs, and C4 RASD1+

CAEPCs. Figure 1A illustrated the distribution of these cervical

cancer CAEPC subpopulations. For each CAEPC subpopulation,

we calculated the Cell Stemness AUC, CNV Score, G2M Score, and

S Score, with their distributions visualized in UMAP plots

(Figure 1A). The top five marker genes for each subpopulation

were listed in Figure 1B: C0 PI3+ CAEPCs (MMP1, PI3, KRT14,

SLURP2, MMP10), C1 NNMT+ CAEPCs (HLA-DRB5,HLA-DQA1,

RARRES1,HLA-DPB1, HLA-DRA),C2 PSORS1C2+ CAEPCs

(KRT15, CALML5, FABP4, SPRR3, CALML3), C3 BIRC5+

CAEPCs (TOP2A,UBE2C, CENPF, CDK1, ANLN),and C4 RASD1

+ CAEPCs (GADD45B,MAFB,HEXIM1,CCDC80,SOX4).

As seen in Figure 1C, the Cell Stemness AUC, CNV Score, G2M

Score, and S Score were calculated for every group to assess

heterogeneity and gauge the stemness and differentiation potential
Frontiers in Immunology 05
within every CAEPC subpopulation. The results of the analysis

showed that the subpopulations of C0 PI3+ CAEPCs, C1 NNMT+

CAEPCs, and C4 RASD1+ CAEPCs had higher Cell Stemness AUC

values. Notably, among all subpopulations, the C1 NNMT+ CAEPCs

demonstrated the lowest CNV Score relative to the others.

We then investigated the heterogeneity among the various

cervical cancer CAEPC subpopulations, using ECs as a reference

to infer CNV states via inferCNV (Supplementary Figure S2B). The

expression of key genes associated with each subpopulation (PI3,

NNMT, PSORS1C2, BIRC5, RASD1) was assessed, with their

distribution and expression levels depicted in Figures 1D, E. The

analysis revealed that the PI3 gene of the C0 subpopulation was also

expressed in the C3 subpopulation.

We calculated the Ro/e values for different tissue types to

understand the tissue preferences of each subpopulation

(Figure 1F). The data indicated that the C1 subpopulation had

the lowest affinity for HSIL tissues, whereas the C4 subpopulation

showed a stronger preference for them. Additionally, analysis of cell

cycle preferences across the subpopulations (Figure 1G) revealed

that the C2 subpopulation favored the G1 phase, while the C3

subpopulation preferred the G2M phase. Moreover, the tissue

origins of the five cervical cancer CAEPCs subpopulations were

examined, showing that C2 PSORS1C2+ CAEPCs primarily

originated from H2 and T4, whereas C1 NNMT+ CAEPCs

mainly derived from T1 (Figure 1H).
Enrichment analysis of cervical cancer
CAEPCs subpopulations

DEGs for each group were discovered in order to examine

heterogeneity within the cervical cancer subpopulations. Figure 2A

showed the top five downregulated and upregulated genes for each

subpopulation. To further explore the molecular mechanisms

associated with each subpopulation, we conducted several

enrichment analyses using these DEGs.

Based on the GSEA results presented in Figure 2B, the following

gene sets were found to have the highest normalized enrichment

scores (NES) for the five subpopulations of cervical cancer The

Carbohydrate Catabolic Process (C0, NES=2.077) highlights

metabolic reprogramming, supporting rapid energy production and

biosynthesis essential for tumor growth. The Cytoplasmic

Translation pathway (C1, NES=2.616) reflects increased protein

synthesis required for cancer cell proliferation and survival.

Lysosomal Lumen Acidification (C2, NES=1.853) is associated with

enhanced autophagic activity, promoting cell survival under stress.

The Cell Division pathway (C3, NES=2.95) underscores the high

proliferative potential of these cells, a hallmark of aggressive tumors.

Lastly, the Regulation of miRNA Metabolic Process (C4, NES=2.322)

indicates the critical role of miRNA dysregulation in gene expression,

influencing cancer progression. These findings tie each pathway

directly to mechanisms driving cervical cancer biology. The GOBP

structure was depicted in Figure 2C, which highlighted the

enrichment of DEGs in the C0 subpopulation in categories such as

Skin development, Keratinocyte differentiation, Epidermis

development, and Cell-cell junction organization. Cytoplasmic
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FIGURE 1

Overview of cervical cancer subpopulations. (A) The central UMAP plot demonstrated the distribution of five malignant epithelial cells
subpopulations in cervical cancer, while the surrounding UMAP plots illustrated the variations in Cell Stemness AUC, CNV score, G2M Score, and S
Score. (B) The bubble chart highlighted the top five marker genes associated with each subpopulation. (C) The Cell Stemness AUC, CNV score, G2M
score, and S score with regard to cervical cancer subpopulation were displayed as violin plots. (D) UMAP plots depicted the distribution of signature
genes (PI3, NNMT, PSORS1C2, BIRC5, RASD1) across the five subpopulations. (E) The expression levels of signature genes within each subpopulation
were presented in violin plots. (F) A heatmap displayed the Ro/e values reflecting tissue type preferences (HSIL, Tumor) for each cervical cancer
subpopulation. (HSIL-High Grade Squamous Intraepithelial Lesion). (G) The heatmap also illustrated the Ro/e values related to cell cycle preferences
(G1, G2M, S) for each subpopulation. (H) A bar chart indicated the specific proportions of cervical cancer subpopulations originating from each tissue
type (H1, H2, T1, T2, T3, T4). +++ indicates the highest Ro/e value; ++ indicates the second highest Ro/e value; + indicates a moderate Ro/e value;
+/- indicates a lower Ro/e value; - indicates the lowest Ro/e value.
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https://doi.org/10.3389/fimmu.2024.1522655
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2024.1522655
translation, Protein folding, Ribosome biogenesis, Antigen processing

and Peptide antigen presentation, and Ribonucleoprotein complex

formation were all linked to the C1 subpopulation.

For the C2 subpopulation, enrichment results highlighted

processes including Oxidative phosphorylation, ATP metabolic
Frontiers in Immunology 07
process, Purine ribonucleoside triphosphate metabolic process,

Cytoplasmic translation, and Regulation of peptidase activity. The

analysis of the C3 subpopulation revealed associations with

biological processes such as Chromosome segregation, Mitotic

nuclear division, Mitotic sister chromatid segregation, Sister
FIGURE 2

Enrichment analysis of cervical cancer subpopulations. (A) The top five genes that were elevated and downregulated in each of the five cervical
cancer subpopulations were displayed in volcano plots. (B) The results of GSEA analysis highlighted only the gene sets with the highest normalized
enrichment scores (NES) for each tumor subpopulation. (C, D) GOBP analysis was performed on the DEGs from the five cervical cancer
subpopulations, presenting specific GOBP terms. (E) An enrichment network diagram visually represented the enrichment results of DEGs across the
subpopulations (*p < 0.05, ***p < 0.001, ****p < 0.0001).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1522655
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2024.1522655
chromatid segregation, and Nuclear chromosome segregation. The

C4 subpopulation showed enrichment in terms related to

Regulation of RNA splicing, Androgen receptor signaling

pathway, Intracellular receptor signaling pathway, Protein

localization to the nucleus, and Cellular response to heat.

A thorough summary of the GOBP results and the associated p-

values for each subpopulation was provided in Figure 2D. DEGs within

CAEPCs subpopulations were found to be significantly enriched in

biological processes, such as the regulation of lymphocyte activation,

the negative regulation of peptidase activity, and the antimicrobial

humoral immune response mediated by antimicrobial peptides,

according to the enrichment analysis network diagram (Figure 2E).
Trajectory analysis of CAEPCs
subpopulations in cervical cancer

In order to investigate the differentiation stemness and

developmental paths of the CAEPCs subpopulations more

thoroughly, we utilized CytoTRACE analysis to determine the

CytoTRACE Score for every group (Figure 3A). According to our

research, the C1 subpopulation had the highest CytoTRACE Score,

whereas the C4 subpopulation had the lowest, indicating that the C1

subpopulation has a higher potential for differentiation.

According to the results of Monocle 2, C1 showed higher

expression levels at the terminal stage of pseudotime than the

other four subpopulations (Figure 3B). Figures 3C, D showed that

the subpopulation of C1 NNMT+ CAEPCs was located in the

terminal stage of the lower left branch, as indicated by the

pseudotime trajectory produced by Monocle analysis. The density

of the C1 NNMT+ CAEPCs subpopulation peaked in the terminal

stage, as seen by the variation in density for each subpopulation

along the pseudotime trajectory (Figures 3E, F). Additionally, we

utilized Monocle analysis to generate a pseudotime trajectory

UMAP plot, as shown in Figure 3G.

These five subpopulations followed two distinct differentiation

pathways, as shown by the results of the Slingshot analysis: Lineage

1, which included C2 PSORS1C2+ CAEPCs growing into C0 PI3+

CAEPCs and eventually into C3 BIRC5+ CAEPCs; and Lineage 2,

which included C2 PSORS1C2+ CAEPCs evolving into C0 PI3+

CAEPCs, then into C4 RASD1+ CAEPCs, and finally culminating

in C1 NNMT+ CAEPCs (Figure 3H). This finding revealed that the

C1 NNMT+ CAEPCs subset represented the endpoint of Lineage 2,

agreeing with prior findings. Our thorough analysis focused in

particular on the C1 NNMT+ CAEPCs subpopulation. According

to earlier studies, benign tissues express far less NNMT than both

high- and low-grade squamous intraepithelial lesions (57). Based on

the analysis of single-cell sequencing data and previous studies, we

further investigated the key subpopulation, C1 NNMT+ CAEPCs.
Transcription factors and cell interactions
in cervical cancer subgroups

To determine subgroup-specific transcription factors, we used

pySCENIC to delineate gene regulatory networks. The five TFs with
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the highest activity for each subgroup were C0 PI3+ CAEPCs

(IRF7), C1 NNMT+ CAEPCs (FOXC2), C2 PSORS1C2+ CAEPCs

(PITX1), C3 BIRC5+ CAEPCs (E2F8), and C4 RASD1+ CAEPCs

(MAX) (Figure 4A). Figure 4B highlighted subgroup distributions

in UMAP plots and displayed RSS-based TF rankings. The signaling

strengths for each subgroup were shown in Figure 4C. Cell

interaction weights and counts showed a strong correlation with

fibroblasts in Figure 4D, which was centered on the C1 NNMT+

CAEPCs subgroup.
Construction and validation of the
NCRS model

In order to determine the predictive importance of the top 100

marker genes in the important subpopulation (C1 NNMT+

CAEPCs), we conducted a univariate Cox regression analysis

(Figure 5A). 16 genes were found to be associated with

patient survival outcomes by this investigation. To address

multicollinearity, we performed Least Absolute Shrinkage and

Selection Operator (LASSO) regression on the genes (Figure 5B).

The model identified 10 prognostic-related genes (CD74, HSPH1,

CXCL8, CPE, HSP90AB1, PLOD2, TNFRSF12A, FTH1, IL1B, and

CCL20) and obtained optimal performance at lambda.min = 0.027.

We then used multivariate Cox regression analysis to compute the

coefficients for each gene. We used the obtained prognostic-related

gene coefficient values (Figure 5C) to produce the NNMT CAEPCs

Risk Score (NCRS) using the following algorithm: NCRS (C1 NNMT

+ CAEPCs Risk Score) = CD74 * (-0.148426201124091) + HSPH1 *

0.240402828176152 + CXCL8 * 0.108590186774839 + CPE *

0.117113706206308 + HSP90AB1 * 0.119471572156487 + PLOD2

* 0.194498510649581 + TNFRSF12A * 0.0727111252257242 + FTH1

* 0.104526867983822 + IL1B * 0.0744859997278779 + CCL20 *

0.0440648251742935). Based on the NCRS, patients were

categorized into groups with High and Low NCRS; Figure 5D

displayed the survival statistics for different groups. As predicted,

the High NCRS group had a much worse outcome (P < 0.0001).

For the 1-year, 3-year, and 5-year forecasts, respectively, the ROC

curve analysis for the NCRS revealed AUC values of 0.799, 0.710, and

0.737 (Figure 5F). As shown in Figure 5E, we conducted univariate

Cox regression analysis for patients with cervical cancer, taking into

account the NCRS as well as clinical factors such age, stages, grades,

and TNM staging. The forest plot displayed a hazard ratio (HR) of

5.42 for different NCRS categories, with a 95% confidence interval

(CI) of 1.99 to 14.75 (P < 0.001).Moreover, principal component

analysis for the different NCRS groups showed that the variance for

PC1 was 11.9% and for PC2 was 8.3%, as shown in Figure 5G. To

predict the 1-, 2-, and 3-year Overall Survival (OS) of patients with

cervical cancer, we developed a nomogram incorporating age, race,

stages, TNM staging, and NCRS classifications (Figure 5H). Race and

NCRS categories were important factors in determining OS scores.

Figure 5I showed the clinical features (e.g., status, age, race, and

tumor stage) that we compared between the high and low NCRS

groups in the CESC cohort. According to the results, the high NCRS

group had a noticeably greater percentage of dead status cases than

the low NCRS group.
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FIGURE 3

Pseudotime trajectory analysis of cervical cancer subpopulations. (A) The CytoTRACE scores for each cervical cancer subpopulation were presented,
revealing that the C0 subpopulation had the lowest score, while the C1 subpopulation exhibited the highest. (B) Monocle 2 analysis illustrated the
expression levels of each cervical cancer subpopulation along the pseudotime trajectory. (C, D) Pseudotime trajectory plots depicted the
differentiation paths of cervical cancer subpopulations as predicted by Monocle, The differentiation started from the lower right corner, progressing
toward the upper left and branching at state 1 into two directions: one upward and the other downward to the left. (D) Facet plots displayed the
distribution of each cervical cancer subpopulation along the pseudotime trajectory. (E) Ridge plots demonstrated the density variation of cervical
cancer subpopulations along pseudotime. (F) Ridge surface figures illustrated the specific density changes of the five cervical cancer subpopulations
along the pseudotime continuum. (G) The UMAP plot depicted the outcomes of the pseudotime trajectory (nPos: 20,832, 100%). (H) Slingshot
analysis identified two distinct differentiation lineages for the cervical cancer subpopulations: Lineage 1 comprised C2 PSORS1C2+ CAEPCs → C0
PI3+ CAEPCs → C3 BIRC5+ CAEPCs, while Lineage 2 consisted of C2 PSORS1C2+ CAEPCs →C0 PI3+ CAEPCs→ C4 RASD1+ CAEPCs → C1 NNMT
+ CAEPCs.
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Prognostic-related gene analysis in NCRS

The predictive characteristics of the ten genes linked to

prognosis were then assessed. Patients were divided into High

and Low Gene Groups according to the median levels of gene
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expression. Following survival studies for these expression groups,

corresponding Kaplan-Meier survival curves (Figures 6A–J) were

produced; all of these showed statistical significance (P < 0.05). The

results showed that whereas the remaining nine genes had better

prognoses in the low expression group, the CD74 high expression
FIGURE 4

Gene regulatory networks and cell interactions among cervical cancer subgroups. (A) Heatmap displayed the top five transcription factors in each
cervical cancer tumor subgroup. (B) Transcription factors within each subgroup were ranked based on RSS, with UMAP plots illustrating their
distribution. (C) A heatmap showing the incoming (right) and outgoing (left) signaling patterns of different cervical cancer cell types. (D) Focusing on
C1 NNMT+ CAEPCs, this panel presented cell interaction counts (top) and interaction weights (bottom).
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FIGURE 5

Development and validation of a novel cervical cancer model. (A) Univariate Cox regression analysis identified the top 100 marker genes associated with
the key subpopulation C1 NNMT+ CAEPCs. (B) An optimal prognostic model was developed using LASSO regression, resulting in the selection of 10
genes at a lambda.min of 0.027. (C) The coefficient values for each prognostic gene were illustrated in a bar graph. (D) Kaplan-Meier survival curves
were employed to compare survival outcomes across the distinct NCRS groups. (E) Results from the multivariate Cox regression analysis, which
incorporated NCRS along with other clinical variables (age, race, stages, grades, and TNM staging of cervical cancer patients), were presented in a forest
plot. (F) ROC curve analysis for the NNMT CAEPCs Risk Score (NCRS) was presented, highlighting the AUC values for 1-, 3-, and 5-year survival
predictions. (G) A scatter plot generated from principal component analysis distinguished between various NCRS groups. (H) A nomogram was created
to predict overall survival (OS) at 1, 2, and 3 years based on age, race, stages, TNM staging, and NCRS group classifications. (I) Pie chart illustrated the
distribution of clinical data (e.g., status, age, race, tumor stage) across high and low NCRS groups in the CESC cohort. (*P < 0.05, ***P < 0.001).
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group had a better prognosis than the CD74 low expression group.

This was consistent with earlier research results showing that CD74

was a protective gene while the other nine genes were risk genes

(HSPH1, CXCL8, CPE, HSP90AB1, PLOD2, TNFRSF12A, FTH1,

IL1B, and CCL20).
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The survival outcomes of the Low NCRS Group and High

NCRS Group were then comprehensively analyzed (Figure 6K).

Figure 6L presented the difference expression levels of the 10

prognostic-related genes that make up the NCRS between the

groups, whereas Figure 6K displayed the survival status
FIGURE 6

NCRS model related analysis. (A–J) Survival analysis was performed to compare the prognosis between the high and low expression groups of the
ten prognostic genes comprising the NCRS. (K) The scatter plots (top) depicted the survival status over time for the various NCRS groups, while a
curve illustrated the NNMT CAEPCs Risk Score for both groups (bottom). (L) The differential expression of NCRS-related prognostic genes across the
various NCRS groups was illustrated. (M) There were reported AUC values of 0.81, 0.76, and 0.82 for the 1-, 3-, and 5-year predictions, respectively.
(N) Correlation analysis results among NCRS prognostic genes, overall survival (OS), and NCRS were displayed through scatter plots and a heatmap.
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throughout time and the NNMT CAEPCs Risk Score. The results

suggested that CD74 may have had higher expression levels in the

Low NCRS Group, while the other nine prognostic-related genes

were likely more expressed in the High NCRS Group.

Supplementary Figures S3A–J demonstrated the variations in the

expression levels of the 10 prognostic-related genes between the various

NCRS groups. The ROC curve for the NCRS model was displayed in

Figure 6M. The AUC values for 1, 3, and 5 years are 0.81, 0.76, and

0.82, respectively, suggesting good prediction accuracy at different time

points. Furthermore, as indicated in Figure 6N, we looked at the

relationships between the prognostic-related genes in the NCRS,

Overall Survival (OS), and NCRS scores. Analysis revealed that the

prognostic gene CD74 was negatively correlated with most other

prognostic genes and NCRS. In contrast, the other nine prognostic

genes—HSPH1, CXCL8, CPE, HSP90AB, PLOD2, TNFRSF12A,

FTH1, IL1B, and CCL20—were positively correlated with NCRS.
Immune infiltration analysis of different
NCRS groups

Tumor invasion, metastasis, and tumor development are

significantly influenced by cells in the tumor microenvironment.

Based on our investigation of the Tumor ImmuneMicroenvironment

(TIME) in the different NCRS groups, Figure 7A illustrated the

distribution of twenty-two immune cell types in both High and

Low NCRS Groups. Figure 7B indicated the makeup of

immunological cells in the sample, with resting CD4 memory T

cells, CD8 T cells, and macrophages making up the majority of the

cell population. The immune cell expression levels that were different

across the groups were presented in Figure 7C. While T cells CD4

memory resting and Macrophages M0 were more common in the

High NCRS Group, Mast cells resting, T cells CD8, and T cells

regulatory were higher in the Low NCRS Group.

A positive correlation between NCRS scores and Mast cells

activated and Macrophages M0 was demonstrated by the lollipop

plot presented in Figure 7D. The relationships between immune cells,

prognostic-related genes, overall survival (OS), and NCRS were shown

in Figure 7E along with P values. The findings demonstrated that CD74

was negatively correlated with Macrophages M0 and activated Mast

cells, while most prognostic-related genes showed positive associations.

Except for a positive correlation with CD74, resting Mast cells were

negatively correlated with the majority of prognostic-related genes.

In order to determine if stromal and immune cells were present

in the tumor microenvironment, we additionally assessed the Stromal

Score, Immune Score, and ESTIMATE Score for different NCRS

groups using the ESTIMATE algorithm (Figure 7F). The Stromal

scores between the two groups did not show significant differences;

however, the Low NCRS Group exhibited elevated Immune and

ESTIMATE scores, indicating a higher level of immune cell

infiltration and a more active tumor microenvironment. This may

impact their response to immunotherapies and potentially influence

patient prognosis. The High NCRS Group had considerably greater

levels, according to the tumor purity assessment (Figure 7G). This

analysis indicated that tumor samples from the High NCRS Group

exhibited a greater proportion of tumor cells and a reduced presence
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of non-tumor components, such as immune cells and stromal

elements. In order to evaluate tumor immunological dysfunction

and exclusion, which suggests possible immune evasion, we

examined immune cell exclusion and immune dysfunction within

the tumor microenvironment. The TIDE values presented in

Figure 7H indicated that the High NCRS Group had lower scores

compared to the Low NCRS Group. This observation suggests a

potential increased responsiveness of the High NCRS Group to

immunotherapies, including immune checkpoint inhibitors,

warranting further investigation.

The High NCRS Group exhibited lower scores for the treatment

modalities of CTLA4-positive PD1-positive, CTLA4-negative PD1-

positive, and CTLA4-positive PD1-negative, in contrast to the Low

NCRS Group (Figure 7I). A robust correlation exists between the

efficacy of immunotherapy and the NCRS score, evidenced by the

heightened responsiveness of the High NCRS Group to CTLA4 and

PD1-targeted treatments. In a similar vein, the Low NCRS Group

exhibited elevated expression levels of most genes linked to immune

checkpoints (Figure 7J). In contrast, the High NCRS Group

demonstrated increased expression of genes such as CD276

and NRP1.

This implied that the various NCRS groups had distinct

immune-suppressive mechanisms, highlighting the importance of

individualized treatment plans to account for these differences.

The relationships between immunological checkpoint-related

genes and the prognostic-related genes that make up the NCRS, OS,

and NCRS were shown in Figure 7K. The majority of immune

checkpoint-related genes and CD74 had a positive connection, but

many of these genes showed a negative correlation with the NNMT

CAEPCs Risk Score (NCRS). The NCRS’s particular function in the

immunological escape mechanism was further supported by its

negative correlation. Lastly, we assessed immune cell infiltration

and immunological scores between the High and Low NCRS

Groups using the ESTIMATE, CIBERSORT, XCELL, and EPIC

algorithms (Figure 7L).
Immune enrichment analysis and mutation
sensitivity analysis

To evaluate the immunological enrichment status across the

different NCRS groups, we conducted KEGG enrichment analysis.

The findings revealed significant enrichment in biological processes

related to cytokine-cytokine receptor interactions and neuroactive

ligand-receptor interactions (Figure 8A). Significant activity in

biological processes, such as receptor-ligand activity, response to

bacterial compounds, and response to lipopolysaccharide, was

found by GO enrichment analysis (Figure 8B). The ten

prognostic-related genes’ Copy Number Variation (CNV) events

were analyzed, and the results showed that while most genes did not

exhibit CNV events, HSPH1, CPE, and CCL20 experienced CNV

loss events (Figure 8C). Further research into the biological

mechanisms and clinical significance of these genes is therefore

required, as the reduction in copy number may have led to

diminished or lost expression of these genes, thereby leading to

carcinogenesis and progression. We determined which genes were
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FIGURE 7

Immune infiltration analysis. (A) The proportions of 22 infiltrating immune cell types across various NCRS groups were visualized using a stacked bar
graph. (B) The estimated proportions of these immune infiltrates across the total sample were represented in boxplots. (C) Boxplots highlighted
immune infiltration cells with statistically significant differences across the various NCRS groups. (D) The association between different kinds of
immune infiltration cells and NCRS was illustrated using a lollipop plot. (E) A heatmap was generated to illustrate the correlation between immune
infiltration cells, overall survival (OS), and NCRS-related prognostic genes. (F) Significant differences were found in the Immune and ESTIMATE Scores
when comparing the ESTIMATE, Immune, and Stromal scores between the various NCRS groups. (G) Tumor purity levels were assessed and
compared between the various NCRS groups. (H) TIDE values for both NCRS groups were presented in boxplots. (I) Treatment responses to CTLA-4
and PD-1 were illustrated in boxplots, highlighting differences between the various NCRS groups. (J) Boxplots were employed to compare the
expression levels of immune checkpoint genes across the various NCRS groups. (K) A spot plot depicted the correlation among NCRS-related
prognostic genes, OS, NCRS, and immune checkpoint genes. (L) A heatmap, calculated using various algorithms, displayed the expression of
immune infiltration cells and immune scores across the various NCRS groups. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; ‘ns’ indicated
non-significance.).
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mutated most frequently and tracked the development of the top 20.

Remarkably, TTN had the highest mutation rate (29%), with

PIK3CA following closely after (28%) (Figure 8D).

Additionally, we evaluated the Tumor Mutational Burden

(TMB) between the groups and found that the Low NCRS Group

had a higher TMB value (P=0.042), indicating that the mutation

features in this group may be richer, which could affect how this

group responds to immunotherapy (Figure 8E). Survival prognosis

showed no statistically significant difference between the High and

Low NCRS groups (Figure 8F). By combining the NCRS and TMB,

the patients were divided into four groups: Low NCRS-High TMB

group, Low NCRS-Low TMB group, High NCRS-High TMB group,

and Low NCRS-Low TMB group. The High NCRS-Low TMB group

had the worst prognosis, according to survival analysis (Figure 8G).

This group’s lower tumor mutational burden and higher NCRS

score may have made it easier for the tumor to evade immune

surveillance because fewer tumor neoantigens were detected by the

immune system. In contrast, the Low NCRS-High TMB group

demonstrated a better prognosis, which may be related to the less

immunosuppressive tumor microenvironment. This favorable

combination may enhance immune surveillance and anti-tumor

immune responses, contributing to improved outcomes and greater

sensitivity to immunotherapy. No significant linear correlation was

identified between TMB values and NCRS scores (Figure 8H).

Ultimately, a comparison of the reactions to chemotherapeutic

drugs among the various NCRS groups showed notable variations

(Figure 8I). The calculated IC50 value for cisplatin, bleomycin,

vinorelbine, and gemcitabine was found to be lower in the High

NCRS Group, indicating that these individuals may be more

susceptible to the effects of these medications. These results

suggest that the NCRS score may serve as a biomarker for

predicting chemotherapy efficacy, thereby aiding in the

formulation of personalized treatment strategies.
GSVA analysis

We used the Molecular Signatures Database (MsigDB) to

perform Gene Set Variation Analysis (GSVA) in order to

investigate the biological features associated with the NCRS score

in the TCGA dataset. The biological characteristics of different

groups were depicted in this analysis (Figure 9A). The asparagine

metabolic process, non-lytic viral release, viral budding, viral release

from host cells, virion assembly, amphisome membrane, and

misfolded protein binding were among the biological processes in

which the High NCRS Group showed considerable enrichment

(Figure 9B). We also looked at the connection between biological

functions and NCRS scores. An algorithm that found gene set

overlaps in other MSigDB datasets and kept genes with coordinated

expression was used to create the Hallmark gene sets. The NCRS

score revealed statistically significant positive correlations with

biological processes such as GOMF oxidoreductase activity acting

on paired donors with incorporation or reduction of molecular

oxygen reduced ascorbate, GOCC virion assembly, GOMF

misfolded protein binding and GOMF transition metal ion

transmembrane transporter activity as well as Hallmark gene sets
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like HEME METABOLISM, ADIPOGENESIS and GLYCOLYSIS

(Figure 9C). These findings underscore HPV infection as a

significant causative factor in cervical cancer, revealing a strong

correlation between the high NCRS group and viral activity.
In vitro experimental validation

We conducted in vitro research to shed further light on the

prognostic gene PLOD2’s function in cervical cancer. Two cervical

cancer cell lines, SiHa and HeLa, along with a negative control

group, were selected (Figures 10, 11). When comparing the two cell

lines with PLOD2 knockdown to the control group, CCK-8 assays

showed a considerably lower viability (Figures 10A, B). PLOD2

gene silencing dramatically decreased the quantity and size of

colonies produced by cervical cancer cell lines, as shown by plate

cloning tests (Figure 10C). Figures 10D, E from the Transwell assays

confirmed that the knockdown of PLOD2 significantly hindered the

migration and invasion of cervical cancer cells. The wound healing

experiment showed that, in comparison to the negative control

group, PLOD2 knockdown in SiHa and HeLa cell lines resulted in

significantly bigger wound widths after 48 hours (Figures 11A, B).

Cell proliferation assays demonstrated a marked decrease in the

number of cells in PLOD2 knockdown SiHa and HeLa lines when

compared to the negative control group (P < 0.001) (Figures 11C,

D). A thorough analysis of the experimental data revealed a

marked reduction in both the migratory and proliferative

capacities of cells with PLOD2 knockdown. This finding indicates

that PLOD2 is integral to cervical cancer cell behavior, likely

facilitating tumor progression by promoting cell migration and

proliferation. These findings highlight PLOD2 as a potential

therapeutic target in cervical cancer, warranting further

investigation into its underlying mechanisms to better understand

the disease’s progression.
Discussion

To investigate the heterogeneity and tissue distribution of

cervical cancer cells, we performed an in-depth analysis of single-

cell sequencing data obtained from the Array Express database.

Using marker genes, we classified high-quality cells into eight

distinct types: EPCs, ECs, MCs, B Plasma, T NK, Myeloid cells,

Fibroblasts, and Neutrophils. The UMAP visualization effectively

illustrated the distribution of these cell types and their tissue origins.

Notably, EPCs were predominantly present in T1 and T3 samples,

while ECs from HSIL and tumor tissues primarily originated from

the T2 sample. This tissue-specific distribution offers insights into

the potential roles of these cell types in cervical cancer progression.

Further investigation of the cell cycle revealed that a subset of EPCs

was in the G2M phase, indicative of a strong proliferative capacity.

By integrating G2M Score and Cell Stemness AUC analysis, we

identified a subgroup of EPCs with high stemness traits. This

finding underscores the critical role of EPCs in the tumor

microenvironment, emphasizing their potential contribution to

tumor progression and drug resistance.
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FIGURE 8

Enrichment analysis, TMB, and drug sensitivity analysis. (A, B) Based on DEGs, we conducted KEGG enrichment and Gene Ontology analysis of
different NCRS groups. (C) A bar graph was used to show the copy number variation (CNV) of the prognostic genes that make up the NCRS. Blue
showed CNV gains, red indicated CNV losses, and green indicated no change. (D) A gene mutation waterfall plot illustrated the top 20 most
mutation frequencies genes. (E) Boxplot revealed a significant difference in tumor mutational burden (TMB) values among the different NCRS groups
(P = 0.042). (F) A P value of 0.52 was obtained from the survival analysis for the High and Low TMB Groups. (G) A significant P value of less than
0.0001 was found in the survival analysis results for the High NCRS-High TMB, High NCRS-Low TMB, Low NCRS-High TMB, and Low NCRS-Low
TMB Groups. (H) An evaluation of the correlation between the NCRS and TMB values produced a R value of -0.073 and a P value of 0.23.
(I) Drug sensitivity analysis results were conducted in the various NCRS groups for cisplatin, gemcitabine, vinorelbine, bleomycin, and paclitaxel.
(**P < 0.01, ***P < 0.001, ‘ns’ indicated non-significance).
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The pivotal role of the C1 subpopulation in the differentiation

process was underscored by CytoTRACE and Monocle analyses,

emphasizing its crucial involvement in tumor evolution. This

subpopulation was situated at the end of Slingshot Lineage 2 and

the terminal stage of the Monocle 2 trajectory, exhibiting the
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highest CytoTRACE Score. Its significant differentiation capacity

and unique differentiation mechanisms suggest that it could be a

valuable target for therapeutic intervention. Previous studies have

identified NNMT as a key metabolic regulator in the differentiation

of cancer-associated fibroblasts (CAFs) in the tumor stroma,
FIGURE 9

GSVA analysis. (A) The two NCRS Groups underwent GSVA analysis using the Molecular Signatures Database (MsigDB). (B) GO pathway activity
differences between the various NCRS groups were shown using t-SNE plots. (C) To evaluate the association between NCRS and the GOBP, GOMF,
GOCC, HP, and HALLMARK gene sets, a Spearman correlation analysis was performed. (*P < 0.05, **P < 0.01, ***P < 0.001, ‘ns’ indicated
non-significance).
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emphasizing its therapeutic potential and its crucial role in cancer

progression (58). This conclusion emerged from proteomic analyses

of patients with HGSC. Additionally, previous research has revealed

that the NNMT-DNMT1 axis plays a critical role in preserving the

susceptibility of cancer cells to inhibition of oxidative
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phosphorylation (59). In high-grade squamous intraepithelial

lesions and normal cervical cells, PLOD2 expression is higher in

squamous cell carcinoma (60). Our investigation into C1 NNMT+

CAEPCs was motivated by the relatively unexplored role of NNMT

in cervical cancer.
FIGURE 10

PLOD2 Knockdown effects. (A, B) The CCK-8 assay demonstrated that the knockdown of PLOD2 significantly compromised the proliferative
capacity of both SiHa and HeLa cell lines. (C) The plate colony formation assay demonstrated a marked reduction in the colony-forming ability of
cervical cancer cell lines subsequent to PLOD2 knockdown. (D, E) Transwell assays showed that PLOD2 significantly reduced the migration and
invasion abilities of the two cell lines. (** P<0.01, *** P<0.001).
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We developed a model known as the NNMT CAEPCs Risk

Score (NCRS) and conducted a comprehensive evaluation of its

predictive capabilities for patients with cervical cancer. By

employing univariate Cox regression alongside LASSO regression

analyses, we identified ten genes—CD74, HSPH1, CXCL8, CPE,

HSP90AB1, PLOD2, TNFRSF12A, FTH1, IL1B, and CCL20—that

exhibited strong correlations with prognosis. Among these, nine

genes were classified as risk factors, including TNFRSF12A, FTH1,

CXCL8, CPE, HSP90AB1, PLOD2, and CCL20, while CD74 was

identified as a protective gene. Notably, HSPH1 exhibited the

highest coefficient value of 0.24 among the risk genes, closely

followed by PLOD2 at 0.19. The results demonstrated that

patients categorized in the high NCRS group had markedly
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poorer prognoses than those in the low NCRS group, thereby

affirming NCRS as a significant prognostic factor in cervical cancer.

The ROC curve analysis for the NCRS model demonstrated

robust predictive accuracy for outcomes at one, three, and five years.

Furthermore, NCRS was confirmed as an independent prognostic

predictor in multivariate Cox regression analysis that included

clinical variables. This underscores the significance of NCRS in

the prognostic classification of cervical cancer.

The TME significantly impacts tumor growth and treatment

efficacy (61). Most solid tumors exhibit immunosuppressive

characteristics, as evidenced by extensive research on the TME

(62). Our examination of immune infiltration revealed significant

variations in the distribution of immune cell types across the NCRS
FIGURE 11

Effects on migration and proliferation. (A, B) Results from the scratch assay demonstrated that migration of SiHa and HeLa cell lines was significantly
hindered following PLOD2 knockdown. (C, D) Following PLOD2 knockdown, EdU staining revealed a significant reduction in the proliferative ability
of HeLa and SiHa cell lines. (***P < 0.001).
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groups. Specifically, the low NCRS group displayed a greater density

of stromal and immune cells, while the high NCRS group

demonstrated enhanced tumor cell purity. This observation

suggests that the high NCRS group may employ more aggressive

immune evasion strategies.

Clinical trials have demonstrated that Zalifrelimab (anti-CTLA-4)

and Balstilimab (anti-PD-1) possess acceptable safety profiles and

induce sustained responses, highlighting their potential as effective

therapies for advanced cervical cancer (63). Additionally, our analysis

of immune checkpoint-related genes revealed that the high NCRS

group demonstrated amore favorable response to immune checkpoint

inhibitors, particularly when treated with combinations of CTLA4 and

PD1 inhibitors. This finding suggests that patients in this group may

experience enhanced benefits from immunotherapy.

Immune enrichment analyses (KEGG and GO) revealed

significant enrichment of pathways related to immune evasion

and viral activity, including “GOBP viral release from host cell”

and “GOCC virion assembly,” in the high NCRS group. These

findings reinforce the unique role of NCRS within the cervical

cancer immune landscape, closely associated with HPV infection,

the primary pathogenic factor in cervical cancer.

In vitro experiments validated the impact of PLOD2, a key gene

within the NCRS, on the biological activity of cervical cancer cells.

Prior studies have shown that PLOD2 is expressed at higher levels

in squamous cell carcinoma compared to high-grade squamous

intraepithelial lesions and normal cervical cells (64), primarily due

to its role in catalyzing the hydroxylation of lysine residues in

collagen molecules (65, 66). Furthermore, PLOD2 has been

identified as a potential therapeutic target for colorectal cancer

(67). Notably, the knockdown of PLOD2 markedly reduced

migration, invasion, and proliferation in SiHa and HeLa cells,

underscoring its potential role in cervical cancer progression.

Consequently, PLOD2 presents as a promising therapeutic target

for treating this malignancy.

Our study has several limitations. Although the modeling and

validation utilized the TCGA database, reliance on publicly available

bioinformatics datasets introduced challenges such as data

inconsistencies, batch effects, and potential bias, affecting the

robustness and generalizability of the NCRS model. Additionally,

the absence of independent external samples limited rigorous

validation. Future research should use more diverse, multi-center

datasets with detailed clinical and experimental data to improve

model robustness. Advanced machine learning algorithms and cross-

validation techniques could mitigate biases and enhance predictive

accuracy. Furthermore, although we identified a relationship between

NCRS and the tumor immune microenvironment, as well as

responses to immunotherapy, this conclusion was predominantly

based on bioinformatics analyses with limited experimental

validation. In summary, despite the prognostic model’s potential

clinical relevance, additional experimental validation and clinical

trials are imperative to enhance its utility.

This study identified eight distinct cell types and their tissue-

specific distributions through the analysis of single-cell sequencing

data from cervical cancer patients. Notably, EPCs exhibited

pronounced proliferative and stemness characteristics. From

malignant EPCs, five tumor subpopulations were delineated, with
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the C1 NNMT+ CAEPCs subpopulation emerging as critical for

tumor differentiation, indicating its potential as a therapeutic target.

The NNMT CAEPCs Risk Score (NCRS) model effectively

predicted patient prognosis; those with elevated NCRS scores

experienced poorer outcomes and displayed a stronger association

with immune evasion mechanisms. Research on immune-related

genes suggests that patients in the high NCRS group may

experience enhanced benefits from immunotherapy, especially

when combined with CTLA4 and PD1 inhibitors. Moreover,

experimental validation highlighted the potential of PLOD2 as a

therapeutic target in cervical cancer. This research highlights the

importance of early detection and precision therapy by identifying

novel treatment targets. Furthermore, it underscores the need to

integrate targeted therapies with immunotherapy to enhance

patient survival and quality of life. By elucidating interactions

within the tumor microenvironment and identifying key cellular

subpopulations, this study offers insights that could inform future

therapeutic strategies and improve patient outcomes.
Conclusion

This study analyzed single-cell sequencing data from cervical

cancer patients, identifying eight distinct cell types and categorizing

malignant EPCs into five unique tumor subpopulations. Among

these, C1 NNMT+ CAEPCs were highlighted as a critical

therapeutic target for promoting tumor differentiation. The NNMT

CAEPCs Risk Score (NCRS) model demonstrated a robust

association between poorer patient outcomes and heightened

immune evasion, accurately predicting prognosis. Additionally, the

validation of PLOD2 as a prognostic gene underscored its therapeutic

potential. By emphasizing the importance of integrating

immunotherapy with targeted treatment, this research lays the

groundwork for early detection, tailored interventions, and

improved prognostic outcomes for cervical cancer patients.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Author contributions

ZL: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Project administration, Resources,

Software, Supervision, Validation, Visualization, Writing – original

draft, Writing – review & editing. FW: Conceptualization, Data

curation, Formal analysis, Investigation, Resources, Software, Writing

– original draft, Writing – review & editing. RY: Conceptualization,

Data curation, Formal analysis, Software, Writing – original draft,

Writing – review & editing. SL: Data curation, Methodology, Writing –

review & editing. YB: Data curation, Software, Writing – review &
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1522655
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2024.1522655
editing. BZ: Investigation, Methodology, Writing – review & editing.

CS: Conceptualization, Software, Writing – review & editing. HC:

Investigation, Methodology, Writing – review & editing. DS: Funding

acquisition, Supervision, Writing – review & editing. LX: Funding

acquisition, Supervision, Writing – review & editing. HW:

Funding acquisition, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The Fourth

National Medical Master Inheritance Studio Project (No.401091401).
Acknowledgments

Thanks to everyone who have contributed to this article.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Frontiers in Immunology 21
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.

1522655/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Distribution of all cell types in cervical cancer. (A) UMAP plots provided a
comprehensive overview of the distribution of various cell types in cervical

cancer, illustrating the Cell Stemness AUC, G2M Score, tissue origins (H1, H2,
T1, T2, T3, T4), and specific phases of the cell cycle (G1, G2M, S). (B) A 3D

UMAP plot depicted the distribution of different tissue types of cervical cancer

cells, including HSIL and tumor samples. (C) Each cell type’s proportional
proportions across the different tissue origins were displayed in a bar chart.

(D) The bubble plot displayed the top five marker genes associated with each
cell type.

SUPPLEMENTARY FIGURE 2

InferCNV analysis. (A) Through InferCNV analysis, epithelial cells exhibiting

significant copy number variation were classified as tumor cells, with gain
regions indicated in red and loss regions shown in blue. (B) InferCNV analysis

illustrated the copy number variation status of different cervical cancer
malignant epithelial cell subsets.

SUPPLEMENTARY FIGURE 3

Prognostic gene analysis. (A-J) Ridge plots, complemented by boxplots,

illustrated the differential expression levels of NCRS-related genes across
the various NCRS groups.
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