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Introduction

The altered expression of genes encoding histone acetyltransferases (HATs) and histone deacetylases (HDACs) has been implicated in the tumorigenesis and progression of various solid tumors. However, systematic characterization of the transcriptomic landscape and clinical relevance of HATs and HDACs in pan-cancer contexts remains lacking.





Methods

Transcriptome and clinical data of 9,483 patients across 31 tumor types from The Cancer Genome Atlas were collected for systematic pan-cancer analysis. Additional glioma-specific datasets (Chinese Glioma Genome Atlas, GlioVis, GSE43378, and GSE182109) were also collected to validate the transcriptional characteristics of HATs and HDACs in gliomas. Consensus clustering analysis was applied to identify distinct expression patterns of HATs and HDACs.





Results

Based on the transcriptomic data of 25 genes encoding 9 HATs and 16 HDACs, we identified five major subtypes across 31 cancer types (AC-I to AC-V). Notably, the AC-V subtype comprised over 95% of glioma patients, suggesting glioma patients exhibited distinct expression patterns of histone acetylation-modifying enzymes compared to patients with other solid tumors. Therefore, we re-conducted the consensus clustering analysis specifically within the context of gliomas and identified five subtypes, denoted “AC-GI” to “AC-GV”, which were characterized by differences in HATs/HDACs expression patterns, biological and immune status, genetic alterations, and clinical outcomes. The AC-GII patients exhibited the best prognosis and were sensitive to temozolomide, while AC-GV patients had the poorest prognosis and the lowest sensitivity to temozolomide among all subtypes. Moreover, based on the Connectivity Map database analysis and experimental verification, we identified several pan-HDAC inhibitors that could serve as sensitizers for temozolomide therapy in AC-GV patients, such as panobinostat and scriptaid. Considering the distinctive clinical characteristics of patients with AC-GII and AC-GV, we constructed the “ACG score” model capable of effectively recognizing patients with these subtypes and predicting patient prognosis.





Conclusion

Herein, we established novel biologically and clinically relevant molecular classifications for pan-solid tumors and gliomas based on transcriptional expression profiles of HATs and HDACs. Moreover, the ACG score model, calculated by the transcriptional expression of 29 genes, was not only an independent prognostic factor for glioma patients, but can also provide valuable references for promoting more effective therapeutic strategies.
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1 Introduction

As a primary epigenetic mechanism influencing oncogenesis, the acetylation of histone lysine residues, modulated by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs), can markedly affect chromatin compaction, further impacting transcription factors accessing the promoter region and the transcriptional expression of genes (1–4). Considering that HDACs are frequently dysregulated across various tumors and inhibiting their activity could effectively disrupt tumor cell viability, HDACs have emerged as promising therapeutic targets for multiple tumor types (5, 6). However, although in vitro and in vivo studies have shown promising results (7, 8), clinical trials for HDAC inhibitors (HDACis) in solid tumors have been unsatisfactory, possibly owing to the lack of patient stratification, with existing inhibitors targeting multiple HDACs, potentially eliciting unwanted side effects (9–11). Therefore, elucidating the expression features of histone acetylation-modifying enzymes at the pan-cancer level could provide a more comprehensive view of the acetylation-deacetylation balance, which may help unravel both the commonalities and heterogeneity of various human malignancies, offering insights for screening patients suitable for HDACis therapy.

Recently, the mRNA expression of histone acetylation-modifying enzymes has been used to define molecular subtypes with substantial prognostic differences in patients with gastric and colon cancer (12, 13). However, systematic efforts to characterize the transcriptomic landscape and clinical relevance of HATs and HDACs in pan-cancer backgrounds are lacking. In this study, we first conducted a pan-cancer analysis of the transcriptomic expression of 9 HATs and 16 HDACs to provide a preliminary overview of mRNA expression patterns of histone acetylation-modifying enzymes across various tumor types. More importantly, given our findings suggested that glioma displayed unique expression patterns of HATs and HDACs compared to other solid tumors, we specifically performed consensus clustering analysis on specimens of patients with glioma to identify molecular subtypes with distinct biological features, tumor microenvironment (TME) and clinical outcome.




2 Materials and methods



2.1 Data retrieval

The cancer-associated datasets, including mRNA sequencing (n = 10,079), clinical (n = 9,483), single nucleotide variation (SNV) (n = 10,234), copy number variation (CNV) (n = 10,878), microRNA data (n=10,818), and proteomic data (n=8,657) were gathered from the “TCGA pan-cancer” section of University of California Santa Cruz (UCSC) Xena database (https://xenabrowser.net). A total of 31 types of solid tumors were included in our pan cancer analysis (Supplementary Table S1). Particularly, we also collected the transcriptomic data of gliomas in Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/), GlioVis (http://gliovis.bioinfo.cnio.es/), and GEO (http://www.ncbi.nlm.nih.gov/geo, GSE43378 and GSE182109) databases for exploring and validating our findings in glioma (Supplementary Table S2).




2.2 Consensus clustering analysis based on transcriptomic profiles of HATs and HDACs

We conducted an unsupervised clustering (K-means) analysis based on transcriptomic profiles of HATs and HDACs to delineate different acetylation regulator modification patterns. ConsensusClusterPlus (14) was applied to choose the optimal clustering number and assess clustering stability. To ensure both robustness and computational feasibility of the results, the parameters were chosen as follows: maxK (the maximum number of clusters) = 10, reps (the number of resampling iterations) = 1,000, pItem (the proportion of data points randomly sampled for each iteration) = 0.95, pFeature (the proportion of features considered in each iteration) = 1.




2.3 Prediction of molecular subtype by a combination of prediction analysis for microarray and nearest template prediction algorithms

To map the classification obtained from consensus clustering analysis on independent datasets, we first employed the prediction of molecular subtype by a combination of prediction analysis for microarray (PAM) algorithm to identify gene markers whose expression best discriminates each subtype based on the whole transcriptome (15). Then, the filtered gene sets were subsequently used as template features for nearest template prediction (NTP) (16), which is a correlation-based method specifically constructed to provide robust class predictions for high-dimensional and noisy gene expression data (17).




2.4 Biological process, metabolic activation and immune infiltration analysis

To analyze biological processes, we implemented gene set variation analysis (GSVA) (18) against a collection of 50 hallmark biological pathways and 186 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways as previously described (19, 20). The activation of metabolic gene signatures and immune cell signatures in each sample were analyzed using the “IOBR” R package (21). A total of 6 algorithms for estimating immune cell infiltration including quantTIseq, TIMER, EPIC, MCP-counter, ESTIMATE, and xCell were embedded in “IOBR”.




2.5 Trajectory analysis

The pseudotime analysis was conducted using the ‘monocle’ R package (22). Firstly, a monocle object was established utilizing the ‘newCellDataSet’ function. Following this, genes with a minimum expression level of 0.1 and expressed in at least 0.5% of samples were selected. Moreover, the ‘differentialGeneTest’ function was utilized for identifying genes for trajectory sequencing. Next, the ‘reduceDimension’ function was adopted for dimension reduction, applying the parameter ‘reduction_method = DDRTree’. Lastly, the samples were organized in a pseudotime sequence using the ‘orderCells’ function and visualization was implemented by the ‘plot_cell_trajectory’ function.




2.6 Somatic genetic mutation and miRNA enrichment analysis

For somatic genetic mutation analysis, the genetic mutation file was acquired using the TCGAbiolinks package (23), and the identification of significant cancer mutated genes (SMGs) was performed through the application of MutSigCV algorithm (24). Subsequently, we selected the top 100 SMGs based on their total mutation frequency and conducted a chi-square test to analyze the distribution of effective mutations among different groups as previously described (25, 26). As for the miRNA enrichment analysis, the pathway enrichment analysis based on miRNAs was conducted by using the miRNA Enrichment Analysis and Annotation Tool (https://ccb-compute2.cs.uni-saarland.de/mieaa2/).




2.7 Identify potential therapeutic drugs by Cancer Therapeutics Response Portal database analysis and Connectivity Map analysis

To identify potential therapeutic drugs for each subtype, we utilized pRRophetic package (27), which employs a ridge regression model based on the Cancer Therapeutics Response Portal (CTRP) database, to predict the single agent drug sensitivity of each sample. Drug sensitivity quantification was determined based on the area under the dose-response curve (AUC), where higher AUC values corresponded to diminished sensitivity. Moreover, to discover compounds that may improve chemosensitivity in subtypes resistant to chemotherapy, we performed Connectivity Map (CMap) analysis utilizing the online tool (https://clue.io/). We selected 300 differentially expressed genes (DEGs) with the most significant fold changes between samples in the targeted subtype and those in the control group (150 upregulated and 150 downregulated). These DEGs were input into the CMap database according to the website’s instructions. Compounds with enrichment scores below −90 were identified as potentially effective drugs.




2.8 In vitro and in vivo drug sensitivity assays

GBM cell line U87 was routinely maintained in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum at 37 °C with 5% CO2. U87 cell line was authenticated by the short tandem repeat profiling. As for the in vitro experiments, we measured cell survival of U87 cells under different treatment groups using CCK8, flow cytometry, and clonogenic assays, as previously described (28, 29). As for in vivo experiments, all animal experiments received approval from the Nanfang Hospital Animal Care and Use Committee and were conducted in accordance with the National Guidelines for Animal Experimentation. Female BALB/C nude mice, aged six weeks, were housed in a pathogen-free facility with unrestricted access to food and water, and were maintained under a 12-hour alternating dark/light cycle. The BALB/C nude mice received intracranial injections of 1 × 106 cells, and tumor nodule volumes were monitored every other day. In the drug treatment experiments, mice were allocated to various treatment groups in a non-blinded manner once the tumor volume reached approximately 50 mm³. On the 14th day, the mice were executed, and the transplanted tumors were removed for photography and weighing. The weight of transplanted tumors at the time of executing mice was used as an indicator to compare the efficacy of different drug treatment groups.




2.9 Identification of marker genes used for establishing signature scores

First, the TCGA/CGGA cohort was divided into the training set and validation set according to the histological types by utilizing the caret package (30). Then, we screened the candidate genes used for establishing signature scores through the following methodology: First, the limma package (31) was employed to identify DEGs between samples in the targeted subtype and samples in the control group. Only genes with |log2FC|>1.5 and adj p value < 0.05 were included in subsequent analysis. Afterwards, leave-one-out cross-validation (LOOCV) framework, a specialized form of cross-validation with each individual data point in the dataset is used as a test set and the remaining data points serve as the training set over each iteration, was employed to fit 105 prediction models generated by 11 independent methods, including Boruta feature selection (32), Random Survival Forest (33), Elastic Net, Generalized Boosted Regression Modeling (GBRM), Stepwise Cox, CoxBoost, Partial Least Squares Regression for Cox (34), Supervised Principal Components (35), Survival Support Vector Machine, Ridge, and Lasso (36), which were adopted to reduce the dimensions of DEGs and select genes with high C-index in both training and test cohort.




2.10 Single-cell RNA sequencing data processing

The glioblastoma multiforme (GBM) single-cell RNA sequencing (scRNA-seq) dataset GSE182109 (37) was analyzed utilizing the workflow of Seurat package (38). The unqualified cells were filtered out according to the following metrics: cells 1) expressing less than 300 genes; 2) with UMI counts < 500 or >200,000; 3) percentage of mitochondrial genes >20%; 4) ribosomal transcripts > 50% were filtered out. Genes expressed in fewer than three cells were also removed. Potential doublets or multiplets were identified and meticulously removed using Scrublet (39). After removing the low-quality and doublet cells, library size normalization was performed by adopting the LogNormalize method. Dimensionality reduction was subsequently conducted through principal component analysis (PCA), utilizing the matrix of the top 2,000 highly variable genes generated by the FindVariableFeatures function. We utilized Harmony (40) to correct batch effects. Then, the FindNeighbors and FindClusters functions were used to construct the shared nearest neighbors and major cell clusters, respectively. Dimensionality reduction and visualization of the clusters were conducted using Uniform Manifold Approximation and Projection. All cluster assignments underwent manual verification to ensure the precise partitioning of cells.




2.11 Statistical analysis

For the comparison between two groups of continuous variables, the Student’s t-test was employed to assess the disparities in parametrically distributed variables, while the Mann-Whitney U test was used to evaluate the nonparametrically distributed variables. When comparing more than two groups, we utilized the Kruskal-Wallis and one-way ANOVA tests for parametric and nonparametric variables, respectively. Analysis of categorical variables involved the use of chi-square and Fisher’s exact tests. Survival analyses were conducted utilizing Kaplan-Meier analysis, supplemented by the log-rank test as needed. The optimal threshold values for high- and low-score groups were determined utilizing the Survminer package. Statistical significance was established with a two-tailed p-value < 0.05. Version 4.3.3 of the R software was applied to conduct all the statistical analyses.





3 Results



3.1 Expression profiles of 25 genes encoding 9 HATs and 16 HDACs across 31 cancer types

Figure 1A illustrates the study workflow. We retrieved two reviews on histone acetylation modification (1, 41), and 29 recognized histone acetylation modification regulators were initially collected. After eliminating four HATs/HDACs genes that were absent from TCGA-pan cancer cohort, a total of 25 genes encoding 9 HATs and 16 HDACs, were collected and defined as histone acetylation regulator genes (ACRGs) for subsequent analysis. Comparing expression levels of these ACRGs in tumor and adjacent normal tissues, we found most ACRGs consistently dysregulated across various tumors. Specifically, HDAC4, HDAC5, KAT2B, NCOA1, SIRT1, and SIRT4 had lower expression in tumor tissues across 14, 12, 18, 17, 16, and 12 cancer types, respectively. Conversely, HDAC1, HDAC10, KAT2A, SIRT6, and SIRT7 were upregulated in 13, 16, 17, 14, and 12 cancer types (Figure 1B). Although transcriptomic levels varied significantly between tumor and normal tissues, methylation levels of most ACRGs did not, except for CREBBP, which was consistently hypomethylated across 15 tumor types (Figure 1C). Regarding somatic mutations, out of 9,477 samples, 1,796 (18.95%) had at least one ACRG mutation (defined as the total mutation rate), predominantly in CREBBP, EP300, and HDAC9. The total mutation rate was the highest in skin cutaneous melanoma (47.54%), followed by bladder urothelial carcinoma (40.15%) and uterine corpus endometrial carcinoma (35.59%) (Figure 1D, Supplementary Table S3). Moreover, most genes underwent CNV amplification or deletion (Figure 1E), with CNV significantly positively correlating with ACRG expression levels in most cancers (Figure 1F). Additionally, N6-methyladenosine (m6A) modification signature (42) was significantly associated with ACRG expression, suggesting a synergistic regulatory effect between m6A modification and histone acetylation modification in gene expression (Figure 1G). Finally, considering the prognostic significance of ACRGs, we found that ACRG expression levels were significant prognostic markers in several cancers, particularly kidney renal clear cell carcinoma and lower-grade glioma, indicating their role in malignant progression (Figure 1H).




Figure 1 | Landscape of histone acetylation regulator genes (ACRGs) in each cancer type of TCGA pan-cancer cohort. (A) Workflow of this study. (B, C) Dot plot depicted the differential mRNA expression level (B) and methylation level (C) of ACRGs between tumor and normal samples in each cancer type. The yellow dots indicated high gene expression or high methylation level in tumors and the blue dots represented low gene expression or low methylation level in tumors. (D) The mutation rate of each ACRG. The upper and right bar plot indicates the proportion of each variant type in different cancer types and ACRGs. (E) Histogram showed the frequency of somatic copy number alterations for each ACRG in each cancer type. (F) Dot plot depicted the correlation between somatic copy number alterations and mRNA expression of each ACRG in each cancer type. The yellow dots indicated positive correlations and the blue dots represented negative correlations. (G) Dot plot depicted the correlation between the W-E signature level and mRNA expression of each ACRG in each cancer type. The yellow dots indicated positive correlations and the blue dots represented negative correlations. (H) Dot plot depicted the correlation between overall survival (OS) and mRNA expression of ACRGs. The yellow and blue dots represented longer and shorter OS in the groups with higher mRNA levels of ACRGs, respectively.






3.2 Clustering analysis based on transcriptional expression of ACRGs across pan-cancer samples

To explore the expression pattern of ACRGs at the pan-cancer level, we performed unsupervised clustering analysis in the TCGA pan-cancer cohort. As shown in Figures 2A, B, five major subtypes, denoted “AC-I” to “AC-V”, were identified. The transcriptional expression levels of 25 ACRGs among five AC subtypes are shown in Supplementary Figure S1. In terms of the proportion of patients with different cancer types in each AC subtype, we found that AC-V comprised over 95% of patients with glioma (up to 98% of low-grade glioma (LGG) and nearly 50% of GBM patients, Figures 2C, D, Supplementary Table S4). Moreover, AC-V subtype also exhibited the highest silhouette widths (Supplementary Table S5) indicating a distinctive histone acetylation status for patients with glioma, which could possibly be attributed to the unique biology of brain tissue origin, distinct oncogenic mutations, and microenvironmental pressures (43–45). Therefore, we performed further consensus clustering analysis in the remaining solid tumors of the TCGA pan-cancer cohort after eliminating gliomas. Consistent with the previous finding, four optimal clusters (Figure 2E, subsequently referred to as “ACR subtype”, with “R” standing for remaining tumors) were identified in this context. Each cluster displayed the enrichment of partial regulators (Figure 2F), contained various cancer types (Figures 2G, H, Supplementary Table S6), and exhibited similar silhouette width levels (Supplementary Table S5), suggesting a new classification model for solid tumors beyond the cell-of-origin context. Interestingly, among pan-gastrointestinal tumors, the proportions of esophageal squamous cell carcinoma (ESCA), stomach adenocarcinoma, colon adenocarcinoma (COAD), and rectum adenocarcinoma classified into the AC-RII subtype were 75.3%, 50.60%, 0.04%, and 0.05%, respectively, while the proportions classified into the AC-RIV subtype were 24.7%, 46.02%, 90.91%, and 87.50%, respectively, demonstrating a transition of histone acetylation modification from upper to lower gastrointestinal tract (Supplementary Table S6). In addition, over 50% of patients with pan-squamous cell carcinoma, except those with ESCA, were classified into AC-RIV, showing commonalities in histone acetylation among cancer types with similar tissue origin. In terms of clinical relevance, the survival analysis showed that AC-RIV subtype had the shortest overall survival (OS, Figure 2I) and higher mortality risks in 16 of 23 cancer types (Figure 2J). Furthermore, the predicted AUC values for three pan-HDACis indicated higher sensitivity in AC-RII and AC-RIV (Figure 2K). In terms of biological and immune characteristics (Figures 2L, M), we found that AC-RIV exhibited downregulated angiogenesis and estimated infiltration scores of endothelial cells but activated pathways related to cell cycle regulation (E2F, MYC, MTORC1, G2 checkpoint signaling). Finally, the Sankey diagram showed that AC-RIV patients tended to concentrate in the subtype exhibiting immune-depleted characteristics, including wound healing and IFN-gamma dominant, while AC-RIII patients were enriched in the immune-inflamed subtype (Figure 2N) (46, 47). Collectively, these findings suggested that the transcriptional profiling of these 25 ACRGs could aid in establishing molecular classifications transcending tissue-of-origin cancer types.




Figure 2 | Consensus clustering based on mRNA expression of histone acetylation regulator genes (ACRGs) in the TCGA pan-cancer cohort. (A, B) Consensus matrix (A) and heatmap (B) depicted the expression pattern of the 25 ACRGs identified by the unsupervised clustering analysis in the TCGA pan-cancer cohort. Cohort details were illustrated as patient annotations. (C, D) Bar charts summarized the proportions of patients with different cancer types within and across different AC subtypes (C) and the proportions of patients with different AC subtypes within and across different cancer types (D). (E, F) Consensus matrix (E) and heatmap (F) depicted the expression pattern of the 25 ACRGs identified by the unsupervised clustering analysis. Cohort details were illustrated as patient annotations. (G, H) Bar charts summarized the proportions of patients with different cancer types within and across different ACR subtypes (G) and the proportions of patients with different ACR subtypes within and across different cancer types (H). (I) Kaplan-Meier curves of overall survival (OS) according to ACR subtypes. (J) The forest plot showed the associations between ACR subtypes and OS of patients in each cancer type. (K) Box plots exhibited predicted area under curve values of entinostat (left), panobinostat (middle), and vorinostat (right) corresponding to patients with different ACR subtypes based on CTRP analysis. (L, M) Box plots showed the biological pathway activation status (L) and tumor microenvironment landscape (M) among the ACR subtypes. (N) Sankey diagram of ACR subtypes in groups with different molecular subtypes. ***p < 0.001; NA, not available.






3.3 Clustering analysis based on the transcriptomic expression of ACRGs in patients with glioma

Given the distinctive ACRG expression pattern observed in glioma patients, we integrated the transcriptome data from the TCGA-GBMLGG (containing 529 LGG and 166 GBM patients), CGGA-692 (containing 443 LGG and 249 GBM patients), and CGGA-321 (containing 182 LGG and 139 GBM patients) datasets and re-performed consensus clustering analysis. As a result, these glioma patients were classified into five clusters (subsequently referred to as “ACG subtype”, where “G” stands for gliomas), which were referred to as “AC-GI” to “AC-GV” (Figures 3A, B). Each cluster comprised varying proportions of LGG and GBM patients, suggesting that the ACG subtype was a novel classification scheme for glioma beyond histopathological features (Figure 3C). Among these clusters (Figures 3D, E), AC-GI was characterized by elevated expression of KAT2A, while HDAC4 emerged as the most critical ACRG for distinguishing AC-GII patients, with its high expression correlating with longer survival. For samples within AC-GIII, the synergistic downregulation of KAT2A, HDAC10, and SIRT7 mRNA expression can serve as a defining molecular characteristic. As for AC-GIV, the ACRGs that were most important for distinguishing patients within this subtype included EP300, CREBBP, NCOA1, and CLOCK, all of which exhibit low expression levels in AC-GIV. Finally, in terms of AC-GV, the mRNA expression of HDAC11 was significantly reduced, while that of HDAC1, HAT1, and HDAC7, which are strongly associated with poor prognosis, were significantly elevated in this subtype. We further explored the prognostic significance of ACG subtype in glioma patients. The results showed that, within the entire patient cohort, AC-GII subtype displayed markedly longer survival, whereas the AC-GV corresponded to worst prognosis (Figure 3F). Furthermore, the prognostic significance of ACG subtype was preserved in subgroup analysis stratified by dataset used (Supplementary Figures S2A, B) or treatment received by the patient (Figures 3G–I). To clarify whether our proposed ACG classification scheme is robust, we collected supplementary transcriptomic data of glioma samples from the GlioVis database and GEO database (GSE43378). Subsequently, we classified the patients using the NTP algorithm based on the molecular expression signatures obtained by PAM algorithm in the whole transcriptome (48) (Supplementary Figures S2C-E). Similarly, we identified five patient groups based on ACRG transcription expression in both GlioVis and GSE databases, and the ACRG expression characteristics (Figures 3J, L, Supplementary Figures S2F, G), histopathological features (Figure 3K) and prognostic differences (Figure 3M, Supplementary Figure S2H) between each group were generally consistent with the original ACG subtype. Taken together, these results indicated that the transcriptional expression of ACRGs represents a novel molecular marker with significant clinical implications for the precise characterization and classification of gliomas.




Figure 3 | Consensus clustering based on mRNA expression of histone acetylation regulator genes (ACRGs) in patients with glioma. (A, B) Consensus matrix (A) and heatmap (B) depicted the expression pattern of the 25 ACRGs identified by the unsupervised clustering analysis in the TCGA-GBMLGG & CGGA cohort. Cohort details were illustrated as patient annotations. (C) Bar charts summarized the proportions of patients with different ACG subtypes within and across LGG and GBM. (D) Heatmap (left) displayed the correlation and importance generated by random forest model of each ACRGs in different ACG subtypes and the boxplot above represented the degree of interpretation of the model to the target ACG subtypes. The forest plot (right) showed the associations between different ACRGs and OS of patients. (E) Box plots showed the mRNA expression of 25 ACRGs in different ACG subtypes in the TCGA-GBMLGG & CGGA cohort. (F) Kaplan-Meier curves of overall survival (OS) according to ACG subtypes in TCGA-GBMLGG & CGGA cohort. (G-I) Kaplan-Meier curves of overall survival (OS) according to ACG subtypes of radio-therapied (G), chemo-therapied (H) and untreated (I) patients in CGGA cohort. (J) Heatmap depicted the expression pattern of the 25 ACRGs between different predicted ACG subtypes in the GlioVis cohort. (K) Bar charts summarized the proportions of patients with different predicted ACG subtypes within and across LGG and GBM in GlioVis cohort. (L) Box plots showed the mRNA expression of 25 ACRGs in different predicted ACG subtypes in the GlioVis cohort. (M) Kaplan-Meier curves of overall survival (OS) according to predicted ACG subtypes in GlioVis cohort. ***p < 0.001.






3.4 Association between ACG subtypes and other genetic markers with clinical significance

Currently, the clinical classification of glioma has been achieved by integrating both histopathologic characteristics and molecular markers, such as IDH mutation status, codeletion of chromosomal arms 1p and 19q (1p/19q codeletion), and combined gain of chromosome 7 and loss of chromosome 10 (7+/10-), etc (49). Hence, we investigated the correlation between ACG classification and molecular markers that are routinely assessed in clinical practice. As shown in Figures 4A, B, we observed that the AC-GV subtype was significantly enriched with molecular features linked to high malignancy, such as IDH wild-type, 1p/19q non-codeletion, EGFR amplification, 7+/10- mutations, and CDKN2A/B homozygous deletion (HD) (Supplementary Table S7). In addition, some genetic mutations that were frequently observed in GBM, including PTEN and NF1, were more prevalent in AC-GV compared to other ACG subtypes. Conversely, the AC-GII subtype was concentrated in molecular characteristics such as IDH mutant, 1p/19q codeletion, non-EGFR amplification, and CDKN2A/B non-HD. Notably, the CIC mutation, a genetic feature of oligodendrogliomas, exhibited the highest incidence in the AC-GII subtype. Furthermore, the frequency of MGMT promoter methylation, a biomarker indicative of response to temozolomide, was the highest in the AC-GII (85.4%), followed by AC-GIII, whereas AC-GV showed the lowest incidence of MGMT methylation. Consistently, the drug sensitivity analysis also showed that the predicted AUC for temozolomide was the lowest in AC-GII but significantly higher in AC-GIV and AC-GV compared to other subtypes, suggesting that patients within AC-GIV and AC-GV may have primary resistance to temozolomide (Figure 4C). Alterations in telomeres and telomerase have been regarded as prognostic biomarkers for glioma patients (50). Our findings revealed that the telomerase signature score and telomere length was the highest in AC-GV subtype (Figures 4D, E). However, aberrant telomere variant repeats and targeted telomere insertion did not exhibit significant differences among the various ACG subtypes (Supplementary Figure S3). Additionally, we also evaluated the associations between ACG subtypes and genomic instability. The findings indicated that genomic breakpoints, aneuploidy scores, and chromosomal instability 25 scores were significantly elevated in AC-GV patients compared to other subtypes (Figures 4F–H). Correspondingly, the proteomic data analysis also revealed increased expression of proteins involved in DNA damage repair, such as ATM, X53BP1, and MSH6, within the AC-GV subtype (Figure 4I). Finally, the transcriptional differentiation trajectory analysis showed that the AC-GV subtype was concentrated at the terminal point of the differentiation trajectory, indicating that AC-GV represents the most aggressive subgroup of glioma (Figure 4J).




Figure 4 | The association between ACG subtypes and other genetic markers with clinical significance. (A) Sankey diagram of ACG subtypes in groups with different molecular subtypes in the TCGA-GBMLGG cohort. (B) Oncoprints depicted significantly mutated genes and different mutation types of different ACG subtypes in the TCGA-GBMLGG cohort. (C) Box plot showed the predicted area under curve values of temozolomide based on the CTRP database. (D-H) Violin plots displayed the telomere length (D), telomerase signature score (E), genomic breakpoints (F), aneuploidy score (G), and CIN25 score (H) among different ACG subtypes in TCGA-GBMLGG cohort. (I) Heatmap exhibited the landscape of differentially expressed proteins in different ACG subtypes in the TCGA-GBMLGG cohort. (J) Pseudotemporal analysis plot of TCGA-GBMLGG & CGGA cohort demonstrated the potential development trajectory of different ACG subtypes. NA, not available.






3.5 Disparity in biological characteristics and immune TME among ACG subtypes

The biological characteristic of each ACG subtype was assessed using GSVA analysis (Figure 5A, Supplementary Figures S4A, B). The results suggested that the majority of biological pathways cataloged in Hallmark and KEGG databases showed high activation levels in AC-GV subtype. Specifically, biological processes related to angiogenesis, epithelial-mesenchymal transition, unfolded protein response, MTOR signaling, cell cycle regulation, DNA damage repair, and apoptosis had the highest activation levels in AC-GV compared to other subtypes. Similarly, pathway enrichment analysis based on differential miRNAs also indicated that miRNAs related to epithelial-mesenchymal transition and cell cycle regulation were significantly upregulated in patients with AC-GV compared with others (Figure 5B). The most significantly elevated pathways in the AC-GIV subtype were the ROS pathway, oxidative phosphorylation, and myogenesis, indicating a higher degree of oxidative stress in the tumor tissues of AC-GIV. Interestingly, the activation levels of the above three biological processes were found to be significantly inhibited in AC-GII subtype. The enrichment of metabolism-related pathways in each ACG subtype is shown in Figure 5C, Supplementary Figure S4C. Notably, AC-GV was characterized by the highest activation levels of glycolysis, indicating that targeting glucose metabolism could also be a potential therapeutic strategy for these patients.




Figure 5 | Disparity in biological and metabolic characteristics between ACG subtypes. (A) Heatmap depicted the Hallmark and KEGG biological pathways among 5 ACG subtypes. (B) Bar plots showed the results of the over-representation analysis performed by using the up-regulated and the down-regulated microRNAs derived by the differential expressed miRNA analysis. (C) Heatmap displayed the metabolic characteristics among 5 ACG subtypes.



To explore the immune heterogeneity among different ACG subtypes, we estimated the immune infiltration score of each sample utilizing six transcriptomic-based immune cell infiltration algorithms embedded in the IOBR package (21) (Figure 6A, Supplementary Figure S5A). The analysis revealed that AC-GV patients, despite having the poorest prognosis, exhibited the highest estimated enrichment score of TME cells, especially CD4+ T cells, M1 macrophages, activated dendritic cells, and cancer-associated fibroblasts (CAFs). In particular, CAFs exhibit a highly infiltrated pattern that was specific in AC-GV. Consistent with findings generated from immune cell infiltration analysis, patients within AC-GV also exhibited the highest levels of TMB (Figure 6B), neoantigens (Figure 6C), and intratumoral heterogeneity (Figure 6D), along with the lowest levels of tumor purity (Figure 6E). Additionally, the activation levels of immune regulatory pathway genes (e.g., antigen presentation, chemokine, and immune checkpoint, etc) were also the highest in AC-GV (Figure 6F, Supplementary Figure S5B). On the contrary, for patients within AC-GI and AC-GII subtypes, both the estimated infiltration abundance of most immune cells and the expression levels of immune-related genes were observed to be at low levels, suggesting that the TME of these two subtypes presents an “immune desert” phenotype. In brief, the results mentioned above identified an extensive immune infiltration disparity among five ACG subtypes within gliomas.




Figure 6 | Diversity in immune tumor microenvironment between ACG subtypes. (A) Heatmap displayed the tumor microenvironment cell infiltration among 5 ACG subtypes. (B-E) Box plots illustrated the differences in TMB score (B), Neoantigen score (C), Intratumor Heterogeneity score (D), and TumorPurity score (E) between 5 ACG subtypes. (F) Heatmap showed expression of different immune regulatory pathways genes in different ACG subtypes. NA, not available.






3.6 Screening of potential therapeutic agent by CTRP and CMap database analysis

To explore the potential therapeutic agents that could be used for treating glioma patients within different ACG subtypes, we calculated the AUC value of 354 drugs documented in CTRP database among TCGA-GBM and CGGA patients (Figures 7A, B). We discovered that in addition to temozolomide mentioned earlier, some pan-HDACis (vorinostat and pandacostat) also showed the lowest mean AUC values in AC-GII subtype, while the average AUC values were significantly increased in AC-GV, suggesting that patients within AC-GII rather than AC-GV subtype may benefit from pan-HDAC inhibitor treatment. Interestingly, certain statins (e.g., fluvastatin and lovastatin), which have demonstrated anti-tumor efficacy in both in vivo and in vitro studies (51), showed significantly lower mean AUC values in AC-GV patients compared to patients with other ACG subtypes, suggesting that AC-GV patients may be suitable for statin therapy.




Figure 7 | Screening of potential therapeutic agent by CTRP and CMAP database analysis. (A) Heatmap depicted the predicted area under curve values of 30 drugs with the most significant difference among different ACG subtypes based on the CTRP database. (B) Box plot showed the predicted area under curve values of entinostat (left), panobinostat (middle), and vorinostat (right) in different ACG subtypes based on the CTRP database. (C) Heatmaps showing the enrichment score of each compound based on the Connectivity Map analysis in the TCGA-GBMLGG, CGGA, and GlioVis cohorts. (D, E) Heatmap showing the mechanisms of the action (D) and gene targets of each compound (E). (F) U87 cells were treated with vehicle control + Temozolomide, Panobinostat (12 nM) + Temozolomide, and Scriptaid (3.2 μM) + Temozolomide for 48h or 72h. Cell viability was detected by cell counting kit-8 (CCK8). (G) U87 cells were treated with vehicle control, Panobinostat(12nM), Scriptaid(3.2μM), Temozolomide(800μM), Panobinostat(12nM) and Temozolomide(800μM), or Scriptaid(3.2μM) and Temozolomide(800μM) for 48h, and cultured up to 2 weeks in drug-free DMEM complete media. Colonies were fixed with paraformaldehyde and stained with crystal violet, then analyzed by ImageJ. Representative images of colony formation assay and mean percent difference in colony formation in different drug treatment groups from three independent experiments. (H) Representative Annexin V and PI staining of vehicle control, Panobinostat, Scriptaid, Temozolomide, Panobinostat + Temozolomide, and Scriptaid + Temozolomide treated U87 cells. Quantification (percentage of) early and late apoptotic cells. (I) U87 cells were incubated with the drugs mentioned above for 48h, and lysates were subjected to Western blot to identify the levels of apoptotic proteins, cleaved PARP, Bcl2 and cleaved caspase-3. (J) U87 cells (1X10^6 cells in 100μl of DMEM) were intracranially injected into 6 week-old female BALC/c nu/nu mice. After one week, measured tumor growth, and mice were randomized into 4 groups and treated with vehicle control, Panobinostat(5mg/kg), Temozolomide(25mg/kg), Panobinostat(5mg/kg) +Temozolomide(25mg/kg) for 5 days a week. On the 14th day, images of tumors in both groups of mice were obtained. Histogram comparison of tumor weights among different treatment groups in mice with tumors. *p < 0.05, **p < 0.01, ***p < 0.001. ns, not significant.



Since patients in the AC-GII subtype tended to be more sensitive to temozolomide, we used the CMap bioinformatic tool to identify drug candidates that can improve the efficacy of temozolomide based on the differential transcriptome characteristics between AC-GV and AC-GII subtypes. As shown in Figure 7C, we identified 12 compounds whose CMap scores were lower than -90 in at least two glioma cohorts. Further investigation of the activity and gene targets of these compounds revealed that four compounds were inhibitors of the HDAC family (Figures 7D, E). Among them, belinostat, panobinostat, and scriptaid were pan-HDACis, while ISOX is capable of specifically inhibiting the activity of HDAC6. Since our previous findings have demonstrated the lowest sensitivity of pan-HDACis and temozolomide in AC-GV type patients (Figure 7B), we hypothesized whether the combination of pan-HDACis and temozolomide could exhibit synergistic antitumor effect. As panobinostat and scriptaid exhibited lower enrichment scores compared to the other identified pan-HDACis, we selected panobinostat and scriptaid for subsequent empirical validation through wet lab experiments. By conducting in vitro experiment, we validated that panobinostat or scriptaid could enhance the inhibitory effects of temozolomide on U87 cell proliferation (Figure 7F) and colony formation (Figure 7G), as well as potentiate the temozolomide induced cell apoptosis (Figures 7H, I). The xenotransplantation experiments further indicated that temozolomide combined with panobinostat therapy limited the capacity of U87 cells to form tumors in vivo (Figure 7J). To conclude, these findings suggested that panobinostat or scriptaid could serve as chemosensitizers for AC-GV subtype. The combination of pan-HDACis with temozolomide represents a promising novel therapeutic strategy for patients with AC-GV subtype.




3.7 Construction and validation of an ACG subtype-related scoring model to discern AC-GII and AC-GV

Since AC-GII and AC-GV were characterized by possessing contrasting clinical characteristics, with AC-GII patients having improved prognosis and higher temozolomide sensitivity, while AC-GV displayed the opposite features, it would be beneficial to establish an effective scoring scheme capable of accurately identifying AC-GII and AC-GV patients. To provide a more comprehensive view of the acetylation landscape without overlooking important genes that are not directly involved in enzymatic process, we screened the candidate genes from the whole transcriptome. To reduce the dimensions of DEGs in AC-GII (Figure 8A, Supplementary Table S8) and AC-GV (Figure 8B, Supplementary Table S9), we employed LOOCV framework to fit 105 prediction models and computed the c-index for each within the TCGA/CGGA cohort. The GBRM algorithm was selected for AC-GII subtype discrimination, while the combination of StepCox and RSF was chosen to identify the AC-GV subtype. Subsequently, by combing the results of these two prediction models, we constructed a scoring scheme composed of 29 genes (Supplementary Table S10), termed the “ACG score”, which was defined as (the average value of up-regulated genes in AC-GV) - (the average value of up-regulated genes in AC-GII). Among these genes, SMC4, CAS2L3, DEPDC1, IGF3BP3, ANXA1, IGFBP2, and PLAT were significantly upregulated in the AC-GV subtype and associated with higher survival risks, while the remaining 22 genes were upregulated in the AC-GII subtype and linked to improved prognosis (Figures 8C, D). To examine the distribution of 29 scoring genes among different TME cells, we obtained the glioma scRNA-seq dataset GSE182109, in which 214,366 cells from 44 tumor tissues were categorized into seven major cell types, including glioma cells, oligodendrocytes, myeloid cells, T cells, B cells, endothelial cells, and pericytes (Supplementary Figures S6A, B). The marker gene expression for different cell types was shown in Supplementary Figure S6C. The violin plot demonstrated that IGFBP2, SMC4, PLAT, and ANXA1, showed relatively higher expression levels in pericytes and glioma cells compared to other scoring genes (Supplementary Figure S6D). The ROC curves demonstrated that the ACG score could accurately identify both the AC-GII and AC-GV subtypes, with elevated ACG scores indicating AC-GV and reduced scores prompting AC-GII subtype in TCGA-GBMLGG&CGGA (Figures 8E, F), GlioVis cohorts (Figures 8G, H), and GSE43378 (Supplementary Figures S7A, B). Subsequent survival analyses revealed that elevated ACG score was linked to higher mortality risk in the univariate model (Figures 8I, J, Supplementary Figure S7C) and was validated as an independent prognostic indicator by multivariate Cox regression (Figure 8K, Supplementary Tables S11-13). Moreover, high ACG score subgroup was associated with reduced temozolomide sensitivity (Figure 8L, Supplementary Figure S7D). We also investigated the correlation between ACG score and molecular markers that are routinely assessed in clinical practice. As shown in Supplementary Figure S8, we observed that the high ACG score group was enriched with molecular features linked to high malignancy, such as IDH wild-type, 1p/19q non-codeletion, EGFR amplification, 7+/10- mutations, and CDKN2A/B HD (Supplementary Table S14). Meanwhile, the frequency of MGMT promoter methylation, a biomarker indicative of response to temozolomide, was significantly lower in the high ACG score group (82.1%). Taken together, these findings confirmed the robustness and reproducibility of the ACG subtypes and revealed that the ACG score could be a reliable biomarker predicting survival outcomes and therapeutic efficacy in glioma patients.




Figure 8 | Construction and validation of ACG score in different glioma cohorts. (A, B) Bar plots displayed machine learning prediction models using differentially expressed genes in AC-GII (A) and AC-GV subtype (B) respectively via leave-one-out cross validation framework and further calculated the C-index of each model across Train and Test datasets in TCGA-GBMLGG & CGGA cohort. (C) Heatmap exhibited the expression of genes consisting of ACG score in different ACG subtypes in the TCGA-GBMLGG & CGGA cohort. (D) The forest plot showed the associations between the expression of genes consisting of ACG score and OS of patients in the TCGA-GBMLGG & CGGA cohort. (E, F) The receiver operating characteristics curve (E) and violin plots (F) showed the ability of ACG score to distinguish AC-GV (blue) and AC-GII subtype (red) from other ACG subtypes in the TCGA-GBMLGG & CGGA cohort. (G, H) The receiver operating characteristics curve (G) and violin plots (H) showed the ability of ACG score to distinguish predicted AC-GV (blue) and predicted AC-GII subtype (red) from other ACG subtypes in the TCGA-GBMLGG & CGGA cohort. (I, J) Kaplan-Meier curves of OS in the TCGA-GBMLGG & CGGA cohort (I) and GlioVis cohorts (J) according to the ACG score. (K) The forest plot showed the associations between the various factors and OS in a multivariate regression model in the TCGA-GBMLGG cohort. (L) Box plots exhibited predicted area under curve values of temozolomide among different ACG score groups based on CTRP analysis in the TCGA-GBMLGG & CGGA (left) and GlioVis (right) cohorts. NA, not available.







4 Discussion

Growing evidence has demonstrated that histone acetylation plays a pivotal role in tumorigenesis and progression owing to its indispensable function in dynamic transcriptional control and the maintenance of genomic integrity (52). Therefore, enzymes involved in the histone acetylation process, particularly members of the HDAC family, are considered a promising class for drug targets (53). Currently, most developed HDACis simultaneously target multiple classes of enzymes, including classes I, II, and IV (54). Although these pan-HDACis were found to exert potent anti-tumor effects both in vivo and in vitro (55, 56), their clinical efficacy was observed predominantly in patients with hematological tumors (53), failing to meet expectations in the treatment of most solid tumors (10, 57, 58). In this study, by performing a clustering analysis based on transcriptional expression of ACRG in the pan-cancer cohort, we found that compared to other tumor types, which tend to cluster together due to similarity in ACRG transcriptional expression patterns, the ACRG expression characteristics of glioma patients have strong cancer species specificity; more than 90% of patients in the AC-V subtype are diagnosed with glioma, while each of the other four subtypes contains over 15 tumor types. Moreover, each AC subtype was characterized by the distinct expression pattern of histone acetylation-modifying enzymes. This finding suggested that the mRNA expression characteristics of ACRG were able to classify tumors beyond their anatomical origin. Meanwhile, such heterogeneous distribution pattern implies that clinical trials of HDACis based solely on the conventional anatomical classification of cancer, as currently performed in pan-HDACi clinical trials, may fail to effectively stratify patients who may experience benefits, possibly resulting in suboptimal outcomes. Particularly, we noticed that patients with COAD were predominantly distributed to the AC-IV and AC-RIV subtypes (over 90%), indicating a homogeneous acetylation modification profile within this population. Recently, Wang et al. reported the significant therapeutic benefits of combining a PD-1 antibody, an HDACi, and a VEGF antibody in treating patients with microsatellite stable/proficient mismatch repair advanced colorectal cancer (59). Given that most patients with COAD were categorized into the AC-RIV subtype, the proposed triplet combination therapy may also yield positive outcomes in non-colorectal AC-RIV patients.

Another important finding of this study is that we proposed a classification model for gliomas based on ACRG transcriptional expression patterns. In recent years, the importance of molecular alterations in achieving precise classification of gliomas has been widely recognized. Some molecular markers, such as IDH, 1p/19q codeletion, EGFR amplification, CDKN2A/B loss, and TERT promoter mutation, etc. have been routinely tested in clinical practice and cooperated with histopathological information to form the classification scheme of glioma (49). However, the intra-subtype heterogeneity still exists under the current categorizations of gliomas, suggesting that more molecular markers need to be developed for more detailed classification. To our knowledge, this is the first report exploring the role of transcriptional expression of ACRGs in classifying gliomas. Our study showed that differences exist in the distribution of transcriptional expression of ACRG in glioma, and this difference is independent of some classical glioma classification indicators, such as IDH, etc. Among them, AC-GII patients, who were characterized by high expression of HDAC4, EP300, and CREBBP, had the best prognosis and were sensitive to temozolomide and pan-HDACis. HDAC4 is a member of the Class IIa HDAC family that is highly expressed in brain cells. Although analysis of multiple bulk RNA-seq datasets of glioma patients showed that higher mRNA expression of HDAC4 was significantly correlated with lower tumor grade and prolonged OS (60), overexpression of HDAC4 (especially its nuclear overexpression) promotes proliferation, invasion, and drug resistance in glioma cells in cellular experiments (61, 62). Therefore, we hypothesized that the biological role of HDAC4 in vivo may be modulated by additional genetic factors (e.g., gene mutations) rather than being independent. Unlike HDAC4, EP300 and CREBBP are acyltransferases whose activity is essential for promoting histone H2B hyperacetylation. The role of histone H2B hyperacetylation in tumorigenesis and development remains controversial (63, 64). In gliomas, the degree of H2B acetylation has been reported to be associated with reduced immune infiltration scores. Coincidentally, our results also indicated that the estimated abundance of immune cell infiltration within the TME of AC-GII patients is notably low. This observation implies that the use of inhibitors targeting EP300 and CREBBP molecules may help to heat the TME of AC-GII tumors and exert a synergistic effect with anti-PD-1 therapy in patients belonging to this subtype.

In contrast to AC-GII, AC-GV patients, characterized by high expression of HAT1 and HDAC1 combined with loss of HDAC11 expression, had the worst prognosis and the highest predicted AUC values for temozolomide and pan-HDACis, suggesting that these patients may have primary resistance to these drugs. Meanwhile, AC-GV subtype displayed enriched genomic instability features, including genomic breakpoints, aneuploidy, and intratumor heterogeneity. In terms of estimated immune infiltration scores, although the AC-GV tumors had a high enrichment of CD8T cells maker gene expression, CAFs, which have been recognized as crucial contributors to the physical obstruction of T-cell infiltration through the formation of a dense extracellular matrix, also exhibited highly estimated infiltration abundance specifically in this subtype (65). Therefore, we hypothesized that the TME characteristics of AC-GV could be cataloged into the “immune-excluded” phenotype, which may account for the poor prognosis of AC-GV subtype. Interestingly, through the CTRP database analysis, we found that these patients were more sensitive to statins. Previous studies have reported that statins suppressed glioma growth through various mechanisms in vitro (66); however, clinical observational studies showed that the use of statins only reduces the incidence rate of glioma but does not prolong the survival of glioma patients (67). Our study suggested that only patients within AC-GV subtype may benefit from statin therapy. Therefore, it is necessary to screen enrolled patients for clinical studies on statins. In addition, through CMap analysis based on DEGs between AC-GV and AC-GII, we also uncovered four HDACis as potential chemotherapy sensitizers. Among them, we further validated that the pan-HDAC inhibition by either panobinostat or scriptaid demonstrated the ability to enhance chemosensitivity to temozolomide in GBM cells. The combination therapy was more effective in suppressing cell proliferation and inducing apoptosis than either treatment alone. Since the dysregulation of HDACs has been implicated in tumor adaptation and resistance to genotoxic chemotherapy (68, 69), the pairment of HDACis with DNA-damaging chemotherapeutic agents in GBM treatment appears to be a rational and promising treatment sensitizing option for AC-GV patients, thus warrant further investigation of this combination therapy in clinical trials. Moreover, the ACG scoring model was composed of 29 genes, which is easy to be converted into a clinically usable kit, making the generation and standardization of ACG score simple and convenient. The ACG score was not only an independent predictor of poor prognosis of glioma patients, but could also effectively identify patients with temozolomide resistance, guide the decision of the combination therapy of pan-HDACis and temozolomide, and thus possess significant clinical transformation values.

This study has some limitations. First, previous studies have reported that the ACRGs included in this study regulate many other acylation modifications besides acetylation, including propionylation, crotonylation, butyrylation, succinylation, glutarylation, 2-hydroxyisobutyrylation, and β-hydroxybutyrylation (70–75). Therefore, the connection between tumor classification system we established based on the transcriptional expression of ACRGs and the levels of histone acetylation modifications should be interpreted with caution. Second, our study was solely based on a retrospective analysis of public patient cohorts. Therefore, it is necessary to collect multi-center patient cohorts to verify our findings. Further validation in prospective cohorts using patient specimens can significantly enhance the clinical applicability of ACG score. Third, the cut-off values of the ACG score need to be standardized in future prospective studies. Fourth, the analysis of drug sensitivities was based exclusively on in silico results, thus, requiring further wet lab experiment validation in the future. Last, other identified potential sensitizers for temozolomide combination treatment require further experimental verification.

In conclusion, our study suggested that the transcriptional expression characteristics of HATs and HDACs can yield novel molecular classifications that transcend tissue-of-origin cancer types. In particular, we identified five novel molecular subtypes (ACG subtype) in the context of gliomas, unveiling differences in clinical, biological, TME, and genomic alteration characteristics. These classification patterns and the associated ACG score established in this study may serve as key references for individualized treatment of gliomas.
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Glossary

ACRGs: histone acetylation regulator genes

AUC: area under the dose-response curve

CGGA: Chinese Glioma Genome Atlas

CMap: Connectivity Map

CNV: copy number variation

CTRP: Cancer Therapeutics Response Portal

COAD: colon adenocarcinoma

DEGs: differentially expressed genes

ESCA: esophageal squamous cell carcinoma

GBM: glioblastoma

GBRM: Generalized Boosted Regression Modeling

GSVA: gene set variation analysis

HATs: histone acetyltransferases

HD: homozygous deletion

HDACs: histone deacetylases

HDACis: histone deacetylase inhibitors

IDH: isocitrate dehydrogenase

LGG: lower-grade glioma

LOOCV: leave-one-out cross-validation

M6A: N6-methyladenosine

NTP: nearest template prediction

OS: overall survival

PAM: partition around medoids

PCA: Principal component analysis

ROC: receiver operating characteristic

scRNA-seq: single-cell RNA sequencing

SNV: single nucleotide variation

ssGSEA: single-sample gene set enrichment analysis

TCGA: The Cancer Genome Atlas

TME: tumor microenvironment

UCSC: University of California Santa Cruz




OEBPS/Images/fimmu-15-1523034-g004.jpg
Estimated AUC value

AG-
ACG subtype IDH  X1p 19q codeletion MGMT TERT EGFR
p <2.2e-16
0.503 1
H
0.502 1
i Subtype
E3 AC-GI
E AC-GlI
B AC-Glll
0.501 1 B AC-GIV
. = AC-GV
0.500 1 .
.
temozolomide.CTRP
p < 0.0001
30
©
S 20
@
>
8
Kl
£
3
I}
c
<
10
0
N NS N Q N\
o/o 0/0 O’O 0/0\ 0/0
v v v v v

Mutation type = Missense_Mutation = Splice_Site = In_Frame_Del

© Frame_Shift_Del

= Translation_Start_Site = Frame_Shift_Ins

“ Nonsense_Mutation

= In_Frame_Ins

= Multi_Hit

A
4 19 | 4 2 |
peelefion E No. of samples No of samples No. of samples 2 No. of samples 2 No. of samples
0. e - o 8 o = s 3 oo 0 B2
IDH2 IDH2 6% | | IDH2 | 4% IDH2 0%
TP53 TP53| 37% .' - TP53 l 46% | TP53 70% _
ATRX [ [ SN | ATRX 2% | 1R ATRX || | 20% | ATRX ‘ l 2% 'R
cic | 24% il cic « W 1 cic | 19% | cic 1% |
FUBP1 o | FUBP1 20% | ] FUBP1 I FUBP1 2% | FUBP1 0%
NOTCH1 | | | | 8% || NOTCH1 | 19% [ NOTCH1| | ' % | NOTCH1 | 2% NOTCH1I 3% |
BRAF | % BRAF 0% BRAF 0% BRAF |2% BRAF 5% |
nozygous deletion PTENI | ‘ II 15% . PTEN 6% RTEN “I 15% . PTEN ‘. 15% | PTEN I 28% .l
NF1 | | 4% | NF1 | 6% || NF1 | | |s% I NF1 | | l 13% | NF1 || |23% l.
NIRRT MATRNUAOON . - 1 — Ac-Gll I .-G I - IR ~c-cv
Chromosome +7/-10 CDKN2A/B HD
D E F
p =0.0031 p <0.0001 200 p <0.0001
5 '
1 3000
4 { ; 9] 150
g P
fé, H ! s §
=
.3 $ T 2000 s
(72} =
£ ¥ & € 100
£ 2 e
o o S
k)
I 3 . 1000 50
1
0
0 0
o N N Q e o o N Q &
¢ & L L ¢ 9 ¢ ¢
H |
7 p <0.0001 Age
Gender
Subtype
6 ‘ ‘ CYCLINB1
! ‘ H ‘ H \ MSH6 @ AC-GI “ AC-GlI ® AC-GlII ® AC-GIV ® AC-GV
IR ' S m
2
® ° | ‘ TH BRD4 '1
8 ‘ T | || craF 0
2
§ 4 . 1 I ‘ ‘H' ‘ X53BP1 l-1
° L (111} | AT Age
- ‘ \ || ” \ ‘ | | || coun_ps3 .<60 5 |
3 | o | i H>60
| P38MAPK
| | 1 (1 ‘ I ‘ i | SYK Gender
I 1 i [ e 11 Tl lMaIe ~
2 ‘ ‘ ‘ | BAX Female g
‘ | ‘ JABA Subtype 5 @
< oy ™ > & I L] | RaB25 IAC:GI E
J 3 v vg’/ v | || ARAF_ps299 e °
‘ ’ HEREGULIN | e
‘ ‘ INPP4B 5 1
4 [ “H ANNEXINVII . ‘ ‘ . ‘
’ scD1 -20 -10 0 10 20
|| \ H ACETYLATUBULINLYS40
Component 1
PKCDELTA_pS664






OEBPS/Text/toc.xhtml


  

    Table of Contents



    

		Cover



      		

        Pan-cancer analysis of the transcriptional expression of histone acetylation enzymes in solid tumors defines a new classification scheme for gliomas

      

        		

          Introduction

        



        		

          Methods

        



        		

          Results

        



        		

          Conclusion

        



        		

          1 Introduction

        



        		

          2 Materials and methods

        

          		

            2.1 Data retrieval

          



          		

            2.2 Consensus clustering analysis based on transcriptomic profiles of HATs and HDACs

          



          		

            2.3 Prediction of molecular subtype by a combination of prediction analysis for microarray and nearest template prediction algorithms

          



          		

            2.4 Biological process, metabolic activation and immune infiltration analysis

          



          		

            2.5 Trajectory analysis

          



          		

            2.6 Somatic genetic mutation and miRNA enrichment analysis

          



          		

            2.7 Identify potential therapeutic drugs by Cancer Therapeutics Response Portal database analysis and Connectivity Map analysis

          



          		

            2.8 In vitro and in vivo drug sensitivity assays

          



          		

            2.9 Identification of marker genes used for establishing signature scores

          



          		

            2.10 Single-cell RNA sequencing data processing

          



          		

            2.11 Statistical analysis

          



        



        



        		

          3 Results

        

          		

            3.1 Expression profiles of 25 genes encoding 9 HATs and 16 HDACs across 31 cancer types

          



          		

            3.2 Clustering analysis based on transcriptional expression of ACRGs across pan-cancer samples

          



          		

            3.3 Clustering analysis based on the transcriptomic expression of ACRGs in patients with glioma

          



          		

            3.4 Association between ACG subtypes and other genetic markers with clinical significance

          



          		

            3.5 Disparity in biological characteristics and immune TME among ACG subtypes

          



          		

            3.6 Screening of potential therapeutic agent by CTRP and CMap database analysis

          



          		

            3.7 Construction and validation of an ACG subtype-related scoring model to discern AC-GII and AC-GV

          



        



        



        		

          4 Discussion

        



        		

          Data availability statement

        



        		

          Ethics statement

        



        		

          Author contributions

        



        		

          Funding

        



        		

          Acknowledgments

        



        		

          Conflict of interest

        



        		

          Generative AI statement

        



        		

          Supplementary material

        



        		

          References

        



        		

          Glossary

        



      



      



    



  



OEBPS/Images/fimmu-15-1523034-g007.jpg
Age
Gender B
Zl::g(g;n TCGA-GBMLGG & CGGA subtype B3 AC-GI E3 AC-GlI E3 AC-GlII B3 AC-GIV B AC-GV
prteealne
B R
19— &rogYIolomoucine p< 2.2e-16 p< 2.2e-16 p< 2.2e-16
L050 =
|| Compound 7d-cis Matrix.CTRP 0.44
‘I Ill III" I[?I “i SCH 529074 15
|I1 m \I 11 Ee—70304 o 0.25 s
EX-527 05 . * i
bexarotene 0.45 g N . . H
|1 llﬂ ’ 0 g 2 s s !
‘\ Wi il ‘ =05 K : g : § 042
1! |[ || il T A o . H S H ’ o :
L | plflhnn mu ge =1 5 z 3
manumycin A 0-20 < o o 020 °
|l NSC95397 21740 3 3 5
‘ 1 LBETIST 41-60 g 040 £ £ o0
i1l ]IHI 1| BRD 51490254 ig]:?go £ 7 =
8 \l || SB-525334 i w w
thlr_Oz)%O Gender
éZ 3146 Female
ompound 23 citrate 0.15
BlBR-1532 Male ! 038 |
?é)TO36477 Subtype 035 | | . X : : ! : :
il BRD-K29313308 AC-GI : :
emozooml =
BMS-754807 Iﬁg_g::l :
gﬁly_q;s 4 FAc-GIv entinostat. CTRP panobinostat. CTRP vorinostat. CTRP
importazole BAC-GV
Il HIBIRB-796
\I\I\II -K28456706
BRD5 K02251932
] "i' BRD-K26531177
1) 1 I[I BRD-A71883111
|| PDMP
birinapant
fumonisin B1
IC-87114
fluvastatin
lovastatin
hed
3 _ D E o
T specific inhibitors & Q5 k] © o
2 25 ) R ~ 2o 33
3 33 2 Qo 85 afec T o2 <
5} S o8 ¢ 2 o0 @2 831 E § 87 o 8827
2 © STELSET 8§85 7T 65%»‘2:8%3?‘.“&%
5 0 2 " - éﬁﬁﬂggmg};ﬂqg% 22 0288FJ58mF X
2= S =" A
0 3 5 = N é © - %o S a0 2388 E [ AURKB, AURKC, AURKA, CYP2D6, CYP3A4
£ 1 g0 3 3 T 8 g 2 2 & £ E 2 = . Aurora kinase inhibitor FNTA, FNTB
T Q 1 a
£ 83 % §ox¢s ¥y 5§ £80 8 ERT [ DNA dependent protein kinase inhibitor, PI3K inhibitor | GSK3B, JUN, MYC
= 1 = 0w F D 5
8 E 00 & S E 2 Q o & & 8 E 6 3 9 . Farnesyltransferase inhibitor - HDAC1, HDAC2, HDAC3, HDAC4, HDACS, HDAC6, HDAC7, HDAC8, HDACY
o e HDAC1, HDAC2, HDAC3, HDAC4, HDAC6, HDAC7, HDAC8, HDAC9
) Jl  FLT3 inhibitor, JAK inhibitor
Enrichment score - HDAC6
I . Glycogen synthase kinase inhibitor - ITGAV, ITGB3
I EE HDAC inhibitor B JAK2,FLT3, BRD4, JAK1, JAK3, RET, TYK2
integrin antagonist -LRRK2
s " — - PIK3CA, PIK3CB, PIK3CD, PIK3CG, PRKDC
. Leucine rich repeat kinase inhibitor
— e B PLKIBRD4, PLK2 PLKS
. PLK inhibitor
G us7
Panobinostat+ i FRR. . —
Ctrl Panobinostat ~ Temozolomide S0 o= i *ox - Crl
Temozolomide 5 100~ "
e Ctrl = Panobinostat-12nM o Ctrl = Scriptaid-3.2uM £ I == Panobinostat-12nM
£ 80— == Temozolomide-800pM
U87-48h u87-72h u87-48h u87-72h € 60 xx Panobinostat-12nM+
z ] ™ Temozolomide-800uM
e us7 ‘_§ 40— 0
1008 % e .'.. . 100, 100 .; " - 10 s R 20
. il s °® ek ey AT * okk et i
. LI g 80| = g ° 3 geon, 2 0
L . . = = =3 [
u n nx £ 60 ¥ = 60 - & e o . Scriptaid+ 120
™ s w ° g E ] Ctrl Scriptaid Temozolomide Temozolomide < 100 - Ctrl
L] & : = 40 z 40 : £ = Scriptaid-3.2uM
S 5 S 45 £ 8 = Temozolomide-800uM
g 60— - Scriptaid-3.2uM+
0 T T T T T T T 1 0 T T T T T T 1 0 T T T T T T T 0 T T T T T T T 1 us7 S 40 Temozolomide-800uM
0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900 \§ 204
Temozolomide concentration(uM) Temozolomide concentration(uM) Temozolomide concentration(uM) Temozolomide concentration(uM) N
o
T Panobinostat +
o Scrptaig
Us7-72h e fo " = —— Temozolomide -
5 E - s | % i Cleaved PARP us7
i . g Bel-2 04 e
§’ i § ] ‘ gm Cleaved caspase-3 Ctrl
8 £ 15 - s " & e - 3 Gapdh au 3] = Panobinostat-5mg/kg
g 8y . g ETRTTE R W e e §1o = o Panobinostat -‘5 == Temozolomide-25mg/kg
H X & § ns H Tomozdomde ___Serpiait-Tomozoomide 5 . Scriptaid g Barobinosizi-Bmalkos
3 5 g " ke & Q@ = ns 2 ; 202 mn, 200IOSE MG RG
& & | | Temozolomide . = Temozolomide-25mg/kg
b | o 0 Temozolomide o
Early Apotosis Late Apotosis - i | Early Apotosis Late Apotosis Cleaved PARP E 01
ide- o o : Bcl-2 <
-g:rlmbinosta(.unm -lzr::lfi‘:nlg;n;:zgr?oMtM i ‘ ] =ctl = Temozolomide-800uM © Panobinostat+
- ™ Temozolomide-800uM :;- i ﬂﬁ:w:’ 2 = Scriptaid-3.2uM S@%%%‘l’oﬁmze“%om Cleaved caszaas:‘;: Temozolomide 0.0

FITC-Anexin V

EITC-Anexin V.






OEBPS/Images/crossmark.jpg
©

2

i

|





OEBPS/Images/fimmu-15-1523034-g005.jpg
I‘\I\H \J; I ‘|

‘H‘ mﬁ\m |u‘ i
..r.n'..l..'.w
’| ‘i I M

i | HI \IU
‘H\INH ‘

mmmi‘u““}:‘.“'ﬂ“ﬂ‘\‘"

lHHH\H I M
xa:‘:u;

i

‘ i IH \I

’”F“':."“

I lh\l\ Wh\“i‘u

il

‘I‘H ‘
i\l\ I‘I‘Iﬁn

I \.

H\
WH

i N M\

1 ”1]

J[;wl“,:

‘ \H‘ I|M‘ ﬂ\

KEGG_ALLOGRAFT_REJECTION
HM_ALLOGRAFT_REJECTION
KEGG_VEGF_SIGNALING_PATHWAY

HM_HYPOXIA

HM_ANGIOGENESIS
KEGG_P53_SIGNALING_PATHWAY
KEGG_APOPTOSIS

HM_P53_PATHWAY

HM_APOPTOSIS
KEGG_REGULATION_OF_AUTOPHAGY
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY
KEGG_RIG_|_LIKE_RECEPTOR_SIGNALING_PATHWAY
KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY
KEGG_FOCAL_ADHESION
KEGG_ECM_RECEPTOR_INTERACTION
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION
KEGG_CELL_ADHESION_MOLECULES_CAMS
KEGG_ABC_TRANSPORTERS
KEGG_ADHERENS_JUNCTION
KEGG_GAP_JUNCTION
KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION
KEGG_TIGHT_JUNCTION

KEGG_CELL_CYCLE

HM_G2M_CHECKPOINT

HM_E2F_TARGETS
KEGG_COMPLEMENT_AND_COAGULATION_CASCADES
HM_COMPLEMENT

HM_COAGULATION
KEGG_NUCLEOTIDE_EXCISION_REPAIR
KEGG_MISMATCH_REPAIR
KEGG_HOMOLOGOUS_RECOMBINATION
KEGG_DNA_REPLICATION

HM_DNA_REPAIR
KEGG_TGF_BETA_SIGNALING_PATHWAY
HM_TGF_BETA_SIGNALING
HM_EPITHELIAL_MESENCHYMAL_TRANSITION
HM_GLYCOLYSIS

HM_ANDROGEN_RESPONSE
HM_ESTROGEN_RESPONSE_LATE
HM_ESTROGEN_RESPONSE_EARLY
KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY
KEGG_PRIMARY_IMMUNODEFICIENCY
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY
KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY
| KEGG_JAK_STAT_SIGNALING_PATHWAY

| HM_TNFA_SIGNALING_VIA_NFKB
HM_INTERFERON_GAMMA_RESPONSE
HM_INTERFERON_ALPHA_RESPONSE
HM_INFLAMMATORY_RESPONSE
HM_IL6_JAK_STAT3_SIGNALING

| L HM_IL2_STATS_SIGNALING
HM_UNFOLDED_PROTEIN_RESPONSE
HM_PROTEIN_SECRETION

HM_MITOTIC_SPINDLE

HM_PEROXISOME

HM_MYOGENESIS
KEGG_BASAL_TRANSCRIPTION_FACTORS
KEGG_CALCIUM_SIGNALING_PATHWAY
KEGG_LYSOSOME
KEGG_PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM
KEGG_PROTEIN_EXPORT
KEGG_REGULATION_OF_ACTIN_CYTOSKELETON
KEGG_RIBOSOME

HM_KRAS_SIGNALING_UP
HM_KRAS_SIGNALING_DN

HM_MYC_TARGETS V2

HM_MYC_TARGETS_V1
HM_OXIDATIVE_PHOSPHORYLATION
HM_PANCREAS_BETA_CELLS
KEGG_INSULIN_SIGNALING_PATHWAY
KEGG_PATHWAYS_IN_CANCER
KEGG_NOTCH_SIGNALING_PATHWAY
KEGG_MTOR_SIGNALING_PATHWAY
HM_PI3K_AKT_MTOR_SIGNALING
HM_NOTCH_SIGNALING

HM_MTORC1_SIGNALING
HM_REACTIVE_OXYGEN_SPECIES_PATHWAY

I

i

HM_WNT_BETA_CATENIN_SIGNALING
HM_HEDGEHOG_SIGNALING
KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY
KEGG_CHEMOKINE_SIGNALING_PATHWAY
KEGG_CYTOSOLIC_DNA_SENSING_PATHWAY
KEGG_ERBB_SIGNALING_PATHWAY
KEGG_FC_EPSILON_RI_SIGNALING_PATHWAY
KEGG_GNRH_SIGNALING_PATHWAY
KEGG_HEDGEHOG_SIGNALING_PATHWAY
KEGG_NEUROTROPHIN_SIGNALING_PATHWAY
KEGG_WNT_SIGNALING_PATHWAY
HM_UV_RESPONSE_DN
HM_UV_RESPONSE_UP

catergory
Allograft rejection

WAngiogenchs
Apapiaas

| CBilzommunications
Coi cyole
Complement and coaguiation
S optcatin and opar

Glycolysis
Hormone response
Immune system

_Inflammory response.
intracelluiar paifay

KRAS

il phosphoylaton
Pancreas
Patnways in cancer

UV response

Matrix
15

AC-Gll
BAC-Gll
AC-GIV
(AC-GV

negative reguiation ofcyclin-dependent protein serinethreonine kinase actiiy
reguiation of cell cycle process

negative regulation of cel cycle G1S phase transition

fatty acid beta-oxidation

reguiation of epthelal to mesenchymel transiton

protein-DNA complex disassembly

pore complex

posiive reguiation of metanephric cap mesenchymal cell prolferation
foroblast apoptotic process

posilive regulation of smooth muscle cell apoptotic process

W downs,
ups

basal dendrite development

RNA-type intron splice site recognition and cleavage

{RNA-intron endonuclease activity

response to pain

positive regulation of dermatome development

negative regulation of MIRNA-mediated gene silencing

cell migration involved in endocardial cushion formation

angiogenesis involved in coronary vascular morphogenesis

negative regulation of myoblast differentiation

negative regulation of cellular senescence.

Number of Enriched mRNAS

Wiqmﬂ AR 1 I | I

H\I‘I‘ ‘: “‘ L:‘ l

| “ el “h” FIMI\

il ‘m‘.‘ﬂ ! Iv";\ i R
‘m\ |\'m‘ ”u‘ |m Wl ‘ | {

“] "F Ttk m|‘w|‘| ?‘M \JJ

I
i

il il
F“ i
u\’. .ﬁ ”l"y“‘”‘ |

ww i

il
e

e

10

e
S
Sibtype

Cypooorenase prscidoni Ack Melabolm
dl Biosyfthesis
Pantoeriate. and Con Blosyniesis
Amino_Sugar_and_Nucleotide_Sugar_Metabolism
Starch_and_Suctose_Metabolism
Galactose_Hietabolism

| Retinoid_Wietabolsm

N_Glycan_Biosynthesis

| Pyiimiding_ Metabolism
1, Neomycin Kanamysin and_Gentar osynthesis

Hexosaminie_Biosynthasis

| Homogystorie. Samyinesis

Sypsamincefyan Blosmvests
Nicotinate_and_NicGtinaride_Metabolism
Glutathiore_Metabolism
Drug_Metaolism_by_other_enzymes
Polyamine_Biosyrthesis
Glycosamifoglycan Degradation

| Prostanoid_Blosynifisis

gmurenine etabolism
jaine_Leugine_and_lsoleucine_Biosynthesis
Riboflavin_Metabolism
Ubiquinon_and_other_Terpenoid, Quinone_Biosynthesis.
Nicotinamide_Adenine Dinucleotide_Biosyrthesis

| Giycolys's

Glycosphingolipid_Biosyntnesis
Retinol_Metabolism Matrix
Retinoic_Acid_Metabolism s

| ADP_RiBosylation 1

Selefiocompound._Metabolism i
Lysine_ Degradation

Porphyfin_and_Chlorophyll_Metabolism 0
Zn“enylarmmewmbohsm I 0.5
Typlopnan. Metabolsm e
pnma%sua Acid_Biosynthesis 9%
| Other_ T Glycan_Biosynthesis 1788
Tyrosine_ Mehbol»sm 61-80
emethyTation 81-100
Arachidonic-Acid Metabolism
Purine. Met%bchsr;l ) Gander
radation
Cardidipin-Bicsynihosts Female
Citric_Acid_Cycle
Vaing’Leucine. and Isoleucine_Degradation
Glycerephosphaliid Metabolsi su
poic. Ac: Metabollsm i
Inosial Phosphate. Metabolism e
Torpena Sactbor. Bosymness Freac
Nefabolism AC-GIV
Urea_Cycle AC-GV

Propanoate_Metabolism
Glycine_Sefine_and_Threonine_Metabolism

| Transsufuratior

Glycerolipid_Metabolism
Ketone. Biosynthesis_and_Metabolism
Steroid_Biosynthesis™
in_B6_WMetabolism

Shingolipid_Metabolism
Thiamine_fetabolism
Pyruvate Metabolism
Heme_ Blosynthesis
Cholesterol Biosynthesis
Fatty_Acid_Biosynthesis
Glyorylate and Dicarboxylate_Metabolism
Biosynthesls of Unsalurated_Tatty_Acids

inine._Biosyrihesis
Steroid_Fiormone Metabolism
Beta_ ATanine. Mefabolism
Sterdid_Hormione_Biosynthesis
Norepinephrine_ EBiosynthesis
Taurine_and_Hypotaurine_Metabolism
Situin Nicofinamide_Mefabolism
Dopariine_Biosynthésis

Spartale_and Giutamate_Metabolism

piine Biosynthesis
0ate_Rletabolism

iolipin_Netabalism





OEBPS/Images/fimmu-15-1523034-g001.jpg
Data retrieval and preprocessing

woHes-

31 types of
solid tumors

TCGA pan cancer cohort(n=10079)

mRNA
expression

methylation

copy number
variation

Molecular subtype identification

ACR subtype

Consensus clustering
analysis based on
ACRGs expression

GBMLGG

(S
ACG subtype

Biological and molecular characteristics

i

Biological process
and
tumor microenvironment
infiltration

‘v{ ' Survival analysis
-L

Potential sensitizing agent

Molecular characteristic
analysis:

screening and validation
for AC-GV patients
(CTRP and CMap database)

i
H

subtype correspondence T ok
TCGA GBMLGG cohort (n=695 : o a4 im i i
( ) genetic and transcriptional ' i i A(i%;ssco;e_t_constn:jct:on
CGGA cohort (n=1013) features il i ( ZLe(er;I'(ZZ ’l‘:o 218
GlioVis cohort (n=659) i i i leave-one-out cross validation
§(88 I3 [ framework)
GSE43378 cohort (n=50)
B C D [l Frame_shift_Del [l Splice_Site [l Nonsense_Mutation [ij In_Frame_Del [Jli] Missense_Mutation
RNA expression (T_N Methy|ation (T_N) Frame_Shift_Ins Translation_Start_Site Nonstop_Mutation In_Frame_Ins Multiple
CLOCK [+ . e -0 0 ¢ B . CLOCK
CREBBP | « ° e o o CREBBP{® » o0 . I I I
EE&ES T . b ° T ? L5 ? ELP3:7 Delta (T-N CLOCK 00 1k 1o 0 0A%  0a% Os% OB 1% 0% |
GTF3C4 ! oo 3 EP300 <t (T=N) CREBBP | 1= 1o e om ame 13 e 4 12k 430 120  —
HAT1 I i ° ® log,FC (T-N ) HAT14 ELP3 . osomom o  ommore  oewoewoex 1% 0% ) | |
HDAC1 . . e s @0ce .00 . ¢ HDAC10+ 0.2 GTE§3382' 16T ITANSL IO 0K AT D% TO% 276 30% 0% 27% 29% A0% 128 9% 23% 11
HDACT0 Pl %e R B Hodgil ' ° i R e N . —
HDAGH{ s s e @ ° - . e 2 HDAct ] o HOAGTO | mmom TEE o =
. L ] . . 1
HDAC4 Pl 5 G S 5. . e & 0 HDAC4 | 0 E e e i e ——-
HDAC5 . o e @ ° ) . ° ° ._2 HDACS5 ._0_1 oo o m amoex oo ok 12 0o 0w [ | |
HDAC6 | e I HDAC6 | ® . EAR A iotme oaw um os 1 e am oo —
HDAC7 b b -9 : o HDAG? 1 B " 603 oew s L 04 0 0 0sx 12 ;|
ERTREY 6% 1 126 05% O7% 1% 08% 20% 19% oo |
Hhacoie—e ¢ 2o 5 I HDACO{ &« © @ ® e —log,, (Pvalue) e i o P e el o —
karza ) s K ® e '.3 L] [ | -log,,(Pvalue) KAT2A1 ° ® eo0 o0 o0 % ® % 17 00% 17 1w U om% oa 0at 206 TE% 0% % e I
. ’ 1—9-0-e - -4 ) 30 KAT28 ® 10 [nl | T ix eemimsnie Lalom i ]
Ngl??ﬁ o e @ 0 0o o L ° ® 10 SIRT 4 1 oo o7 mnnum osom o iekumcim ome 1
[} . . N ) [ ] L] . L ] [ ] _
SIRT2{ & ° | @2 SIRT21 .20 o A - R e R e T I
SIRT3 : SIRT3 1 ® oswomom o ooz oo oon 17 az% 7% as% 24 07 —
SIRT4 ® ® o o ® -« ° ° . PR . SIRT4 5% 0z% 03w 05 1% 04 15% 04% 03% 04% 04%  05% 0% osx 04 | —
SIRT5 % % b4 1 J @ 0 SIRT5 omom o i7e oseoew  03% 0ex 02% o3 0% ome 03k amom  tsw ok |
SRT6|c® @ - o5 : ! P [ SIRT6 amom m m oo oo oz oe o e oo —
SRT7| e @ ¢ o o b 4 65§ b SRT7] osw om0 2w osx osn oo oz 1% osn o
- S Ju S W -2 A ' 1 . S s % oowom o oswom oz om0z om oo aon 13w =]
DT OQOMIIZIICECIITIRLL2AALAS PBOQOM@OQEIICEEYIITRQLQLALALS e s i oo IR 7 12+ o [EERY o
SAMIORZ33IEG2QINEA3FTTO "’“mIO‘”W"’o:u:uICC§°§m A3 ZEZIT O >PTWOOOMEIRRALLC TTITIOONAAAdCCC
Q0N o>2Q00rn9082 T >DO0Z20=m 900w520=zz238335z29 o >PTI020=<Xm @ QIZZZDLCEEZQ 3
>>0FD0>®0 So0bedoo=zY%>»=zo0 >»0rFr0>» I OobeooozgP>»=20 QLANLIO2EZ53TRISGH <2Q 2338529
E 8508580232330 088] 5388808803892
“ ACC = CHOL = HNSC = LGG = MESO = PRAD = STAD ~ UCEC
3 = BLCA = COAD ® KICH = LIHC = OV = READ ® TGCT * UCS
= BRCA = ESCA = KIRC ® LUAD = PAAD SARC = THCA = UVM
" CESC = GBM = KIRP ® LUSC = PCPG = SKCM = THYM
s
2

AMP %

DEL %

F

MO010
dg9g340
ed13
00ed3
0419

Copy number variation

LIVH

CLOCK| -

CREBBP
ELP3
EP300
GTF3C4
HAT1
HDAC10
HDAC11
HDAC1

HDAC2

HDAC4
HDAC5
HDAC6
HDAC7
HDAC9

KAT2A |

KAT2B
NCOA1
SIRT1
SIRT2
SIRT3
SIRT4
SIRT5
SIRT6
SIRT7

e+ 0 00000

.

oo o

P
.

+ e e s
se 0000 -

.

.

o0V
vo1ga

e R o o

vos3| -
wWao
OSNH{
HO Y -
ol
dd -
o991
OHIM{® o o + o
avniy -
aosnt
Oosam;
avvd|
9dod{

°
L3
L ]
@
°
@
P
(<}
>

0830 - -
IOHO{
avoo; -
avid
avay
uvS|
WOMS|

avis|
1091

VOHL

WAHL

230N ¢ ¢
SON{s = ¢ o e ooy
WANT{

01LOVaH

Correlation

0.6

—log,,(Pvalue)
® 50
@ 100
@ 150

LLOVaH

= = g 3 ] 3 3 3 3 3
N N — 2 | = N - =
e Q ¢ 2 g g 2 5 5 z = N o ® @ & o
iR W-E signature — Hazard ratio
L 2 L 3 . L 3
CREBBP f”.: ! ,:, Tt CREBBP %
EPao call £P300 * *
iR 2 X =3 o@e o o
oreace | L5l b4 088 oTracs ARaar .
HDAC1 T o | Cconelation HDAC1 X p Hazard ratio
HDAC10 oo o o
ngﬁg}? | .o i .: : 1 : 2 .. : .;. L] : 0.8 HDAC11 ° @ I Protective
HDAC2 ®e-e o s ¢ 00 oe@ o 04 ngﬁgﬁ ® @ ® o
HDAC4 . B8 . " ‘ . o4 0 Y DACE B4 ® . P<0.05
HDAC5 . b ateq - I_04 HDACS . o e
HDACS Pt : ! b - HDACE b4 I Risky
AR I i . i KAT28 o o ° o
NCOA1 + ~log,q(Pvalue) NCOA1 ° —log,(Pvalue)
SIRT1 8B ® D SIRT1 4
SIRT2 ® 50 SIRT2 it ¢ ®6
SIRT3 s ° e SIRT3 oo p A
skral” o i Ty @ 100 SIRT4 ° @9
SIRT5 e L ] L B ] ®
SIRT5 ! .o . T WS
R tes 1 eresthe i iisritiiataid @ S H ety 0"
@ oo co @@ 0000 o@c-0 o
POWOOOMAIXXXACCCCZQITVIIOLIOOASdACCC
POWOOOMOIXRZACCCCZSQRVIDQOOOAAACCC BEPOQQMOIRRIRLLEEEQR D geadidsse
QL AMIONBZESIRISEMISO >PRAIOITSG 8088588252228 852an 2988258 852R8S
(e} X7} > > IO0TWO
ORQBOFQIBIOTVOEEEY 08553202228”’5 *X0rPG» 0 588 855820980





OEBPS/Images/fimmu-15-1523034-g003.jpg
Explai

— e e
mHHHHHMHH

T TN T Y VM TR
VRV T 000 A1 II\IIIIIIII\III 1
I J I T A T IS

T
i

i

W
i

!

ined variation (%)

60
40
20, Ha;z;r: gat.o
0 [§ )
HDAC2 o o —— 111 (1.03 10 1.18)
SIRT4 [ —— 0.94 (0.87 to 1.01)
HAT1 o ! —— 142 (1.33 10 1.51)
HDAC1 | ! —e— 174 (16210 1.88)
HDAC10 ° —_-— 0.87 (0.81 0 0.93)
SIRT6 o —— 1.04 (0.97 to 1.11)
SIRT? o v e 1.25(1.17 10 1.32)
HDACT o . —— 1.58 (1.48 1o 1.69)
ELP3 - ! 0.67 (0.6210 0.72)
HDAC5 [0 o - ! 0.69 (0.65 to 0.74)
HDAC11 |0 O - H 0.73(0.68t0078)  Importance
SRT2|0 o o O - 086(08110093)  © 20
KAT2A |[O o @] - o - 0.84 (0.78 to 0.89) O 30
HDAC6 |0 o o i8] — 0.96 (0.90 to 1.02) O 40
SIRT5 o o o -— 0.77 (0.72 t0 0.83) 8 50
SIRT3 | o o - 0.79 (0.74 to 0.85) 60
NCOA1 [0 0 o 8l o -~ 0.82(0.77t00.87)  correlation
KAT2B |0 o oo o -— 0.82 (0.77 t0 0.88) 10
GTF3C4 |0 o o 0] o o 1.02 (0.95 0 1.10) 05
SIRT1 |0 0 o o o -~ 0.76 (0.71t0 0.81)
EP300 [0 O o @ o —— 0.88 (0.83 t0 0.94)

CREBBP [0 0 0|0 o - 090(085t0097) | “ 5
HDAC4 [0 O 0 s O] o ' 0.62 (0.58 to 0.67) -1.0
HDACO9 [0 o o - 1.01(0.95to 1.08)

CLOCK | o o o 8 o —— 1.08 (1.01 to 1.15)
r T T 1
05 1 15 2
1.00
0.75
z
a
8
°
2 o050
2
e
S
17}
0.25
p<0.0001, OS, Radio-therapy, CGGA
0.00
[} 1600 2600 3000 4000 5000
S Time
Number at risk
pccif 165 95 52 20 7 0
139 107 63 38 20 0
AC-GIl| 1a4 63 33 18 8 0
AC-GIV{ 129 53 30 3 1 0
AC-GV | 165 31 9 2 1 0
0 1000 2000 3000 4000 5000
S Time
GlioVis cancer type
100
75
g
s W GBM
=
5 |_JEcte]
g 50
o
25
0
o £
v w W« [

w‘:f:w
i

| \m‘\“\‘aN‘

f«.w
i

’u W o |.M|u

H‘

1k M‘ u | U“L \M

ﬂl\mnuhl il (L ‘ | M

Histology
IDH status

X1p 19q codeletion
MPS

HDAC2
SIRT4

| HAT1

HDAC11
SIRT2
KAT2A
HDAC6
SIRTS
SIRT3
NCOA1
KAT2B
GTF3C4
SIRT1
EP300
CREBBP

Matrix. TCGA-GBMLGG & CGGA

15
1
05
0
~05

Age
0-20

2140
41-60
61-80

W81-100

IDH status

W Mutant
Wildtype

MC
miGm1
LGm2
LGm3
BLGm4
£ LGmS
BLGm6

SbMmC
Classic-like

esenchymal-like

Cancer type
W GBM
WLGG

Histology

1 Astrocytoma

M Glioblastoma
Oligoastrocytoma

© Oligodendrogiioma

Gender

M Female
W Male

Grade

. Grade Il
Grade Il
Grade IV

MPS

i Methylated
Unmethylated

X1p 19q codeletion
 Codel

- Non-Codel

HDAC4 1 PA-like
E TCGA-GBMLGG & CGGA subtype Es AC-GI B3 AC-GII B AC-GIIl B AC-GIV o AC-GV
8 | wkE mkE mkE kkk kkk kEK kK kK kKK kKK kKK kKK kKK kKK Kk kKK KKK kK KkE KkE KkE kkk kkk kK Rk
. . 3 . . .
. I s
. . . . 5 . 3 *
4 . g .o N
: M A :
§ St ¥
2
8 : 4 N
5
g o
3 ' : 0
. .
. P N
I : LT P | '
: H :
e | : .
N A N 9 3 O Q N+ o o N N Q > 2 il % o 5 Q N
O & (dg S S K ) & (S L 5 xS N <% g < & « N
& §§ S §§ & & §§ £ §§ £ F £ \,\o?o &£ & & &S ,\o@ §@ f Q\o’o
1.00 1.00
075 075
z z
3 -
i i
E- 0.50 g 0.50
3 3
? 025 025
- p<0.0001, OS, Chemo-therapy, CGGA 00|  P<0.0001, 08, Unireated, CGGA
0 1000 2000 S Time 3000 4000 5000 0 1000 2000 0S.Time 3000 4000
Number at risk Number at risk
AC-GI 145 75 43 15 1 0 AC-GI 19 13 8 2 1
| 110 79 50 27 3 0 A el 15 9 5 1 0
AC-Glll 123 46 22 9 3 0 AC-Glll 22 9 o = 1
AC-GIV 123 54 30 6 2 1 AC-GIV 21 10 6 0 0
AC-GV 169 34 1" 3 1 0 AC-GV 2 1 1 0 0
0 1000 2000 3000 4000 5000 0 1000 2000 . 3000 4000
0S.Time 0s.Time
GlioVis predicted subtype &3 AC-GI £ AC-GII B AC-GIIl B AC-GIV = AC-GV
50 ° -
) . . .
<l . i B
- . . -
- .- L L
25 P . ) & =
w |e Ll .
5 * N ] s
2
1]
s
g
w 00
2 . T L : .
-50
N A N 9 N Q =Y A N © o N N QS > 3 3 % o o U N
¢ &P S L F LTS RLL LT P LN
s £ & & & W & & & &
FF T F L F FPF P & FF & & & &FF &

100

75
S
=
s
=1
50
2
)
o
25
0

1.00

075

0.50

Survival probability

025

0.00

AC-GI

I
AC-GlIl
AC-GIV

AC-GV

TCGA-GBMLGG & CGGA cancer type

1.00

075

0.50

Survival probability

025

0.00

AC-GI

AC-GlIl
AC-GIV
AC-GV

M cBm
|_JEele)
& o vo ©
p<0.0001, OS, TCGA-GBMLGG & CGGA
[ 2000 4000 6000
0S.Time
Number at risk

419 86 12 0

297 92 23 0

352 59 11 0

256 48 3 0

340 21 6 1

0 2000 osTime 4000 6000

p<0.0001, OS, GlioVis predicted subty|

rade
e

nder
Predicted Subtype

HDAC2
SIRT4

HAT1
HDAC1
HDAC10

i

I|‘|‘|H\m’ \“\‘ i
! Wl '!\“u It

Matrix.GlioVis

'15
1

05
0
-05
Grade
~ Gradell
M Grade Ill
M Grade IV
Age
0-20
21-40
21-60
61-80
W81-100

Gender

M Female
1 Male

Predicted Subtype

AC-GI
AC-GII
AC-Glll

BAc-civ
BAc-Ggv

0 50 100 150 200 250
0OS Time
Number at risk
28 5 i 1 0 0
133 68 26 6 4 0
110 26 8 1 1 1
43 6 3 1 1 0
243 20 3 1 0 0
0 50 100 08 Time 150 200 250





OEBPS/Images/fimmu.2024.1523034_cover.jpg
& frontiers | Frontiers in Immunology

Pan-cancer analysis of the transcriptional
expression of histone acetylation enzymes
in solid tumors defines a new classification

scheme for gliomas





OEBPS/Images/fimmu-15-1523034-g008.jpg
B C D E

Genes HR(95% CI)
Test Train Test Train SMc4 —— 1.54 (1.46 t0 1.63
[ — | i— | ‘ ! S o s 31 2l 74$ =
0.77 7 GBRM 0.76 g StepCox[both] + RSF I - to 1.69
0.70 ) RSF 0.76 i StepCox[backward] + RSF i I ‘ A ‘ KBNF)%EF3 K;N’:)%Er:i —— o gt
0.76 791 | CoxBoost + GBRM 075 '829| RS 1 ]” I [ ANXAL change il 140 (1.35t0 1.45
0.64 ; Ste Cox orward] +RSF 8"712 : gte%Cox _{Dr\AC/;aBrd & RSF H‘ M down PLAT —— }'ég 1'33 %3 1-‘;2 L3
0.76 | 0.79 X L . oxBoost + i Lt . - . d
064 : Ste B ardi+ BSF 075 794 | GBRM ‘I\H‘HH | \ i Hup mR - 081 (0.79 to 0.83 °
0.64 i StepCox both] + RSF 0.75 X StepCox[forward] + GBRM I | [ L ‘ I CACNG2 - §250-18,10,0.89
0.75 | 0.78 X Ridge 0.76 i StepCox|both] + GBRM A f I Matrix. TCGA-GBMLGG & CGGA AFF2 e 0.70 (0.67 t0 0.73
073 | 0.8 ; IsRcox 0.76 786 | StepCox|backward] + GBRM I 0% P R 0.78 (0.74 to 0.82
075 |0.77 : 0.73 772 | RSF + GBRM Illw il | P24 e 0.82 (0.78 to 0.86 > o
8218 |2 674 | 027 |5 o75¢ | SepCorforia i wi | R & den (o gen s : MiciassAUC <0355
0.75 | 0.77 L - L . COX i 0.5 . .7610 0. = g
075 | 077 g 074 | 0.77 X gtepCoX forward]E+ plsRcox | | ‘ DSCAML1 0 SPHKAP o 0.75 (0.72 t0 0.77 2 Cohort: TCGA-GBMLGG & CGGA
075 | 077 ] 0.74 | 0.76 : StepCox(both] + Enet[a=0.1] f w“ ‘ DSCAML1 oa 0.75(0.73t0 0.78 2
075 | 0.77 _ 0.74 | 0.76 . StepCox[backward] + Enet a =0.1 HH HEI -0.5 BMP2 —-— 0.72 (0.69 to 0.76 .
075 | 077 ; 074 | 0.76 . StepCox[both] + Enet[a =0.2] | 1 ‘ \ DCX Ea 0.87 (0.84 to 0.90 S
075 | 0.77 : 0.74 | 076 751 | StepCox|backward] + Enet[a=0.2 i | ‘ Subtype RANBP17 ) 0.75 (0.71 t0 0.79
074 | 077 ) 0.74 | 0.76 . StepCox[both] + Enet[a=0.4] | H\ FAc-GI RIMS2 cs 0.80 (0.77 t0 0.83
075 | 0.77 F 0.74 | 0.76 : StepCox[backward] + Enet[a=0.4 ‘ | H _ AC-GII CRTAC1 2 gl 0.71(0.68 to 0.74
074 | 077 : CoxBoost + Enetfa=0.1 0.74 | 0.76 ) StepCox[both] + Enet[a=0.3] \I I H\ ‘ I\HH BAC-Glll GABRB3 < 0.78 (0.75 t0 0.80 &
072|877 | g1y comemn s o ARl S | a2y me o aeess
i 0.77 y oxBoost + Enet E s . epCox|both] + Enet[a=0. I Ly X .81 to 0. x 5.
074 | 077 ; CoxBoost + Enet 0.74 | 076 751 | StepCox[backward] S 0.0 ‘ (AT ‘ H | Bac-av VSTM2A - 0.78 (0.76 to 0.81 AUC=0.800(0.772-0.828)
0.74 | 0.77 . CoxBoost + Enet .5 0.74 | 0.76 i StepCox[both] + Enet[a=0.3] i i | H‘ i CUX2 b o 0.75(0.73 t0 0.78 —— AUC=0.893(0.876-0.910)
074 | 077 ! CoxBoost + Enet[a=0.6 0.74 | 0.76 : StepCox[backward] + Enet[a=0.8 i | ol 1l IHH SVoP - 0.79 (0.77 to 0.82
073|077 i CoxBoost + Enet[a=0.7 0.74 | 0.76 ; StepCox|[both] + Enet[a=0.5] I f m | i ! SHD - 0.82 (0.80 to 0.85 o
073|077 ; CoxBoost + Enet[a=0.8 0.74 | 0.76 . StepCox[backward] + Enet[a=0.5 : I CPLX2 - 0.84 (0.82 to 0.87 Q¢ | : . . ;
0.73 | 0.77 E CoxBoost + Enet[a=0.9 0.74 | 0.76 4 StepCox(both] + Enet[a=0.7] T : i 1.0 08 06 04 02 0.0
0.73 [ 0.77 ’ CoxBoost + plsRcox 0.74 | 0.76 . StepCox[backward] + Enet[a=0.7 05 . i !
073 | 0.77 i CoxBoost + StepCox[forward] 0.74 | 0.76 3 StepCox[both] + Enet[a=0.6] - 1 1.5 2 Specificity
0.73 | 0.77 i CoxBoost + StepCox|both] 0.74 | 0.76 o StepCox|backward] + Enet[a=0.6
0.73 | 0.77 B CoxBoost + StepCox[backward] 0.74 | 0.76 L StepCox[both] + pISRcox
0.74 | 0.75 . RSF + CoxBoost 0.74 | 0.76 B StepCox[backward] + plsRcox
0.74 | 0.75 . RSF + gIsRcox 0.74 | 0.76 » StepCox[both:
0.74 | 0.75 g RSF + StepCox[forward] 0.74 | 0.76 . StepCox[backward] F
0.74 | 0.75 5 RSF + Enet[a=0.2 0.74 | 0.76 k CoxBoost + Enet[a=0.1 <22e-16
0.74 | 0.75 : RSF + Enetla=0.4 0.9 0.74 | 0.76 : CoxBoost + Enetfa=0.2 p=2.
0.74 | 0.75 ! RSF + Enet[a=0.5 0.74 | 0.76 . CoxBoost + Enetfa=0.3 p<22e-16
0.74 [ 0.75 : RSF + Enet[a=0.6 0.74 | 0.76 i CoxBoost + Enet[a=0.6 1
0.74 | 0.75 ¥ RSF + Enet[a=0.8 0.74 | 0.76 E CoxBoost + Enet[a=0.4 0.9 4
0.74 | 0.75 i RSF + Enet[a=0.3 0.8 0.74 | 0.76 . CoxBoost + Enet[a=0.5
0.74 [ 0.75 ; RSF + Enet[a=0.9 0.74 | 0.76 K CoxBoost + Enet[a=0.7 1.00
0.74 | 0.75 : RSF + Enet[a=0.7 0.74 | 0.76 : CoxBoost + Enet[a=0.8 0.8 o © o
074 | 075 : RSF + Enet[a=0.1 0.74 | 0.76 747 | CoxBoost + Enetfa=0.9) 8 2 5 2
0.74 | 0.75 B RSF + StepCox[both] 0.7 0.74 | 0.76 . CoxBoost + plsRcox 7] 3
0.74 | 0.75 i RSF + StepCox[backward] 0.74 | 0.76 L CoxBoost + StepCox[forward] ) [0} 0.75
0.73 [ 0.75 : CoxBoost + SuperPC 0.74 | 0.76 : CoxBoost + StepCox[both] 0.7 [SI) o 5
0.73 | 0.74 i RSF + SuperP 0.74 | 0.76 i’ CoxBoost + StepCox[backward! < < £
0.73 (0.74 k SuperPC 0.6 0.74 | 0.75 . Ridge . © 0 3
0.73 | 0.74 ; CoxBoost + survival-SVM 0.74 | 0.75 - Enet[a=0.2 0.6 s °] Multiclass AUC = 0.901 Q
0.73 | 0.74 i RSF + survival-SVM 0.74 | 0.75 L StepCox[forward] + Enet[a=0.2, = R # 2 050
072 [0:/3 _ survival - SVM 0.74 | 0.75 ; Enet[a=0.4; 2 Cohort: GlioVis s 0
064 | 0.76 A StepCox[both] + GBRM 0.5 0.74 | 0.75 . StepCox[forward] + Enet[a=0.4; 0.5 4 3 S
0.64 (0.75 g StepCox[backward] + GBRM 0.74 | 0.75 ; Enet[a=0.1 ' < S
0.64 (0.74 A StepCox[forward] + GBRM 0.74 | 0.75 : StepCox[forward] + Enet[a=0.1 S A -2 5
[ 0.72 [ StepCox|backward] + Enet[a=0.1 0.74 | 0.75 . Enet[a=0.3 @? 025
0.74 | StepCox| fmn/vard{E 0.74 | 0.75 e StepCox][forward] + Enet[a=0.3;
0.72 B StepCox[both] + Enet[a=0.1] 0.74 | 0.75 E Enet[a=0.9 < < < 3
0.72 ? StepCox backward + Enet[a=0.2, 0.74 | 0.75 . StepCox[forward] + Enet[a=0.9. o) > N N N\ . 0 oy N > (,4
0.72 H StepCox[forward] + plsRcox 0.74 | 0.75 £ CoxBoost o o S 0 g il (¢] <t od ot ot 0OS, TCGA-GBMLGG & CGGA, p < 0.0001
072 ; StepCox[backward] + Enet[a=0.3 0.74 | 0.75 . Enet[a=0.8 v [ ¥ ¢ ¥ As v oov v v 0.00
0.72 | StepCox[backward] + Enet[a=0.4 0.74 | 0.75 L StepCox[forward] + Enet[a=0.8; AUC=0.788(0.742-0.833) -
0.72 H StepCox[both] + Enet[a=0. 0.74 | 0.75 . Enet[a=0.6 e . - 0 2000 OS.Time 4000 6000
0.72 I StepCox[both] + Enet] .3 0.74 | 0.75 3 StepCox][forward] + Enet[a=0.6; — AUC=0.934(0.913-0.955) Number at risk
J i lepCox[backward] + IsRcox E k k lepCox[forward] + Enet[a=0.7' o- <0.001 NA |<0.001 | <0. <0.| i
| 072 . StepGox|backward] + Enetja=0.5 0.74 | 0.75 ) Enciac0.5 ‘ : ‘ ; ‘ ‘ o001 o0ar | Na <0 881 g ABGiscoreilighy 804 52 6 1
072 i StepCox|backward] + Enetla=0.6 074 | 075 743 | StepCoxfiorward] + Enet[a=0.5 10 0.8 06 0.4 0.2 00 ' : 001} <D.001
0.72 § g%epgox Bom + Enet a=0.5 8;% 8;2 | ng + Ene% 2=0.9 Speciity : <0.001 <0.001|<0.001 NA |<0.001 ACG score Low { 857 254 49 0
0.72 4 epCox[both] + Enet[a=0.6 E L 5 + Enetla=0.4 pecifici < P < I
072 i StepCox|backward] + Enet[a=0.7 073 | 0.74 736 | RSF + Enet[a=0.7 0.001 <0.001 <0001 00011 NA 0
0.72 I StepCox[both] + Enet[a=0.8] 073 | 074 i RSF + Enet[a=0.5] 2000 ogTime 4000 6000
0.72 i StepCox[backward] + Enet[a=0.8 0.73 | 0.74 . RSF + Enetla=0.3
| 0.72 i StepCox[both] + Enet[a=0.9 0.73 | 0.74 B’ RSF + Enet[a=0.8
0.72 i StepCox|[both] + Enet[a=0.7 0.73 | 0.74 E RSF + Enet[a=0.6
0.72 i StepCox[backward] + Enet[a=0.9 0.73 | 0.74 . RSF + Enet[a=0.2 J K L
0.72 g StepCox(both] + plsRcox 0.73 | 0.74 . RSF + StepCox[both] : :
072 i StepCox[both 0.73 | 0.74 : RSF + StepCox[backward] BE ACG score High EH ACG score Low
0.72 i StepCox[backward 072 | 0.74 i RSF + plsRcox 1.00
0.63 | 0.67 ¥ StepCox[forward] + Enet[a=0.8] 0.72 | 0.74 . RSF + Step Co)gforward]
0.63 | 0.67 ¥ StepCox|forward] + Enet[a=0.7] 0.73 | 0.74 . RSF + Enet[a= Feat u
0.63 | 0.67 ; StepCox(forward] + Enetfa=0.6 073 | 074 3 RSF + CoxBoost Hures HR(95% CI) . <226-16 .
0.63 | 0.67 I StepCox[forward] + Enet[a=0.5 0.72 | 0.72 i RSF + survival-SVM 07 . p=2 p<22e-16
ggg 0.67 X g%epgox ;owvarg + Ene{ a=8 9) 8;} 8;% 8;18 gSF + SuperPC - 5 ' 0.504 i
0 0.67 i lepCox[forward] + Enet[a=0.4 s £ l uperPC £ i
0.63 | 0.66 i StepCox[forward] + Enet[a=0.3] 0.71 | 0.72 0.719 SteppCox forward] + SuperPC 2 Score ¢ 1.27 (1.09 to 1.47) 0.503
0.63 | 0.66 5 StepCox|forward] + Enet[a=0.2] 0.71 | 0.73 0.718 | CoxBoost + SuperPC 2
0.63 | 0.66 X StepCox[forward] + Enet[a=0.1 0.71 | 0.72 0.716 | StepCox[both] + SuperPC S 050 Age b * i 2.15(1.23103.76)
0.62 | 0.62 i StepCox[both] + SuperP 0.71 | 0.72 0.716 | StepCox[backward] + SuperPC a ™= i .
0.62 | 0.63 i StepCox[backward] + survival-SVM 0.71 | 0.72 0.715 | CoxBoost + survival-SVM < ) 4
0.62 | 063 i StepCox[both] + survival-SVM 07 | 0.72 0.709 | StepCox[both] + survival-SVM S Gender —— 1.05 (0.65 to 1.69) ] =
gg% i g%epgox Packwgrd] ; SUPSE?C 00679 00.772 8(738? StepCcix bgi:/k“\ﬁ/ard] + survival-SVM 5 g 0.502 [
. 0.6 epCox[forward] + Super . . I survival - @? 0. O 0.5
0.6: 0.6 StepCox[forward] + sur‘\)/ivaI—SVM 069 | 0.7 0.697 | StepCox[forward] + survival-SVM 20 IDK:status ¢ 0.27 (0.12 t0 0.60) 8 2 02
05 ng + Iﬁagso 82 RSF + Lasso 4 g
0.5 + Ridge E RSF + Ridge X1p 19q codeletion | . ©
05 goxgoos{ + Iﬁadsso 82 goxBoost g Lasso R 1 * 1:54(0721013:30) % é
05 oxBoost + Ridge £ oxBoost + Ridge 0.00 ioVi 0.501
0.5 5?558 i g|_ 8g Ié?ssg g %S, GlioVis, p < 0.0001 MGMT promoter status +—¢——1 0.71 (0.41 to 1.24) % =
05 epCox[both] + Lasso i epCox[both] + Lasso 50 100 e 50 200 m
05 | StepCox|both] + Ridge 05 | StepGox|poth] + Ridge Os:Time 20 TERT «
05 StepCox[backward] + Lasso 05 StepCox[backward] + Lasso Number at risk | aa— 1.11(0.60 to 2.04) 0.500
82 g%epgox Packwgrd lf Ridge 82 g%epgox 1l{)ackward + Ridge . i
E epCox|forward] + Lasso 4 epCox|[forward] + Lasso i . .
02 Stepeo forward] TR o2 StegCoX torward] + Ridge ACG score High| 343 26 7 2 1 0 (,) ' |2 ‘I‘ 0.500
- ©c v ACG score Low | 214 99 36 8 5 1
Mean Cindex Mean Cindex
0 50 100 150 200 250

OS.Time
temozolomide. TCGA-GBMLGG & CGGA temozolomide.GlioVis





OEBPS/Images/logo.jpg
, frontiers | Frontiers in Immunology





OEBPS/Images/fimmu-15-1523034-g006.jpg
B_lineage_MCPcounter
B_cells_naive_CIBERSORT
B_cells_memory_CIBERSORT
B-cells_xCell
Class-switched_memory_B-cells_xCell
|Memory_B-cells_xCell
naive_Bcells_xCell
pro_k B—cells xXCell
B_cell_TIMER
B cells_ _quantiseq
CD4_Teells_EPIC
CDB Tcells EPIC
T_célls_MCPcounter
CDS_T_celIs_MCPcoumer
T_célls_CD8_CIBERSORT
T_cells_CD4_naive_CIBERSORT
T_cells_CD4_memory_resting_CIBERSORT
T_cells_CD4_memory_activated_CIBERSORT
| T_cells_follicular_helper_CIBERSORT
T_cells_regulatory_(Tregs)_CIBERSORT
T cells_gamma_delta_CIBERSORT
CD4+_memory_T—cells_xCell
CD4+_naive_T—cells_ xCell

_T-cells_xCell

Immune infiltration

CDB8+_naive_T-cells_xCell B_cells
|| CD8+_T-cells_xCell T_cells
CD8+_Tem_xCell Macrophages
NKT_xCell ~ HK golis
ng_cells_xCell Dendritic_cells
|| Th1_cells_xCell Monocytes
Th2_cells_xCell i
Tregs_xCell r:;::;zz:ls
T_cell_CD4_TIMER A
T_cell_CD8_TIMER Pericytes
T_cells_CD4_quantiseq Endothelial_cells
T_cells_CD8_quantiseq Astrocytes
Tregs_quantiseq
Macrophages_EPIC Mast_eells
Macrophages_M0_CIBERSORT Plasma_cells
Macrophages_M1_CIBERSORT Immunescore
| |Macrophages_M2_CIBERSORT
Macrophages_xCell
Macrophages_M1_xCell
I B | Macrophages_M2_xCell
Macrophage_TIMER
Macrophages_M1_quantiseq 15
Macrophages_M2_quantiseq
NKcells_EPIC 1
NK_cells_MCPcounter
| |NK cells_resting_CIBERSORT 05
NK_cells_activated_CIBERSORT
NK_cells_xCell 0
NK_cells_quantiseq
aDC_xCell -0.5
cDC_xCell
DC_XCell =1
iDC_xCell
pDC_ xCell -15

DC_TIMER
Myeloid_dendritic_cells_MCPcounter
itic_cells_resting_CIBERSORT
-_cells_activated_CIBERSORT
cells quantlseq
ieage_MCPcounter
Monocytes_CIBERSORT
Monocytes_xCell
Monocytes_quantiseq
| |Neutrophils_MCPcounter
Neutrophils_CIBERSORT
Neutrophils_xCell

Neutrophil_TIMER

mmune infitation FERET R [ —

Neutrophils_quantiseq
Fibroblasts_MCPcounter
Ftbroblasts_xCeII
CAFs_EPIC

| | Pericytes_xCell
Endothelial_EPIC
Endothelial_cells_MCPcounter
Endothelial_cells_xCell

|| mv_Endothelial_cells_xCell
Astrocyles_xCell
Mast_cells_resting_CIBERSORT
Mast_cells_activated_CIBERSORT
Mast_cells_xCell
Plasma_cells_CIBERSORT
Plasma_cells_xCell
ImmuneScore_xCell

MICB
MICA
HLA-DRB5
HLA-DRB1
HLA-DRA
HLA-DQB2
HLA-DQB1
HLA-DQA2
HLA-DQA1
HLA-DPB1
HLA-C

StromaScore_xCell
MicroenvironmentScore_xCell

Beells_EPIC B

100

75

50

T™B

25

1.00

Intratumor Heterogeneity

0.25

0.00

p=27e-06

Neoantigen

p=0.025

o
N
o

0.50

HLA-B
HLA-A
SELP
ITGB2
ICAM1
PDCD1LG2
BTN3A2
BTN3A1
SLAMF7
CD276
CD274
CD28
IL12A
ENTPD1
GZMA
IDO1

60

»
S

N
S

1.0

o
@

TumorPurity

o
@

p=0.00014

p<1.0e-16

TNFRSF9
TNFRSF4
TNFRSF18
TNFRSF14
TLR4
IL2RA
Icos
CD40
CcD27
TIGIT
PDCD1
LAG3
KIR2DL3
HAVCR2
EDNRB
CTLA4
BTLA
ADORA2A

Class

Il Antigen presentation
Cell adhision
Co-inhibitor
Co-stimulator
Ligand

er
AC-GIV Receptor

AC-GV

AC-Glll
Expression

AC-GIl 2
AC-GI I 1
0

Class -4
=2






OEBPS/Images/fimmu-15-1523034-g002.jpg
I | -‘S'r:de Ma%risx.Pancan Cancer type W ACHI 1 AC-Il W Ac-ll W AC-V [ AC-V
] Cell grlgln '1. - SE(?A g\sso R
Organ system 05 I EEgé B%% 100
| = Canoer type 0 I
b o0, &b i Eeg
I I | Gender iEEﬁA EEQ@& 75 c
I I I I il [ In I Female E%?—F ?&Dr ancer type 75
! ! , B Ve EKES B1HGh ©ACC  m MESO
| \HII \ i \(\ ! | | ] ] = ov
1 Al \ Subtype, BHER - PesC g
‘ uu IH I I wm | mAC- fwivi] =2 -
\ iy L Il _AC kSR § g
I, M" w | i '{ 1 RAT2B AGN £ o R S
il e \ il M‘uu il AClY Cell origin g 5 50
] I |m| w ‘1‘ { il | ELP3 AC-V B Fan g amous S H £
| 1= o
WH \ I I l Age B Pan-Adenocarcinoma & = g
i H | il 0-20 o
| ‘ I “ ‘I‘\ | KATZA lﬂ:‘ég Organ system l
i m I [ I 61-80 Pan-Gastrointestinal 25 25
[ | " I LR i 81-100 Pan-Gynecological ¢
I \ I I | L . Pan-Respiratory
1] [ I I ! Stage Pan-Urinary
[ I [ Stagel Grade
e | Ll AR R P. _ Stagell
CLOCK Stage Il Low grade 0
phiEL LT | I L | IséSS [\ Enghgrade 0 < o g S5 SP 3 3
! ! o] x FFE TP F S ES 9 o S
ACH  ACHI AGIV ACV v@,&&&oov%g &Q‘e@{g@\(\&bv@ & v‘?o Qy%(yi o,g»,@ S s
F G I ACRI I ACRI B AcRI B AcRv
L n Grade 100
LT (S::eallggrigin Matrix.Pancan Cancer type
Organ system ! = ACC. m MESO
Covearie B B
) ¥ Shor 1 beAS
——— |  COAD © REAR 75
i 1 [ . = ESCA  SARC
| I | 1 | ! I I HNSC = SKCM
! ' i I BRI & 8T
| | LRI L Y BRRE EidcT
‘ 1 H ‘\ | I fﬂm b dl 1} w SRE B R =
| I | | il TUAR I mLHC = THYM 9
! | I I i m [UAD  UCEC g 5
l ‘ I Ll IlII\ |I \ I IHII I Rl =|_usc IUCS s
1 UL il | | ‘ il AR UVM g
|| m # | I J CrEsEP Cell origin g
| Pan-Squamous o
i 1 I I J il | 1 { ” ‘ ‘h”l g;g?su Pan-Adenocarcinoma
Il | Bl 1l |} | I HDAC6
f \ | ‘I Ii\ [ ] \ I I H Wl sirTZ ﬂ_‘ég Organ system _ 25
| [ ] M I [, Lm0 bt I 1||| lﬂl _ [N HDAC11 81-80 Pan-Gastrointestinal
i | I I | 1[0 Wl sirT3 81-100 Pan-Gynecological
| ' | I Hi“ TN |||1| I HDAC5 Pan-Respiratory
o I II I ' I | I H 18 I ‘li I’ ; }\ I ‘ il %G_EQB Stage Pan-Urinary
el AR 1 T 'l ‘l\ |‘|| [IIIIW H\ *IIIIH u“ ‘ ELD'Zacm [gagel,  crade 0
A | 11 il n||| Vil E R ﬁ SIRTE .g{ggg,'\'} SR
! | | OFFELFOIFSLPLR LI LSO L& O QA FTDO LN
KAT2A P XTSI LELELSY S S O Py LT FS L LS
TrE LTSS CEEITTFTSE Qw?qoqe?g@g%vé- FEIL IS

Hazard Ratio v
Subgroup (95% Cl) — AC-RI - AC-RII — AC-RIII - AC-RIV
100{ - 1.00 "
o i ACC | —————— . 13.39(4.35t041.00) p<1.0e-16 p<1.0e-16 p<1.0e-16
1 BLCA BLCA « 1.02 (0.74to 1.39) 045
= BRCA o BRCA# 0.80 (0.47 to 1.34) - .
B &Ry z CESC # 1.36 (0.77 to 2.40) @ I 0.450
75 = COAD 3 CHOL -—— 2.04 (0.44 to 9.38) E . 0.25 : :
 fiNSe %’ COAD 0.74 (0.38 to 1.42) S | [
B 2 050 ESCA # 1.07 (0.66 to 1.73) [ 0.425
B KIRC B HNSC & 1.37 (1.05 to 1.79) < 040
= B KiRp € KIRC 1——t 5.71(1.82t0 17.95) 3 0.20
=2 HE S KIRP j—o— 7.23 (1.71 to 30.69) = 0.400
= o ILUSC D 5 LIHC ——— 4.20 (1.68 to 10.49) £ I
= .{\)"550 LUAD & 1.57 (1.15to 2.14) i}
2 PAAD LUSC « 0.91(0.69to 1.20) 035 0.15 0375
S PCPG p<0.0001, 0S, TCGA MESO o 2.31(1.17 to 4.56) - . : T
o PRAR 000 R ov 4 0.71(0.52to 0.98) " |
I L b :
» £ SEG 5 00 E 0 20 g S DR -+ 1 v « orgl ossol
| S Ime, READ- 024 (0.10to 0.56) entinostat CTRP panobinostat. CTRP vorinostat. CTRP
B THCA Number at risk SARC t+—ri 212(0.52to 8.67)
=L@E’g P SKCM 0.96 (0.58 to 1.58)
- Ucs el 78 5 9 2 STAD 0.73 (0.53to 1.00)
= UVM Acaill e 198 18 3 : UCEC s 1.81(1.16to 2.83)
0 AGRWV | 5552 : & ucs - 1.36 (0.58 to 3.19)
0 3000 6000 9000 12000 T T T T T
ACRI AC-RII ACRIlI AC-RIV Time 1510 20 30 40

<-0S: AC-RIV vs. non AC-RIV->

— AC-RIl

- AC-RI — AC-RIl — AC-RIII ‘ AC-RIV

S w W WA P G WD R W N SN S N SRR BN G SR T sl AR SR P W 6B 4 TN e Ac N NA
== - —
] - ___—=
5 . " e “E/| =
05 i o . . I ;:... . : 5 ACRIl —/
) f j 5 = A 2 IEl
g g wes
200 £
Z E o
a2 ° AC = =
. i H \ i
-05 ! ! YN HIR . . E b
H ! : . !
' . 2 3
& & O 5 3 ; % K : N o =
, P 0Ll FL o L Q ¢ & O L 9N o & &8 © % ’ AC \ B |
S SIS ST SIS E #5505 2%
/\‘?‘g}é&@g@@\(’ 45}' Q‘.‘f? (§o .LOO Q‘?,} A\Yéo% P c,réze? P @‘00 ./{)‘7‘37,\0(’@(9V oéo » é\@‘{;ﬁz o&z{,\@ K‘g\oe oéo o — -~ R
¢{<’0§ o c/sz‘ee/ég [od Q&’V\é’;& §//\6\\ _;\é‘/ & O ¥ ol ‘93 \ovV/ d\‘ & SQ/ &’ Y\p\ & Acetylation subtype Immune subtype MFP ms!
FESTLS  FoF e o TE S &OF
NI P VF T Ey S L JF
¥ ) &7 QTR K QO 7 &
& &S F& “ oY
L & & & o7 ¥
Q7 & sé\/ <& &





