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1 Introduction

Alzheimer’s disease (AD) holds global significance as a neurodegenerative disorder

with a complex etiology still partly understood. Recent advancements in genetic and

molecular research have underscored the intricate interplay of cellular pathways and gene

networks, alongside feedforward and feedback regulatory mechanisms, which may

differentially impact various pathogenic phenotypes and cellular stages of AD (1).

Besides the strategies of neurotransmitter modulator interference and amyloid beta

peptide (Ab)-targeted plaque clearance, neuroinflammatory inhibitors have been widely

explored as potential therapeutic approaches for AD, targeting toll-like receptors (TLRs),

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), NOD-, LRR- and
pyrin domain-containing protein 3 (NLRP3) inflammasome, among others (2–5). Notably,

microglia play a pivotal role in clearing Ab and damaged neuronal cells, crucial for

maintaining the balance between pro- and anti-inflammatory processes during

neuroinflammation. Their close association with tau phosphorylation, synapse loss, and

cognitive decline makes these pathological processes central to AD research (6–11).

MicroRNA (miRNA) modulation of neuroinflammation emerges as a critical regulator

in maintaining microglial homeostasis by altering immunoinflammatory-related gene and

protein expression. Dysregulation of this process can induce a variety of AD-associated

pathological processes, including Ab metabolism (12, 13), tau phosphorylation (14, 15),

neuronal damage (16, 17), and synapse dysfunction (18, 19). The full scope of miRNA

mechanisms in regulating neuroinflammation and related disorders remains under

exploration. Our research highlights the crucial influence of a newly identified miRNA,

miR-25802, on pathological neuroinflammation in AD (20–23). This discussion delves into

the role of miR-25802 in AD pathology and its potential as a biomarker and target for

future miRNA-based AD therapies (Figure 1).
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2 The role of miR-25802 in microglial
phenotypic transformation in AD

The novel base sequences miR-25802 were identified in the AD

mouse brain utilizing high-throughput sequencing (20–23). miR-

25802 expression is conserved across species and relies on the

canonical miRNA enzymes Dicer and Drosha for biogenesis.

Notably, significant upregulation of miR-25802 in the plasma of

AD patients hints at potential diagnostic utility, and its

upregulation in brain regions associated with learning and

memory across various AD mouse models suggests a crucial role

in AD pathology. The peak upregulation of miR-25802 occurs in

AD models from 5 to 7 months, which aligns with the early

microglial activation in AD (24).

Subsequent study addresses the functional implications of miR-

25802 in AD-related neuroinflammation. First, miR-25802

promotes the activation of pro-inflammatory microglial cells,

leading to increased release of pro-inflammatory cytokines such

as tumor necrosis factor-alpha (TNF-a), interleukin-6 (IL-6),

inducible nitric oxide synthase (iNOS), and interleukin-1-beta

(IL-1b), while the inhibition of miR-25802 shifts microglia

toward an anti-inflammatory phenotype, characterized by M2
Frontiers in Immunology 02
markers such as arginase 1 (Arg1), macrophage mannose receptor

1(CD206), interleukin 4 (IL-4), and transforming growth factor

beta (TGF-b), ultimately alleviating the inflammatory response.

Second, in vivo functional evidence underscored the significant

impact of modulating miR-25802 expression on AD pathology.

Overexpression of miR-25802 via adeno-associated virus type 9

(AAV9) in 5×familial AD (5×FAD) mice exacerbated spatial

learning and memory abilities, Ab deposition, and microglial

activation. Conversely, inhibiting miR-25802 improved cognitive

impairment, reduced Ab deposition, and attenuated microglial

activation in AD mice. These effects of miR-25802 depend on its

regulation of Kruppel-like factor 4 (KLF4), a direct target of miR-

25802 involved in microglial M1/M2 phenotype conversion and

neuroinflammatory responses.
3 miR-25802-mediated inflammatory
signaling pathways in AD

Using bioinformatics, a dual-luciferase reporter assay, gain- and

loss-of-function experiments, quantitative real-time polymerase

chain reaction (qRT-PCR), and Western blot analyses, KLF4 was
FIGURE 1

Role of miR-25802 in AD neuroinflammatory pathology. AD, Alzheimer’s disease; Btk, Bruton tyrosine kinase; CBP/P300, CREB-binding protein/
p300; IKKa, IkB kinase a; IKKb, IkB kinase b; IKKg, IkB kinase g; IL-1b, Interleukin-1b; IL-6, Interleukin-6; iNOS, Inducible nitric oxide synthase; IkB,
Inhibitor of nuclear factor kappa B; KLF4, Kruppel-like factor 4; MCPIP, Monocyte chemotactic protein-induced protein; TNFa, Tumor necrosis
factor-alpha.
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identified as a mediator of the effect of miR-25802 on microglia-

mediated neuroinflammation in AD, both in vitro and in vivo.

Overexpression or inhibition of miR-25802 post-transcriptionally

regulated KLF4 expression. Consistently, KLF4 overexpression or

silencing in 5×FAD mouse brain reversed the pathological

characteristics associated with miR-25802 upregulation or

inhibition, including cognitive impairment, Ab deposition,

microglial activation, and inflammatory reactions. KLF4 is a

multifunctional transcription factor known to regulate

inflammation in the peripheral tissue (25–27). Reports indicate

that KLF4 suppresses the polarization of pro-inflammatory M1

macrophages while promoting anti-inflammatory M2 polarization

(25, 28, 29). In line with these findings, silencing or overexpression

of KLF4 had enhanced or inhibitory effects on the NF-kB cascades.

By inhibiting KLF4 in microglia, miR-25802 encouraged microglial

differentiation into the pro-inflammatory M1 phenotype, leading to

excessive activation of the NF-kB signaling pathway and

exacerbating the inflammatory response (20).

NF-kB plays a central role in microglial activation and

inflammatory factor release in the brain of AD patients, mediating

the downstream neuroinflammatory response triggered by Ab
deposition (30–32). Interestingly, miR-25802 has a genetic affinity

with let-7a-2-3p, a member of the let-7 family identified with

protective effects in immunoinflammatory disorders like stroke,

AD, and multiple sclerosis. Upregulation of let-7 in macrophages

promotes an anti-inflammatory phenotype by reducing expression of

the transcription factor CCAAT/enhancer binding protein delta (C/

ebp-d) (33). Other inflammation-related targets of let-7 include IL6

and toll-like receptor 4 (Tlr4) (34, 35). NF-kB inhibits let-7-mediated

anti-inflammatory actions via inflammatory feedforward loops

involving RNA-binding protein Lin28 or IL-6 signaling (36, 37).

Combining gene sequence potential analysis with experimental

evidence, the involvement of miR-25802/KLF4/NF-kB signaling in

microglia-mediated neuroinflammation in AD has been established.
4 Clinical transformation prospects
and strategies based on miR-
25802 modulation

Recent studies have substantiated significant dysregulation of

miRNA expression in the body fluids of AD patients (38, 39), which

can be predictive of mild cognitive impairment (40), indicating its

potential as a promising biomarker for early AD diagnosis. Notably,

the emergence of biological miRNA sensing platforms has opened a

new avenue for early AD detection, enabling real-time, sensitive

detection of miRNAs in body fluids through electrochemical,

fluorescence, and surface plasmon resonance biosensing

technologies (41, 42). Our previous studies have revealed

remarkable downregulations of miR-200a-3p (43) and miR-148a-

3p (17) in the blood of AD patients, both playing protective roles in

AD. As potential biomarkers, miR-200a-3p and miR-148a-3p have

been successfully incorporated into biosensors to facilitate early

detection of AD (44–46). In vivo models hypothesize the abnormal
Frontiers in Immunology 03
upregulation of miR-25802 contributes to neuroinflammation and

cognitive deficits in the early stages of AD (20–23). Receiver

operation curve analysis in the plasma of AD patients shows that

miR-25802 expression levels have high diagnostic efficacy for

cognitive dysfunction, suggesting its potential as an AD

biomarker. Given the strong correlation between miR-25802 and

AD progression, the early development of miR-25802-based

diagnostic devices for AD is desirable.

Regarding miRNA-based treatment, preclinical studies have

achieved precise gene expression regulation and cognitive

improvement through the introduction of exogenous miRNAs

using various miRNA delivery approaches, including viral vectors

(12), liposomes (47), nanoparticles (48, 49), and exosomes (50).

Among these, viral delivery systems, particularly due to their high

efficiency in facilitating cellular RNA uptake, have attracted

significant attention (51). For example, adeno-associated virus

(AAV) type 5 serves as a delivery vector for AMT-130, a miRNA-

based therapy currently in phase 2 clinical trials targeting

Huntington’s disease (52, 53). Additionally, recombinant AAV9, a

highly effective platform for central nervous system delivery, has

been approved by the FDA for gene therapy in spinal muscular

atrophy (54).

Importantly, our findings demonstrate that lateral ventricular

injection of AAV9-encapsulated miR-25802 sponges in 5×FAD

mice improved learning and memory abilities (20–23).

Conversely, AAV9-coated KLF4 shRNA functioned to suppress

the enhancement of learning and memory induced by miR-25802

sponges. This suggests that regulating miR-25802 expression or

targeting its associated signaling pathways through AAV9 delivery

might offer novel therapeutic approaches for AD, potentially

counteracting disease progression and ameliorating cognitive

deficits. Besides, the primary challenge in AD treatment remains

the development of ncRNA-based therapies capable of effectively

crossing the blood-brain barrier (55). Non-viral vectors have been

investigated for miRNA-based treatment, particularly by packaging

negatively charged miRNAs into liposome nanoparticles. This

approach not only protects miRNAs from degradation by

endogenous nucleases but also enables cell type-specific targeted

delivery (56–58), presenting new opportunities for the development

of suitable brain delivery systems for miR-25802.
5 Discussion

Microglia-driven neuroinflammation is implicated in both the

initiation and progression of AD. Microglia activation serves as a

defense mechanism for the brain against detrimental pathogens.

However, this activation also incites inflammatory reactions that

exacerbate the brain injury. Intriguingly, studies have predicted that

more than 50% of mRNAs host miRNAs, allowing them to regulate

an array of biological processes, encompassing oxidative stress,

inflammation, and apoptosis (59). Specific miRNAs have emerged

as potential mediators of neuroinflammation. For instance, miR-

155 and miR-223 bind to TLRs to modulate the inflammatory

response and influence the production of inflammatory mediators
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by sponging off suppressors of cytokine signaling in transgenic AD

mouse models (60–62). Additionally, miRNAs like miR-146a, miR-

873, and miR-34a are involved in neuropathology and

neuroinflammation, regulated by NF-ĸB-associated signaling

(63–65). Our research indicates that miR-25802, highly expressed

in the brain and microglia across various AD models, is a functional

RNA molecule devoid of coding capabilities but capable of regulating

KLF4 expression and function through NF-kB signaling in

neuroinflammation. The let-7 family, consisting of 8–12 members,

has been reported to be dysregulated in AD compared to normal

controls (66). miR-25802 exhibits high sequence similarity to the let-7

family, whose meta-analysis as biomarkers for early AD detection

aligns with our identification of miR-25802 as an inflamma-miRNA

based on microglial regulation in AD pathology.

miRNAs may emerge as therapeutic interventions for AD in the

future. Currently, ncRNA-based therapies have been developed for

complex, intractable diseases such as cardiovascular diseases and

cancers (67, 68). In our prior studies, miR-25802 mimics, inhibitors,

and sponges were designed based on functional modifications or

complementary sequences. miR-25802 mimics, derived from

exogenous synthesis and composed of small double-stranded

RNA molecules, exacerbated microglial activation via aberrant

regulation of the KLF4/NF-kB pathways both in vitro and in vivo.

Conversely, miR-25802 inhibitors and sponges shielded anti-

inflammatory microglial conversion by restoring KLF4/NF-kB
inflammatory signaling in vitro and in vivo, respectively.

Furthermore, intracranial injection of these mimics of miR-25802

into wild-type or 5×FAD mice resulted in no significant systemic

discomfort or exercise capacity alterations during the one-month

observation period. These findings suggest the miR-25802/KLF4/

NF-kB pathway as a viable therapeutic target for AD.
6 Conclusions

Our opinion delves into the biological function, underlying

mechanisms, and potential clinical application of miR-25802, an

innovative non-coding RNA sequence, within the context of AD.

miR-25802 orchestrates the KLF4/NF-kB pathway in microglia-

mediated neuroinflammation, facilitating cognitive impairments

and Ab toxicity, highlighting the potential of targeting miR-25802

and its regulatory network as an emerging frontier in AD treatment.

Future research on miR-25802 will be further advanced through

potential interdisciplinary collaborations, including neuroscience,

bioengineering, and clinical medicine. Initially, identifying the

drivers of miR-25802 upregulation in AD and other specific

mRNA targets using tissue-specific knockout technologies will be

crucial. Additionally, clinical research necessitates exploring the

diagnostic and differential diagnostic implications of the miR-

25802/KLF4 axis across a broader patient cohort. Furthermore,

most miRNA-centric diagnostic tools and therapeutic interventions

for AD are still in their initial stage. Regarding miR-25802,

biological macromolecular inhibitors, employing oligonucleotide

analogues as scaffolds, may afford benefits such as high selectivity
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and efficiency; however, they also pose challenges like

immunogenicity and multiple conformations. Alternatively, the

development of small molecule inhibitors targeting miR-25802

and its signaling pathway boasts its own strengths, including

robust cell membrane penetration, resistance to intracellular

enzymatic degradation, and reduced synthesis costs. In summary,

achieving a profound understanding of the mechanism of miR-

25802 in AD, coupled with the creation of more effective delivery

systems or targeted small molecule drugs, will pave the way for

translating miR-25802 research from the laboratory to

clinical practice.
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