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Allogeneic hematopoietic stem cell transplantation (allo-HSCT) constitutes a

critical therapeutic approach for patients with malignant hematological

disorders. Nevertheless, acute graft-versus-host disease (GVHD), one of the

most prevalent complications associated with HSCT, remains a leading

contributor to non-relapse mortality. In recent years, there has been an

increasing focus on the interplay between chemokines and their receptors in the

context of acute GVHD. Chemokines exert substantial effects across various

pathological conditions, including autoimmune diseases, inflammatory

processes, tumorigenesis, and metastatic dissemination. In this review, we aim

to elucidate the role of chemokines in the pathogenesis of acuteGVHD and further

understand their potential as diagnostic biomarkers. We also present both

preclinical and clinical insights into the application of chemokines in preventing

and treating acute GVHD. The objective of this review is to offer novel perspectives

on the clinical diagnosis and management strategies for acute GVHD.
KEYWORDS
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1 Introduction

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a cornerstone of

therapy for patients with malignant hematological disorders that is intended to achieve

enduring remission (1). However, allo-HSCT is associated with several complications,

including most notably graft-versus-host disease (GVHD). Despite continuous

advancements in pharmaceutical formulations and preventive strategies intended to

alleviate acute GVHD, grade II-IV acute GVHD following transplantation is observed in

40-50% of patients and is associated with poor long-term prognosis and reduced survival

(2, 3). The underlying discordance in tissue compatibility between donor and recipient

triggers donor T cells to misidentify host tissues as foreign, thereby precipitating the onset

of acute GVHD (4). The intricate pathophysiology of acute GVHD unfolds in three

sequential phases: initiation phase, T cell activation, and effector phase (3).

Chemokines, which are small molecules of around 8-14 kDa secreted by various cell

types, serve as pivotal orchestrators in numerous biological processes. They are

systematically categorized into four subfamilies—: CCL, CXCL, XCL, and CX3CL—
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based on their conserved cysteine residues (5). The human

spectrum encompasses approximately 50 chemokines, which

facilitate precise cellular migration by recognizing seven

transmembrane chemokine receptors (CCR, CXCR, XCR, and

CX3CR) linked to G proteins on the cell surface (6). These

versatile molecules exert profound influences across autoimmune

conditions, inflammatory cascades, tumorigenesis, and metastatic

dissemination (7–10). By binding to specific receptors on immune

cells, chemokines are directed to sites of inflammation, where they

participate in the activation, differentiation, and effector functions

of immune cells (11). Given their central position in immune

regulation, chemokines have emerged as important players in the

development and progression of acute GVHD. In the context of

acute GVHD, activated allogeneic donor CD4+ and CD8+ T cells are

adeptly guided to their targets by chemokines, ultimately eliciting

tissue damage via apoptosis and necrosis (12, 13).

In this review, we provide insight into the mechanisms

underpinning chemokine modulation of the immune response

during acute GVHD, as well as a comprehensive description of

the pivotal roles of chemokines in the pathophysiology of acute

GVHD and an overview of novel strategies that are currently

under investigation.
2 The pathophysiology of acute GVHD

2.1 Initiation phase

To achieve optimal eradication of the recipient’s hematopoietic

system, tumor cells, and immune components, a high-intensity,

myeloablative conditioning regimen is the preferred approach for

most patients. The administration of high-dose, myeloablative total

body irradiation (TBI) and cytotoxic agents renders patients highly

vulnerable to disturbances by the gut microbiota, resulting in

upregulated expression of cytokines such as tumor necrosis

factor-a (TNF-a), interleukin-1b (IL-1b), and interleukin-6 (IL-

6), which can induce inflammation and tissue damage (14–16).

Pathogen-associated molecular patterns (PAMPs), consisting of

structurally conserved molecular features prevalent on the

surfaces of diverse pathogenic microorganisms, and damage-

associated molecular patterns (DAMPs), which are endogenous

molecules originating from cellular damage within the host, are two

classes of molecules that play pivotal roles in the initiation phase

(16, 17). Conditioning or infection-induced tissue injury facilitate

the translocation of PAMPs into the bloodstream or lymphatic

tissues, simultaneously triggering the release of DAMPs. Upon

engagement with pattern recognition receptors (PRRs), these

small molecules promote the activation of allogeneic T cells (17).

Notably, PAMPs such as lipopolysaccharide (LPS) and nucleotide-

binding oligomerization domain containing 2 (NOD2) have been

implicated in the pathogenesis of acute GVHD (18, 19). PAMPs

derived from the gut microbiota recognize and interact with toll-

like receptors (TLRs), thereby stimulating myeloid cells and

epithelial cells to secrete pro-inflammatory cytokines,

exacerbating acute GVHD (20). Additionally, DAMPs, including
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uric acid, adenosine triphosphate (ATP), and interleukin-33 (IL-

33), released from damaged tissues such as the intestinal epithelium,

activate T cells, and antigen-presenting cells (APCs), ultimately

culminating in an inflammatory responses (21).
2.2 T cell activation

Chemokines not only facilitate T-cell migration but also

potentially enhance their infiltration and activation within target

organs. Once activated by PAMPs and DAMPs, both classic APCs

such as B cells, dendritic cells (DCs), and macrophages, as well as

non-classic APCs such as basophils and mast cells, promote the

activation of donor T cells (22). These APCs process and present

both major and minor human leukocyte antigens (HLA), triggering

the initiation, activation, and proliferation of donor T cells.

Subsequently, activated T cells release cytokines, including

interleukin-2 (IL-2), interleukin-15 (IL-15), and interferon-g
(IFN- g) (23). Guided by chemokines, activated T cells traverse

the vascular endothelium and migrate towards target organs. These

chemokines promote not only T cell migration but also potentially

enhance their infiltration and activation within target organs (24).
2.3 Effector phase

During the effector phase, a positive feedback loop mechanism,

driven by the continuous recruitment of immune cells, significantly

aggravates tissue damage (Figure 1). Cytokines play a pivotal role at

this point, orchestrating the differentiation of CD4+ and CD8+ T

cells into cytotoxic T cell (Tc cells) subsets (25). These Tc cells

induce apoptosis in target cells through distinct pathways: the Fas/

Fas ligand signaling cascade and the perforin-granzyme-mediated

mechanism, thereby fulfilling their immunological effector

functions (26, 27). Recent studies have revealed that by

meticulously modulating the expression and function of

chemokines, it is possible to prevent the targeted migration and

excessive recruitment of T cells towards affected tissues (28).

Additionally, this modulation can fine-tune the differentiation

balance among T-cell subsets, ultimately mitigating the severity of

acute GVHD. This approach provides a promising avenue for the

development of novel therapeutic strategies against acute GVHD.
3 The roles of chemokines in
acute GVHD

The coordinated movement of T cells throughout the body in

response to specific stimuli is a fundamental factor in the immune

response. This process is intricately regulated by chemokines, which

control the directional movement of immune cells. Chemokine-

mediated T-cell trafficking involves a complex interplay between

adhesion molecules, chemokines, and their receptors. The process

of T-cell trafficking commences with the recognition of a

chemokine gradient by chemokine receptors expressed on the
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surface of T cells. Upon binding to their respective receptors,

chemokines activate integrins, which are adhesion molecules that

mediate cell-cell and cell-matrix interactions. This activation results

in increased adhesion between T cells and endothelial cells lining

the blood vessels, enabling T cells to extravasate into the

surrounding tissues (29). For T-cell trafficking, CC and CXC

chemokines are particularly important, with CC chemokines

primarily involved in the recruitment of monocytes, eosinophils,

basophils, and T-helper (Th) cells, while CXC chemokines attract

neutrophils, some monocytes, and Tc cells (7). In this section, we

will explore the mechanisms underlying chemokine-mediated T-

cell trafficking, highlighting the key players, interactions, and

signaling pathways involved.
3.1 CCR1

In xenograft mouse model, CCR1 mRNA was upregulated in

the liver and intestines suggesting that CCR1 may play a vital role in

the pathogenesis of acute GVHD (30). Further studies showed that

recipient mice receiving CCR1 −/− donor cells exhibited significantly

reduced severity of acute GVHD compared to the wild type (WT)
Frontiers in Immunology 03
donor cell group (30). Importantly, this improvement was

accompanied by a significant decrease in the infiltration of

mononuclear cells and neutrophils in the intestine, further

validating the critical role of CCR1 in regulating the migration of

immune cells to inflammatory sites. Additionally, CCL5, as one of

the main ligands of CCR1, plays an indispensable role in the

recruitment of antigen-specific activated Th cells and Tc cells to

inflammatory tissues, thereby mediating the process (31, 32).
3.2 CCR2

Monocyte chemoattractant protein-1 (MCP-1, also known as

CCL2), plays a crucial role in the chemotaxis of monocytes and T

cells (33, 34). In the acute GVHD mouse model, activated CD8+ T

cells highly express CCR2 and migrate under the guidance of CCL2

(35). This phenomenon is absent in CCR2-deficient mice,

accompanied by a significant reduction in the infiltration of CD8+

T cells into the liver and intestines and a decrease in the severity of

tissue damage. Additionally, CCL2/CCR2 also mediates the

migration of activated macrophages to the mucosal surface, closely

related to the tissue destruction observed in oral acute GVHD (36).
FIGURE 1

Role of chemokines in the development of acute graft-versus-host-disease. The pathophysiology of acute graft-versus-host disease (GVHD) is
characterized by three sequential stages. In the initiation phase, tissue damage resulting from conditioning regimens such as chemotherapy or
radiation disrupts the integrity of intestinal epithelium, leading to the release of pathogen-associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs). This is followed by the activation of donor T cells, wherein naïve T cells differentiate into various subtypes
and undergo clonal expansion. During the effector phase, activated T cells migrate to target organs through interactions between surface receptors
and chemokines, culminating in tissue injury.
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3.3 CCR4

A comparison of skin tissue biopsies from patients with acute

GVHD vs those without revealed a significant increase in the

proportion of CD70+ subgroups within CD8+ T cells, surpassing

the increase observed in CD70+ subgroups within CD4+ T cells (37).

This phenomenon may be attributed to the expression levels of

chemokine receptors, particularly CCR4 and CCR6, on CD70+ T

cells, which are significantly higher in acute GVHD patient tissues

than in peripheral blood, with particularly pronounced

upregulation of CCR4 (37). As a major chemokine receptor

expressed on T cells, CCR4 specifically binds to the CC

chemokine ligands CCL17 and CCL22, warranting further

explorat ion of i ts role in GVHD pathogenesis (38) .

Mogamulizumab, a humanized anti-CCR4 monoclonal antibody,

has been approved for the treatment of adult T-cell leukemia/

lymphoma (ATLL) (39). However, studies have indicated a

remarkable increase in the risk of acute GVHD and non-relapse

mortality in patients treated with Mogamulizumab prior to HSCT

(40, 41). This may be related to the activity of Mogamulizumab

depleting Tregs that express high levels of CCR4 (42, 43). For ATLL

patients undergoing HSCT, the use of Mogamulizumab may pose

additional risks for the development of acute GVHD.
3.4 CCR5

CCR5 can interact with a plethora of ligands, including CCL3,

CCL4, and CCL5. Upon binding to its ligand, CCR5 orchestrates

the migration and functional activities of lymphocytes, monocytes,

and macrophages (44). During the inflammatory process, the

binding of CCR5 and its ligand mediates the recruitment of

effector molecules to the target organ, thereby regulating the

ensuing activation that ultimately culminates in tissue damage.

Given the extensive range of cell types that express CCR5, this

chemokine is implicated in the pathophysiological mechanisms of

numerous diseases, spanning energy metabolism, cellular

senescence, apoptosis, infection, immunity, inflammation,

angiogenesis, and tumorigenesis (45–51). Pathological analysis of

patients with skin acute GVHD revealed high expression of CCR5

in CD4+ and CD8+ T cells (52). The levels of CCL3 secreted by bile

duct epithelial cells and endothelial cells were significantly increased

in the acute GVHD mouse model, which recruited CCR5+CD8+ T

cells to the liver, leading to significant tissue damage (53).

Moreover, CCR5 is crucial for the migration of Treg and the

recruitment of CD8+ T cells to Peyer’s patches in the intestine,

and the blockade of CCR5 not only reduces the number of donor-

derived T cells and the ratio of Th1/Th17 subpopulations but also

inhibits the maturation of DCs (28, 54, 55).

The extent of T cell proliferation is intricately linked to the

phosphorylation levels of AKT, 4E-BP1, and RPS6. PI3K inhibitors

target the PI3K/AKT/mTOR pathway to suppress T cell activation

and mitigate acute GVHD organ damage (56). In a murine model of

acute GVHD, blockade of PI3Kg resulted in a reduction in the

expression of pro-inflammatory chemokines, namely CCL3 and
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CCL5. Moreover, it attenuated leukocyte adhesion in the mesenteric

microcirculation (57). PI3Kg likely contributes to the pathogenesis

of acute GVHD by regulating chemokine expression. In vitro

experiments demonstrated that angiogenesis primarily initiates

tissue inflammation prior to leukocyte infiltration in the acute

GVHD (58). Vascular endothelial growth factor A (VEGF-A),

which promotes endothelial cell migration, is associated with

CCL5/CCR5 (59). Elevated levels of TNF-a and IFN-g activate

CCL5/CCR5, whereas p65 nuclear translocation promotes NF-kB
signal transduction (60). The NF-kB signaling pathway plays a

pivotal role in the alloresponse and represents a promising target for

preventing acute GVHD (61). Additionally, CCL5 binding to the

CCR5 stimulates the mTOR pathway, thereby promoting cellular

growth. Consequently, the expression of cyclin D1 and c-Myc

rapidly increases, activating the JAK/STAT pathway (62). The

Ruxolitinib, a JAK1/JAK2 inhibitor, has been approved for the

treatment of steroid-resistant acute GVHD and has demonstrated

favorable therapeutic effects (63).

Notch signaling is implicated in the pathophysiology of acute

GVHD, as it regulates T-cell activation and differentiation (64).

Blocking the delta-like Notch ligand DLL4 protects against

gastrointestinal GVHD and improves survival in nonhuman

primate models (65). Notch signaling upregulates a4b7 integrin

in T cells post-allo-HSCT, affecting the ratio of conventional T cells

to Treg cells (65). Selective CCR5 antagonists exhibit potential

neuroprotective effects in multiple sclerosis by downregulating NF-

kB/Notch signaling (66). Notch signaling plays a vital role in

regulating CCR5 and CCL5 expression and exerting biological

effects in T cell acute lymphoblastic leukemia and breast cancer,

respectively (67, 68). The onset of acute GVHD is delayed following

the administration of MEK inhibitors, which decrease cytokine

production by activated T cells (69). The phosphorylation of ERK1/

2 in CD4+ T cells at day +30 is associated with acute GVHD

patients, and its reduction corresponds to the alleviation of acute

GVHD symptoms (70).

Activation of MAPK pathway drives significant increases in

CCL5 secretion by tumor cells, thereby impacting the abundance of

Treg cells (71). Conversely, the CCL5/CCR5 axis can also activate

the Ras/MAPK pathways, leading to increased expression of

proteins such as p38 and p-ERK1/2 (71).

Throughout the progression of acute GVHD, the CCR5 receptor

binds to its respective chemokine and triggers relevant signaling

pathways as showed in Figure 2. Some of these pathways enhance

the secretion of pro-inflammatory chemokines, exacerbating the

inflammatory response.
3.5 CCR6 and CCR7

CCR6/CCL20 assumes a crucial role in enrolling allogeneic

reactive CD4+ T cells to target tissues, while CCR7, as a receptor for

homeostatic chemokines, together with its ligands CCL19 and CCL21,

maintains the efficient homing of T cell subpopulations to lymph

nodes (72, 73). Deficiency in CCR7 expression can limit the expansion

of Treg cells, thereby promoting the occurrence of acute GVHD (74).
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3.6 CCR8

Recipient mice that received donor cells with CCR8 knocked

out demonstrated a significant reduction in Treg cells in mesenteric

lymph nodes and Peyer’s patches at day +10 post-transplantation

compared to mice receiving WT donor cells (75). This mechanism

may be related to the augmented apoptosis of Treg cells subsequent

to CCR8 blockade, ultimately resulting in lethal acute GVHD in

mice (75).
3.7 CCR9

Furthermore, CCR9 and its ligand CCL25 are highly expressed

in the intestinal endothelial venules and Peyer’s patches and play a

key role in the pathogenesis of acute GVHD (76, 77). The protective

role of Treg cells in acute GVHD is well-known (78, 79), and donor

Treg cells with CCR9 overexpressing can further alleviate the

severity of acute GVHD and prolong the survival of mice (80).

This mechanism may be associated with the promotion of Treg cells

migration and accumulation in the intestine during the early stages

of transplantation due to CCR9 overexpression, thereby inhibiting

the secretion of inflammatory cytokines (such as TNF-a and IFN-g)
by CD4+ and CD8+ T cells and reducing intestinal tissue

damage (80).
3.8 CCR10

In pediatric patients with skin acute GVHD, the proportion of

CCR10+ CD4+ subgroups in peripheral blood T cells is significantly

higher than in non-GVHD patients, and this subgroup vanishes

after the resolution of acute GVHD (81). Additionally, skin tissue
Frontiers in Immunology 05
biopsies have revealed a close correlation between the infiltration of

CCR10+ CD4+ T cells and the increased expression of the CCR10

ligand CCL27 (81). These findings suggest that the interaction

between CCL27 and CCR10 may participate in the recruitment of

CD4+ T cells to the skin, thereby promoting the onset of

acute GVHD.
3.9 CXCR1 and CXCR2

CXCL8, also known as interleukin-8 (IL-8), represents a pivotal

molecule that triggers and activates neutrophils in response to tissue

damage or infection (82). Upon binding to its receptors-CXCR1

and CXCR2, CXCL8 governs the activation and chemotaxis of

neutrophils (83). Additionally, CXCL8 intensifies cellular apoptosis

and oxidative stress via the activation of the NF-kB pathway,

thereby propagating the development of inflammation (84, 85).
3.10 CXCR3

The IFNg-IFNgR signaling pathway participates in regulating

the directional migration of alloreactive T cells to target organs by

upregulating the expression of the key chemokine receptor

CXCR3 (86). Studies have shown that CXCR3 knockout in

murine models significantly alters the migration pattern of T

cells, causing them to preferentially migrate to the spleen rather

than the gastrointestinal tract. This alteration markedly reduces the

incidence of acute GVHD while preserving the necessary graft-

versus-host response (GVL) (86). CXCL10, as a specific ligand for

CXCR3, is one of the important biomarkers for acute GVHD (87,

88). TNF-a and IFN-g secreted by Th1 cells promote the release of

CXCL10 from parenchymal cells, acting on Th1 cells and forming a
FIGURE 2

The CCR5 in different pathways associated with acute graft-versus-host disease.
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positive feedback loop, thereby exacerbating the activation of Th1

cells and tissue damage (89, 90).
3.11 CXCR4

Cytotoxic gdT cells migrate to the target organs of acute GVHD

through CXCR4 mediation (91). In addition, CD4+ T cells, rather

than CD8+ T cells, also depend on the migration of the CXCL12/

CXCR4 axis to target organs in acute GVHDmice (91). Plerixafor, a

small molecule inhibitor of CXCR4, has exhibited good efficacy in

mobilizing hematopoietic stem cells from donors, accompanied by

a lower incidence of acute GVHD and cytomegalovirus (CMV)

viremia (92, 93). The number of CD56bright regulatory NK cells

(NKregs) in peripheral blood mobilized after plerixafor is

significantly higher than that mobilized with granulocyte colony-

stimulating factor (G-CSF) (94). This may be one of the

mechanisms by which plerixafor exerts a protective effect in

acute GVHD.
3.12 XCR1 and CX3CR1

XCL1 and its receptor XCR1 are involved in the pathological

processes of various sterile inflammatory diseases (95–97). Activated

CD8+ T cells and NK cells are the main sources of XCL1 (98). After

binding to XCR1 on the surface of DC cells, XCL1 promotes the

secretion of IL-12, thereby driving Th cells to differentiate towards

Th1 and Th17 subsets (99). The high expression of CX3CR1 on the

surface of CD8+T cells and the overexpression of its ligand CX3CL1

in the intestinal mucosa of patients with acute GVHD suggest the

critical role of the CX3CR1/CX3CL1 axis in intestinal infiltration and

damage during acute GVHD (100). Blocking CX3CL1 can effectively

diminish the infiltration of alloreactive CD8+T cells in the intestine
Frontiers in Immunology 06
and alleviate the apoptosis of intestinal crypt cells, providing a new

strategy for the treatment of intestinal damage in acute GVHD (101).

These research findings not only provide a new perspective for

understanding the complex mechanisms of acute GVHD but also

offer a theoretical basis for clinical intervention to alleviate acute

GVHD symptoms by regulating the interaction between chemokine

receptors and their respective ligands (Table 1).
4 Clinical perspectives

Chemokines play a crucial role in the pathogenesis of acute

GVHD and exhibit distinct expression patterns in the different

target organs. Specifically, the upregulation of CXCL9, CXCL10,

and CXCL11 in the skin of patients with acute GVHD promotes the

recruitment of eosinophils and T cells to the sites of injury (102,

103). Similarly, elevated levels of CCL2, CCL3, and CCL5 in the

liver and intestines of acute GVHD mice mediate the infiltration of

neutrophils and activated T cells (104, 105). The differential

expression of chemokines in the target tissues of acute GVHD

suggests that they may serve as biomarkers for disease prediction

and diagnosis.

Early detection of serum levels of CCL23 and CXCL9 in patients

undergoing HSCT can effectively predict the risk of developing

acute GVHD (106, 107). The significant increase in the levels of

CXCL9 and CXCL10 in patients’ plasma can serve as effective

diagnostic biomarkers for acute GVHD (103, 106, 108). Notably,

reduced levels of CXCL8 in plasma on day +7 were associated with

grade II–IV acute GVHD (109). However, pediatric patients

displaying elevated levels of CXCL8 had a reduced risk of

developing chronic GVHD, as opposed to acute GVHD, in

comparison to patients who demonstrated lower levels of CXCL8

(110). Patients with skin GVHD who were treated with

calcipotriene showed a significant decrease in skin CXCL10 levels
TABLE 1 Chemokine-mediated T cells infiltration of target organs in acute GVHD.

Receptors Chemokines Primary target T cell Infiltration organs Ref.

CCR1 CCL5 Th cells, Tc cells Liver and intestines (56, 82)

CCR2 CCL2 CD8+ T cells Liver, intestines, and oral (70)

CCR4 CCL17, CCL22 CD8+ T cells, Tregs cells Skin (2)

CCR5 CCL3, CCL4, and CCL5 CD8+ T cells, Treg cells Liver and intestines (6, 23, 93, 102)

CCR6 CCL20 CD4+ T cells Skin and intestines (76, 90)

CCR7 CCL19, CCL21 Treg cells Lymph nodes (80)

CCR8 CCL8 Treg cells Lymph nodes and intestines (7)

CCR9 CCL25 Treg cells Intestines (51, 60, 71)

CCR10 CCL27 CD4+ T cells Skin (95)

CXCR3 CXCL10 Th1 cells Spleen (3, 12, 24, 31, 63)

CXCR4 CXCL12 CD4+ T cells, gdT cells Liver and skin (13)

CX3CR1 CX3CL1 CD8+T cells Liver and intestines (11, 61)
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(111). Furthermore, in acute GVHD mice treated with JAK

inhibitors, a significant decrease in CXCL10 levels was observed,

indicating that changes in chemokine levels can reflect the response

of acute GVHD to effective therapy (112). Bogunia-Kubik et al.

showed that the CCR5 Delta32 allele is an independent protective

factor for patients developing acute GVHD, and the protective effect

is more pronounced when the donor also carries this allele (113).

Heightened levels of CCR5 indicated an increased susceptibility to

systemic inflammation, thereby predisposing patients to multiple

complications associated with transplantation. Furthermore,

elevated CCR5 expression levels prior to transplantation were

associated with unfavorable clinical outcomes (114).

In animal experiments, treatment with anti-CCR5 antibodies

effectively reduced the infiltration of CCR5+CD8+ T lymphocytes in

the liver, thereby alleviating liver damage caused by acute GVHD

(115). In addition, the small molecule CCR5 antagonist Maraviroc,

reduced the incidence of liver GVHD by blocking CCR5 and

affecting T cell function (116). It is noteworthy that some patients

failed to achieve complete blockade of CCR5 despite the

administration of maraviroc. Inadequate CCR5 blockade was

linked to a heightened risk of severe GVHD-related mortality and

non-relapse mortality (114).

The addition of Maraviroc to the standard GVHD prevention

regimen significantly reduces the incidence of acute gastrointestinal

GVHD in patients without increasing the risk of disease recurrence

(108). It is worth noting that although there was a slight increase of

CCR5 expression in peripheral blood T cells on d +30 after

transplantation, T cell activation was inhibited, which did not

augment the risk of infection in patients after transplantation

(108). Maraviroc-induced adverse effects were not observed in a

study that investigated the efficacy and safety of Maraviroc in

pediatric patients receiving HSCT (117). A phase II study was

conducted to validate the efficacy of maraviroc administered from

day -3 to day +30 post-HSCT for preventing acute GVHD in

children (118). Although hepatotoxicity limited the use of

Maraviroc, it has potential for the prevention of acute

gastrointestinal GVHD (118). Furthermore, a phase 2 clinical trial

reported that extending the use of Maraviroc to d +90 days showed

a favorable preventive effect on both acute and chronic GVHD,

significantly improving long-term survival (119). Varona et al.

highlighted the key role of CCR6 in promoting the recruitment of

alloreactive CD4+ T cells to acute GVHD target organs (72). The

experiment showed that recipient mice receiving transplants from

CCR6-deficient donors experienced delayed onset and relatively

mild symptoms of acute GVHD, suggesting that CCR6 may be a

potential chemokine receptor target for the prevention and

treatment of acute GVHD (72). Additionally, in a xenograft

experiment using CCR2 gene knockout donors, the infiltration of

CCR2−/− CD8+ T cells in the intestines and livers of recipient mice

decreased, leading to reduced pathological damage in target organs

and an overall decrease in the incidence and mortality of acute

GVHD, while retaining the intact GVL (35). Furthermore, in a

mouse GVHD model, He et al. found that anti-CXCR3 antibodies
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could reduce the infiltration of alloreactive CD8+ T cells into acute

GVHD target organs (120). When acute GVHD mice were

simultaneously treated with CCR5 and CXCR3 antagonists, the

polarization of T cells towards Th1 and Tc1 was inhibited, and the

generation of Treg was induced (121). Compared to the use of

CCR5 or CXCR3 antagonists alone, the combined blockade of these

two chemokine receptor antagonists more effectively reduced the

incidence of acute GVHD and alleviated the clinical manifestations

of acute GVHD in mice (121). This finding provides a potential

novel approach for the prophylaxis and treatment of acute GVHD

by combining different chemokine receptor antagonists.
5 Summary

In recent years, the role of chemokines and their receptors in the

diagnosis and treatment of acute GVHD has been a hot topic of

research. Chemokines play a crucial role in regulating immune cell

differentiation, function, and migration, and both preclinical and

clinical studies have demonstrated the involvement of chemokines

in the initiation and progression of acute GVHD.

Despite the abundance of preclinical investigations pertaining to

various chemokines, there is a profound lack of clinical studies, which

may be due to the intricate nature of chemokines and the inherent

challenges in their development as viable therapeutic agents. Given

the complex pathogenesis of acute GVHD, monoclonal antibodies or

antagonists targeting a single chemokine may not achieve optimal

prevention of acute GVHD. Therefore, a combination of multiple

chemokines or other preventive drugs for acute GVHD may offer

greater benefits to patients. In patients afflicted with acute GVHD, the

presence of concurrent comorbidities such as infections further

complicates the chemokine axis involved, potentially influencing

other molecular pathways or immune responses, and yielding

unforeseen off-target effects. Moreover, the conundrum of

chemokine redundancy remains unresolved, posing obstacles to

targeted therapies. A solitary chemokine can bind to multiple

receptors or conversely, multiple chemokines can activate a single

receptor, thereby exacerbating the precision and efficacy hurdles in

targeted therapies. Although in mouse experiments, blocking

chemokines alleviates acute GVHD while preserving the GVL effect

with negligible impact on the hematopoietic and immune systems,

further research in human populations is necessary to evaluate its

efficacy and safety. In conclusion, we anticipate more reports on the

role of chemokine axes in the pathogenesis of acute GVHD to reduce

transplant-related mortality and improve the prognosis of patients

receiving allo-HSCT.
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56. Herrero-Sánchez MC, Rodrıǵuez-Serrano C, Almeida J, San Segundo L, Inogés S,
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