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Integrating single cell analysis
and machine learning methods
reveals stem cell-related gene
S100A10 as an important target
for prediction of liver cancer
diagnosis and immunotherapy
Shenjun Huang1 and Tingting Tu2*

1Department of Oncology, Nantong Tumur Hospital (Affiliated Tumur Hospital of Nantong University),
Nantong, China, 2Department of Radiation Oncology, Lianyungang Second People’s Hospital
(Lianyungang Tumur Hospital), Lianyungang, China
Background: Hepatocellular carcinoma (LIHC) poses a significant health

challenge worldwide, primarily due to late-stage diagnosis and the limited

effectiveness of current therapies. Cancer stem cells are known to play a role

in tumor development, metastasis, and resistance to treatment. A thorough

understanding of genes associated with stem cells is crucial for improving the

diagnostic precision of LIHC and for the advancement of effective

immunotherapy approaches.

Method: This research combines single-cell RNA sequencing with machine

learning techniques to identify vital stem cell-associated genes that could act

as prognostic biomarkers and therapeutic targets for LIHC. We analyzed various

datasets, applying negative matrix factorization alongside machine learning

algorithms to reveal gene expression patterns and construct diagnostic

models. The XGBoost algorithm was specifically utilized to identify key

regulatory genes related to stem cells in LIHC, and the expression levels and

prognostic significance of these genes were validated experimentally.

Results: Our single-cell analysis identified 16 differential prognostic genes

associated with liver cancer stem cells. Cluster analysis and diagnostic models

constructed using various machine learning techniques confirmed the

significance of these 16 genes in the diagnosis and immunotherapy of LIHC.

Notably, the XGBoost algorithm identified S100A10 as the stem cell-related gene

most relevant to the prognosis of LIHC patients. Experimental validation further

supports S100A10 as a potential prognostic marker for this cancer type.

Additionally, S100A10 shows a positive correlation with the stem cell

marker POU5F1.

Conclusion: The results of this study highlight S100A10 as an essential predictor

for liver cancer diagnosis and treatment response, particularly regarding
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immunotherapy. This research offers valuable insights into the molecular

mechanisms underlying LIHC and suggests S100A10 as a promising target for

enhancing treatment outcomes in liver cancer patients.
KEYWORDS

cancer stem cell, hepatocellular carcinoma, single cell analysis, machine
learning, S100A10
1 Introduction

Liver hepatocellular carcinoma (LIHC) is the most prevalent

type of primary liver cancer, with approximately 800,000 new cases

diagnosed each year (1, 2). It is the sixth most common cancer

globally and the third leading cause of cancer-related deaths (3).

The unfavorable prognosis of LIHC is largely due to late-stage

diagnosis (4). Despite the availability of various treatment options—

including surgical resection, chemotherapy, radiofrequency or

microwave ablation, molecular targeted therapies, and

immunotherapy—clinical outcomes for advanced LIHC have not

significantly improved (5). Immunotherapy has shown promise as a

treatment modality; however, its effectiveness is often limited by the

scarcity of viable targets, impacting only a subset of patients (6).

Identifying immune-related prognostic biomarkers is essential for

recognizing patient subgroups that may benefit from

immunotherapy, underscoring the necessity for further research

into additional biomarkers.

The combination of single-cell analysis and machine learning

algorithms has emerged as a valuable approach for identifying key

genes that regulate tumor progression, particularly regarding

diagnostics and immunotherapy (7, 8). This innovative

methodology facilitates a detailed examination of the complex

tumor microenvironment (TME) and aids in uncovering significant

molecular factors that contribute to the heterogeneity and treatment

resistance observed in LIHC. Single-cell RNA sequencing (scRNA-

seq) offers a comprehensive perspective on the cellular makeup of

tumors, facilitating the discovery of unique cell types that play roles in

tumor onset, development, and spread. Through the application of

sophisticated computational methods like machine learning,

scientists can better interpret intricate biological data, which aids in

pinpointing potential crucial genes. This progress is essential for

tailoring cancer treatments and developing innovative

immunotherapy approaches (9–11). The investigation of liver

cancer, especially in LIHC, has increasingly centered on cancer

stem cells (CSCs) because of their significant involvement in tumor

development, metastasis, and the resistance to conventional

treatments (12). The heterogeneity of liver CSCs, characterized by

various surface markers, complicates the disease and presents

challenges for diagnosis and treatment. A comprehensive

understanding of CSC-related genes is essential for improving
02
diagnostic precision and developing effective immunotherapy

strategies (13). CSCs are believed to enhance tumor self-renewal

and proliferation, a phenomenon that is especially evident in LIHC,

where a small fraction of cells exhibiting stem cell-like properties can

differentiate and play a role in tumor diversity. This diversity is

associated with differing treatment responses, such as to

immunotherapy, underscoring the importance of targeted strategies

that consider the unique traits of CSCs. The shift from an epithelial to

a mesenchymal phenotype (EMT), which is associated with increased

malignancy and invasiveness in tumors, particularly LIHC, is

governed by signaling pathways like transforming growth factor

beta and Wnt/b-catenin. These pathways are essential for

maintaining the stem-like features of liver cancer cells (14, 15).

Monitoring circulating CSCs can provide insights into LIHC

recurrence and may serve as potential biomarkers for

immunotherapy response, as these cells often exhibit unique

immunogenic profiles that can be targeted therapeutically. Recent

studies have identified specific CSC-related genes that may act as

prognostic markers for LIHC. For instance, the stemness index

(mRNAsi) has been used to categorize LIHC patients into subtypes

based on their stemness signatures, which correlate with the status of

the tumor immune microenvironment (TIME) and sensitivity to

neoadjuvant therapies. Such classification could inform clinical

strategies for immunotherapy, leading to more personalized

treatment plans that take into account the unique stemness

characteristics of individual tumors (16). The immune

microenvironment in liver cancer is significantly affected by CSCs.

Interactions between CSCs and immune cells can result in immune

evasion, presenting a major challenge to effective cancer treatment.

CSCs can secrete factors that modulate immune responses, fostering

an environment conducive to tumor growth and survival. This

underscores the importance of targeting CSCs in immunotherapy,

as strategies aimed at enhancing immune responses against these cells

may improve treatment outcomes (17). Furthermore, identifying

immune-related gene signatures associated with CSCs can assist in

predicting the efficacy of immunotherapy in LIHC patients. By

analyzing gene expression profiles, researchers have developed

predictive models for patient survival and response to immune

checkpoint inhibitors, leveraging the understanding of how CSC-

related genes interact with the immune system to establish a

framework for personalized therapeutic approaches (18).
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In conclusion, CSC-related genes play a critical role in the

diagnosis and treatment of liver cancer, particularly in the context

of immunotherapy. Their involvement in tumor heterogeneity,

immune evasion, and therapeutic resistance necessitates a deeper

understanding of their functions and interactions within the TME.

By integrating CSC-related markers into diagnostic and treatment

strategies, clinicians can enhance the precision of liver cancer

management and ultimately improve patient outcomes. Ongoing

research into the molecular mechanisms governing CSCs and their

relationship with the immune system is expected to lead to more

effective immunotherapeutic strategies for LIHC. This study aims to

investigate the key genes regulating liver cancer stem cells using

various methods, including single-cell analysis and machine

learning. Additionally, we seek to analyze the diagnostic and

predictive capabilities of stem cell-related genes for liver cancer

patients by constructing a diagnostic model. Ultimately, we

identified the critical role of S100A10 through the XGBoost

algorithm and assessed the expression and prognostic significance

of S100A10 using immunofluorescence staining.
2 Materials and methods

2.1 Datasets and patient samples

This research analyzed three LIHC specimens (GSM3064824,

GSM3064820, and GSM3064823) sourced from the GSE112271

dataset at the resolution of single cells. Furthermore, we merged

RNA sequencing data alongside clinical information derived from

the TCGA-LIHC dataset. In order to create and validate the

diagnostic model, several datasets were employed, comprising

TCGA-LIHC, GSE112790, and GSE102451. The clinical

prognostic data of 240 primary liver cancer samples from Japan

in the IGCG database were also included in this study.
2.2 Negative matrix factorization cluster
and differential expression analysis

The NMF algorithm was utilized to derive coefficients of

biological significance from the gene expression matrix, arranging

genes and samples to emphasize the structural properties of the data

and aid in classification (19). Differential expression analysis for

clusters A and B was carried out utilizing the ‘Limma’ R package,

with the parameters established at |logFC| > 0.5 and an adjusted p-

value lower than 0.05. Following this, the ‘NMF’ R package was

employed to group all samples according to the differentially

expressed genes (DEGs) found in the subclusters, with the goal of

uncovering potential molecular subtypes. The ‘brunet’ algorithm

was performed for 100 iterations for each specified value, varying

from 2 to 10 clusters. The ideal number of clusters was identified by

assessing cophenetic correlation, dispersion, and silhouette width

(20). Furthermore, the Limma package in R (version 3.40.2) was

used to analyze mRNA differential expression between malignant

and adjacent non-malignant tissues in the TCGA-PRAD dataset.
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2.3 Immune infiltration analysis

To validate the reliability of the immune score results, we

utilized the immunedeconv R package (21). An extensive

assessment of every algorithm was conducted, highlighting their

distinct benefits. The XCELL approach was chosen due to its ability

to evaluate a wider variety of immune cell categories (22).
2.4 Constructing the diagnostic model

The training phase employed the TCGA-LIHC dataset, while

validation was conducted using the GSE112790 and GSE102451

datasets. Model combinations were evaluated based on their area

under the curve (AUC) values, identifying the optimal model as the

one with the highest average AUC. Receiver operating characteristic

(ROC) curve analysis was performed using the pROC package

[1.18.0], with results visualized via ggplot2 [3.3.6].
2.5 Differential and gene function analysis

The Limma package (version 3.40.2) in R was utilized to explore

the differential expression of mRNA within the TCGA-LIHC

dataset. We set thresholds for identifying differentially expressed

mRNAs at “P < 0.05 and log2 (fold change) > 1.3 or log2 (fold

change) < -1.3.” To further investigate the roles of target genes in

carcinogenesis, we employed the ClusterProfiler package to analyze

Gene Ontology (GO) functions and to enrich Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathways. Relevant pathway-

associated genes were compiled and analyzed using the GSVA

package in R, and single-sample gene set enrichment analysis

(ssGSEA) was conducted with the method parameter set to

‘ssgsea’. Additionally, we evaluated the correlation between gene

expression and pathway scores using Spearman correlation analysis.
2.6 Expression and prognostic relevance of
S100A10 in LIHC tissue microarrays
analyzed by immunofluorescence methods

After initially baking the paraffin slices, they were immersed in two

xylene baths, each lasting 15 minutes. This was followed by a series of

consecutive soaks in absolute ethanol, 95% ethanol, 85% ethanol, 75%

ethanol, and finally distilled water, with each solution applied for 5

minutes. The sections were then transferred to a retrieval box

containing an alkaline antigen retrieval solution (pH 9.0 EDTA) and

heated in a pressure cooker for 2minutes. After allowing the sections to

cool naturally, they were washed three times with PBS (pH 7.4) for 5

minutes each, with gentle stirring. Subsequently, the sections were

treated with a 3% hydrogen peroxide solution for 15 minutes at room

temperature in the dark to inhibit endogenous peroxidase activity. To

ensure uniform tissue coverage, a blocking solution was applied, and

the sections were blocked for 30 minutes at room temperature.

Following this, diluted S100A10 antibody (11250-1-AP) and
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POU5F1 antibody (60242-1-Ig) were added and incubated overnight at

4°C. The next day, the sections were washed three times with PBS for 5

minutes each. After gently shaking to remove excess liquid, a poly-HRP

secondary antibody corresponding to the primary antibody species was

added dropwise and incubated in the dark at room temperature for 10

to 20 minutes. The final score of the staining result was calculated by

multiplying the staining intensity by the staining range. The staining

range was categorized as 0%-25% for 1 point, 26%-50% for 2 points,

51%-75% for 3 points, and 76%-100% for 4 points, while the staining

intensity was classified into low, medium, and strong, corresponding to

1, 2, and 3 points, respectively.
2.7 Statistical analysis

The expression levels of S100A10 in both LIHC and normal

tissues were assessed using the Wilcoxon rank-sum test. Prognostic

analysis was performed using the log-rank test to evaluate survival

differences. Additionally, Spearman correlation analysis was

conducted to explore the relationship between gene expression

and stemness scores. A p-value of less than 0.05 was established

as the threshold for statistical significance.
3 Result

3.1 Identification of cancer stem cell-
related genes via single-cell analysis

Our investigation commenced with three LIHC samples sourced

from the single-cell dataset (GSE112271): GSM3064824,

GSM3064820, and GSM3064823. Stringent quality control measures

were implemented, requiring each cell to contain a minimum of 200

RNA molecules, a maximum of 2500, and less than 10%

mitochondrial RNA (Figure 1A). Following this, we employed

HARMONY technology to pinpoint highly variable genes from the

filtered dataset and conducted bulk deletion analysis based on these

feature sets (Figures 1B–D). The ANOVA test highlighted ten genes

with significant differential expression across the cell samples: TIMP1,

IGLL5, CCL21, CXCL10, SPINK1, MT1G, HAMP, SPP1, IGJ, and

SAA1 (Figures 1E, F). The single-cell analysis categorized the samples

into 12 distinct cell populations, including natural killer cells, liver bud

hepatocytes, smooth muscle cells, plasma cells, MKI67+ precursor

cells, endothelial cells, monocytes, intestinal epithelial cells, cancer

stem cells, adventitial cells, dendritic cells, and cancer-associated

fibroblasts (Figures 1G, H). Notably, functional analysis indicated

that stem cell populations are linked to processes such as tumor

proliferation, angiogenesis, and epithelial-mesenchymal transition

(EMT) (Figure 1I).
3.2 Functional analysis of stem cell-
related genes

Initially, we examined expression heatmaps of 16 genes in both

TCGA-LIHC samples and normal prostate tissue (Figure 2A). We
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further assessed the relationship between these genes and the

clinicopathological features of LIHC patients, visualized through a

heat map (Figure 2B). The Friends analysis aimed to construct a gene

interaction network, utilizing network topology to evaluate gene

importance, with MARCKSL1 emerging as a central figure

(Figure 2C). Univariate COX regression analysis in the TCGA-

LIHC dataset demonstrated the prognostic relevance of these 16

genes (Figure 2D). We found significant expression differences

among SOX4, SH3GL1, RAB11A, FKBP1A, ARL4A, UNC5B,

MARCKS, MARCKSL1, LIMS1, STMN1, and LOX across various

T phases. Moreover, expression levels of SH3GL1, RAB11A,

FKBP1A, and SHC1 differed significantly at varying N stages, and

MPP3, SOX4, SH3GL1, RAB11A, FKBP1A, ARL4A, UNC5B,

MARCKS, MARCKSL1, LIMS1, STMN1, and LOX showed

significant variation across different clinical stages (Figures 2E–J).

Utilizing the Gene Set Cancer Analysis (GSCA) database, we explored

the roles of these 16 genes in LIHC, revealing their involvement in

EMT, activation of the cell cycle, and inhibition of estrogen receptor

and receptor tyrosine kinase (RTK) pathways (Figure 2K). Gene

Ontology (GO) analysis indicated that these genes were

predominantly associated with calcium-dependent protein binding,

membrane microdomain, and pro-B cell differentiation (Figure 2L).
3.3 Clustering analysis

To cluster TCGA-LIHC samples, we applied the NMF

clustering technique. Co-expression curves were analyzed to

determine the optimal classification method for TCGA-LIHC

subgroups. The optimal grouping was indicated by the point

where the co-expression index exhibited a pronounced decrease.

Our results suggested that dividing the samples into two groups was

most suitable. Heatmaps illustrating sample divisions into two,

three, and four groups are presented (Figures 3A, B). We further

examined prognostic differences among the groups categorized into

two, three, and four clusters. Regardless of the division, patients in

cluster 1 consistently demonstrated the poorest prognosis, with p-

value analysis confirming that a two-group division was optimal

(Figures 3C–E). Differential expression of the 16 CSC-related genes

across the clusters was also illustrated (Figures 3F–H).
3.4 Functional analysis of cancer stem cell-
related genes

Immune checkpoint blockade (ICB) therapy has transformed

cancer treatment. In this study, we utilized the TIDE algorithm,

which focuses on tumor immune dysfunction and exclusion, to

predict the effectiveness of immune checkpoint inhibitors for each

TCGA-LIHC sample (Figure 4A). TIDE assesses two mechanisms

of tumor immune evasion: damage to tumor-infiltrating cytotoxic T

lymphocytes (CTLs) and CTL resistance to immunosuppressive

factors. Elevated TIDE scores correlate with diminished ICB

effectiveness and reduced survival rates following ICB treatment.

Upon clustering TCGA-LIHC samples into two groups, we

observed differences in ICB response, with patients in cluster C1
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showing poorer responses. In three or four cluster categorizations,

patients in cluster C2 exhibited better responses to ICB therapy

(Figures 4B, C). We also employed xCell to analyze immune cell

infiltration levels across the TCGA-LIHC samples in different

clusters, revealing significant differences in various immune cell

types, including CD4+ memory T cells, naive CD8+ T cells,

common lymphoid progenitors, M2 macrophages, and plasma B

cells (Figures 4D–G).
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3.5 Integration of machine learning
algorithms for diagnostic
model development

Machine learning is increasingly pivotal in biomedicine, particularly

in tumor diagnosis and treatment. By analyzing genomic data from

patients, machine learning can facilitate personalized treatment

approaches. In this study, we developed a diagnostic model centered
FIGURE 1

Recognition of genes that signify cancer stem cells. (A) Evaluation of the quality of scRNA-seq across different cellular sub-populations. (B–D) Visual
representations from PCA analysis following the comprehensive removal of batch effects. (E, F) Identification of highly variable genes achieved
through batch removal post-count. (G, H) Categorization of LIHC samples employing the UMAP method. (I) Functional assessment of various
cellular populations.
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on liver hepatocellular carcinoma (LIHC) to aid in the early

identification of affected individuals. The model was trained using the

TCGA-LIHC dataset and validated with two additional datasets:

GSE112790 and GSE102451. Among the 113 tested algorithm

combinations, the glmBoost+GBM pair demonstrated the highest

efficacy for model construction. For reader convenience, we expanded

the prediction results of the top 15 algorithm combinations (Figure 5A).
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The area under the curve (AUC) for the TCGA-LIHC training data was

0.999, while the corresponding AUC values for the validation datasets

GSE112790 and GSE102451 were 0.983 and 0.832, respectively. The

glmBoost+GBM algorithm identified six key genes: STMN1, SHC1,

S100A10, FABP5, ANXA2, and SH3GL1. We subsequently presented

the individual predictive values of these genes in TCGA-LIHC,

GSE112790, and GSE102451 (Figures 5B–D).
FIGURE 2

The expression and roles of genes associated with stem cells in the TCGA-LIHC dataset. (A) A heatmap illustrates the differential expression of
prognostic genes linked to monocytes in both LIHC and normal tissues. (B) A separate heatmap showcases the expression levels of genes related to
stem cells across various pathological parameters. (C) The analysis of friends identifies essential genes among those associated with stem cells. (D)
An examination of prognostic factors looks at the co-expression of genes related to stem cells. (E–J) A violin plot represents the expression patterns
of stem cell-related genes across different clinicopathological factors. (K, L) An analysis of functionality is performed on these stem cell-associated
genes. ns = P > 0.05, *P<0.05, **P<0.01, ***P<0.001
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3.6 Role of S100A10 in regulating
LIHC stemness

Utilizing the XGBoost algorithm, we analyzed the prognostic

significance of stem cell-related genes in relation to clinical data from

the TCGA-LIHC and IGCG-LIHC datasets to assess their impact on

overall survival. Consistently, S100A10, FKBP1A, RAB11A, SOX4, and

ARL4A ranked among the top 10 genes in both datasets (Figures 6A, B).
Frontiers in Immunology 07
GOsemSim employs Gene Ontology annotation data to evaluate

similarities between gene sets based on shared functional terms.

Among these five genes, S100A10 emerged as the most significant

(Figure 6C). To quantify tumor stemness in LIHC samples, we utilized

a logistic regression-based machine learning algorithm (OCLR)

described in a Cell article, which computes the stemness index for

various samples. Our findings indicated that S100A10, FKBP1A, FABP5,

and STMN1 positively correlated with the stemness score of LIHC
FIGURE 3

The clustering of LIHC samples utilizing the NMF cluster analysis technique. (A) Evaluate cluster stability and performance using various methods. (B)
Heat map representing NMF clustering. (C–E) Differences in prognosis among the clusters. (F–H) Variations in the expression of stem cell-related
genes across distinct clusters. *P<0.05, ***P<0.001, ****P<0.0001.
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samples, underscoring the pivotal role of S100A10 in LIHC stemness

characteristics (Figures 6D, E). Additionally, we analyzed the correlation

between S100A10 expression and immune cell infiltration in the LIHC

microenvironment, revealing significant differences in

microenvironment scores and levels of M2 macrophages,

hematopoietic stem cells, endothelial cells, CD4+ Th2 T cells, and NK

T cells between high and low expression groups of S100A10 (Figure 6F).
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3.7 Functional analysis of S100A10 in LIHC

The samples within the TCGA-LIHC dataset were divided

according to the median expression of S100A10. Those exhibiting

expression levels above this median were designated as the high

S100A10 expression group, whereas samples with expression below

the median were categorized in the low S100A10 expression group
FIGURE 4

Genes indicative of stem cells correlate with immune cell infiltration in LIHC. (A–C) The TIDE algorithm was utilized to evaluate patient responses to
immunotherapy across clusters. (D, E) Assessment of immune cell infiltration variance in various clusters was conducted using the xCELL algorithm.
(F) A heat map illustrating immune cell scores. (G, H) Analysis of gene enrichment among different clusters. ns = P > 0.05, *P<0.05, **P<0.01,
***P<0.001, ****P<0.0001.
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(Figures 7A, B). To explore the functional implications of S100A10,

GO analysis was conducted on differentially expressed genes.

S100A10 showed the strongest associations with tubulin binding

and cadherin binding in the molecular function (MF) module

among the upregulated genes. Additionally, it was linked to the

processes of establishing protein localization to the endoplasmic

reticulum and nuclear division within the biological process (BP)

module. In terms of the cellular component (CC) module, it was
Frontiers in Immunology 09
connected to cell−substrate junctions and chromosomal regions.

On the other hand, among the downregulated genes, S100A10

showed associations with anion transmembrane transporter activity

and active transmembrane transporter activity in the MF category,

along with involvement in carboxylic acid biosynthesis and organic

acid biosynthetic processes in the BP category, and connections to

the collagen−containing extracellular matrix and mitochondrial

matrix in the CC category, reflecting a very strong relationship.
FIGURE 5

Building a diagnostic model. (A) It shows a comparison of area under the curve (AUC) values for diagnostic models created using different
combinations of algorithms. (B–D) The ROC curves illustrate the effectiveness of various genes in forecasting liver hepatocellular carcinoma (LIHC)
within the TCGA-LIHC, GSE112790, and GSE102451 datasets.
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Utilizing KEGG enrichment analysis is an effective approach for

unraveling gene functions and providing valuable genomic insights.

Importantly, S100A10 demonstrated significant relationships with

ribosome and cell cycle pathways among genes that were highly

expressed, whereas it was primarily linked to complement and

coagulation cascades, as well as the PPAR signaling pathway among
Frontiers in Immunology 10
genes that were less expressed (Figures 7C–F). Subsequently, the

ssGSEA algorithm was utilized to systematically compute the

enrichment scores for each TCGA-LIHC sample across different

pathways, thus establishing a connection between the samples and

their corresponding pathways. By evaluating the relationship

between gene expression and pathway scores, our goal was to
FIGURE 6

S100A10 as a crucial gene. (A, B) The XGBoost algorithm pinpoints the 15 genes that show the strongest association with overall survival (OS) in liver
hepatocellular carcinoma (LIHC). (C) GOsemSim analysis underscores important genes linked to stem cell traits. (D, E) A correlation analysis is
performed to evaluate the relationship between a range of genes and the stemness score within the TCGA-LIHC dataset. (F) Furthermore, another
correlation analysis investigates the connection between S100A10 and the degree of immune cell infiltration in LIHC. **P<0.01, ***P<0.001.
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clarify how each gene relates to its associated pathway. The analysis

disclosed that S100A10 expression showed a positive correlation

with tumor proliferation, G2M checkpoint activity, epithelial-

mesenchymal transition (EMT), DNA replication, and DNA

repair processes, whereas a negative correlation was found with

galactose metabolism (Figure 7G). In addition, we investigated the

interaction of S100A10 with therapeutic agents for LIHC, and the

findings demonstrated that S100A10 has a substantial binding

affinity to these drugs, underscoring its potential as a therapeutic

target for liver cancer (Figure 7H).
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3.8 Correlation analysis between S100A10
and stem cell markers

In the TCGA-LIHC dataset, we analyzed the correlation

between stem cell markers (SOX2, CD44, CD133, and POU5F1)

and S100A10. Our findings revealed a significant positive

correlation between the expression of S100A10 and CD44,

CD133, and POU5F1, while no significant correlation was

observed with SOX2 (Figures 8A–D). Notably, the expression of

S100A10 exhibited the strongest correlation with POU5F1,
FIGURE 7

Analysis of S100A10 functionality. (A) Volcano plot depicting variance analysis. (B) Circular map illustrating differential gene expression. (C–F) Examination
of S100A10’s functional role in PRAD utilizing KEGG and GO pathways. (G) S100A10 function assessment through the ssGSEA algorithm. (H) Molecular
docking study of S100A10 with frequently used pharmaceuticals in LIHC.
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prompting us to further investigate the relationship between these

two proteins. Utilizing The Human Protein Atlas database, we

discovered a correlation between the expression levels of S100A10

and POU5F1 at the protein level; however, the limited number of

cases precluded statistical significance (Figure 8E). To enhance our

analysis, we collected 185 liver cancer samples (92 from liver cancer
Frontiers in Immunology 12
patients and 93 from normal liver tissues) from Nantong Cancer

Hospital. This analysis confirmed a positive correlation trend

between the expression of S100A10 and POU5F1 at the protein

level (Figures 8F, G). Lastly, given that POU5F1 is a transcription

factor, we examined the potential transcriptional regulatory

relationship between S100A10 and POU5F1. Our results
FIGURE 8

S100A10 is positively correlated with POU5F1. (A–D) Correlation analysis between S100A10 and stem cell markers. (E) Expression of S100A10 and
POU5F1 proteins. (F, G) Analysis of correlation between S100A10 and POU5F1 protein expression. (H) Analysis of transcriptional regulation of
S100A10 and POU5F1.
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indicated that POU5F1 was significantly enriched in the promoter

region of S100A10 (Figure 8H).
3.9 S100A10 may serve as a prognostic
marker in patients with LIHC

We also analyzed the expression levels of S100A10 in liver

cancer samples, revealing that its expression was significantly higher

in liver cancer compared to normal liver tissue (Figures 9A, B).

Additionally, we assessed the predictive value of S100A10 for

diagnosing liver cancer using the ROC curve. Our findings
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indicated that S100A10 possesses a notable predictive value for

liver cancer diagnosis (AUC=0.686) (Figure 9C). Furthermore, the

KM curve analysis demonstrated that patients with elevated

S100A10 expression have a poorer prognosis, and S100A10

expression can also serve as a predictor for the 1-year, 2-year, and

3-year prognosis of liver cancer patients (Figures 9D, E).
4 Discussion

Liver hepatocellular carcinoma (LIHC) poses a serious threat to

patient health, characterized by high morbidity and mortality rates
FIGURE 9

S100A10 is highly expressed in LIHC. (A, B) Expression of S100A10 in LIHC. (C) ROC curve of S100A10 in predicting liver cancer diagnosis. (D) KM
curve of S100A10. (E) ROC curve of S100A10 in predicting the prognosis of liver cancer. ***P<0.001.
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(23). Despite recent advancements in treatment modalities, the

overall effectiveness of liver cancer therapies remains inadequate.

Cancer stem cells (CSCs), a distinct subset of tumor cells, possess

self-renewal and differentiation capabilities, which contribute to

tumor heterogeneity and resistance to standard treatments (24).

These CSCs are critical in the initiation, progression, and recurrence

of liver cancer, making them a pivotal focus for developing

innovative therapeutic strategies (25). This study aims to analyze

the importance of CSC-related genes in the diagnosis, prognosis,

and immunotherapy of LIHC, utilizing single-cell technology and

machine learning approaches. The outcomes seek to unveil new

therapeutic targets and provide a theoretical framework for

treating LIHC.

CSCs are defined by their abilities to self-renew and differentiate,

which play a vital role in the heterogeneity of tumors and the resistance

seen towards conventional treatment methods. It is thought that liver

cancer stem cells (LCSCs) arise from either the reversal of mature

hepatocytes to a stem-like state or from the impaired differentiation of

normal liver stem cells (26). This dual lineage implies that LCSCs can

form in various cellular contexts within the liver, making it more

challenging to decipher their role in tumor development. They are

involved in essential processes associated with liver cancer, including

tumor formation, metastasis, and recurrence, primarily because of their

inherent abilities to self-renew and differentiate (27). A major challenge

presented by LCSCs is their resistance to traditional treatments like

chemotherapy and radiotherapy. This resistance can be attributed to

various factors, including the expression of drug efflux transporters,

which actively remove chemotherapeutic agents from cells, thereby

diminishing drug effectiveness. Additionally, LCSCs often exhibit

enhanced DNA repair mechanisms and anti-apoptotic traits,

allowing them to withstand treatments that effectively eliminate non-

stem cancer cells (28). The presence of LCSCs correlates with a poor

prognosis in liver cancer patients, with studies indicating that elevated

levels of CSC markers are associated with increased tumor

aggressiveness and a higher recurrence rate post-treatment. For

example, patients with tumors displaying high CD133 expression

typically have shorter overall survival compared to those with lower

levels (29). This highlights the necessity of targeting LCSCs to improve

treatment outcomes and reduce the risk of relapse. LCSCs are

implicated in activating several signaling pathways that facilitate

tumor growth and metastasis. Notably, the WNT/b-catenin signaling

pathway is crucial for sustaining the self-renewal and proliferation of

cancer stem cells, and its activation is linked to increased

tumorigenicity and invasiveness in liver cancer (30). Targeting these

pathways may provide a therapeutic avenue to reduce the stemness of

cancer cells and enhance the efficacy of existing treatments. Recent

investigations have also highlighted the promise of differentiation

induction therapy as a novel strategy for targeting LCSCs. By

promoting the differentiation of LCSCs into more mature and less

invasive cell types, it is possible to diminish their tumorigenic potential

and improve patient outcomes. For instance, inhibiting Notch signaling

has been shown to downregulate stemness-associated markers and

encourage differentiation, thus reducing themalignancy of transformed

cells (31).

In our investigation, we identified 16 CSC-related genes

significantly associated with the EMT pathway in liver cancer.
Frontiers in Immunology 14
Numerous studies have confirmed that EMT facilitates liver

cancer progression, reinforcing the validity of our identification of

stem cell-related genes. Utilizing the expression profiles of these 16

identified genes, we applied the non-negative matrix factorization

(NMF) algorithm to cluster analysis of LIHC samples from the

TCGA-LIHC dataset. Notable differences in patient outcomes were

observed across the groups, irrespective of whether the samples

were categorized into two, three, or four clusters. To further

investigate the underlying factors influencing outcome disparities,

we conducted gene enrichment analysis, revealing significant

enrichment of various well-established regulatory pathways

related to tumor stemness in the samples of cluster 1, which

included the VEGF and FGFR signaling pathways. This finding

elucidates the reasons behind the poorer prognosis observed in

this cluster.

The lack of clear diagnostic indicators often leads to late-stage

diagnoses for many LIHC patients. To tackle this issue, our research

focuses on developing diagnostic models for LIHC through various

machine learning techniques. In the training dataset, our model

demonstrated remarkable efficacy, achieving an AUC score of 0.999.

To assess the effectiveness of our diagnostic approach, we analyzed

two additional datasets, both of which consistently confirmed the

robustness and reliability of our developed model. Compared to

other machine learning algorithms, XGBoost not only demonstrates

superior performance but also effectively manages the complexities

inherent in biological data. Utilizing the XGBOOST algorithm, we

identified S100A10 as a significant stem cell marker gene associated

with the prognosis and progression of LIHC. Functional analysis

further indicated that S100A10 is linked to cell proliferation and

EMT in LIHC. Ultimately, we experimentally validated the

expression and prognostic significance of S100A10 in LIHC.

In addition, our study was conducted through the analysis of

multiple data sets, confirming the expression of the stem cell-related

gene S100A10 in liver cancer, albeit based on a limited number of

experiments. Consequently, our research has certain limitations.

Future studies should aim to expand the sample size to better

analyze the function of S100A10 in liver cancer and its relationship

with stem cells. Additional experiments, including both cell-based

and in vivo studies, are necessary to further elucidate the role of

S100A10 in regulating stem cell mechanisms.
5 Conclusion

In summary, this study employed multi-omics analysis to

investigate the role of stem cell-related genes in LIHC. These

findings not only enhance our understanding of liver cancer

biology but also offer new insights for developing personalized

treatments and innovative immunotherapeutic strategies.
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