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Osteosarcoma, a malignant bone tumor primarily affecting adolescents, is highly

invasive with a poor prognosis. While surgery and chemotherapy have improved

survival for localized cases, pulmonary metastasis significantly reduces survival to

approximately 20%, highlighting the need for novel treatments. Immunotherapy,

which leverages the immune system to target osteosarcoma cells, shows promise.

This review summarizes the biological characteristics of osteosarcoma, mechanisms

of pulmonary metastasis, and the tumor immune microenvironment (TME). It

involves recent immunotherapy advances, including monoclonal antibodies,

tumor vaccines, immune cell therapies, checkpoint inhibitors, and oncolytic

viruses, and discusses combining these with standard treatments.
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1 Introduction

Osteosarcoma is a heterogeneous malignant tumor affecting bone and soft tissues,

primarily in children and adolescents, with high invasiveness and a strong tendency for

pulmonary metastasis (1, 2). Surgery alone results in a five-year survival rate of about 20%,

but chemotherapy increases this rate to 70% (3). However, the prognosis remains poor once

metastasis occurs, particularly to the lungs (4). The biological characteristics of

osteosarcoma largely arise from genetic mutations in mesenchymal stem cells (MSCs),

such as in P53 and RB1 genes, which increase the risk of MSCs transforming into malignant

cells (5, 6). Osteosarcoma cells express Runx2 and Sox9 genes, showing features of

osteoblastic and chondrogenic differentiation (7). Ewing sarcoma’s origin remains

controversial, with potential sources including neural crest stem cells, embryonic

progenitors, or MSCs (8). Osteosarcoma exhibits significant genetic heterogeneity, with

around 7-14% of patients harboring actionable mutations, particularly in the IGF signaling

pathway (9). Genome-wide studies have identified genes and pathways involved in
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osteosarcoma progression and metastasis, including WNT/b-
catenin, Notch, and CD99, emphasizing the importance of

precision medicine in diagnosis and treatment (10).

Immunotherapy has emerged as a promising treatment for

cancers (11–13), utilizing immune-mediated cytotoxic effects

against tumors (14). The tumor immune microenvironment

(TME) includes immune cells, cytokines like IL-6 and TNF-a,
and regulatory factors, all of which contribute to tumor

progression and metastasis (15). Pulmonary metastasis in

osteosarcoma involves the activation of WNT/b-catenin and

Notch pathways, high expression of ezrin, and cytokines like

TGF-b and IL-6/IL-8, which facilitate cell invasion and migration

(16). Immune checkpoint inhibitors and cell therapies have shown

potential in osteosarcoma treatment, though challenges remain,

including treatment variability, adverse reactions, and high costs

(17, 18). This review highlights the biological characteristics,

molecular mechanisms of pulmonary metastasis, and progress in

immunotherapy, exploring the clinical potential and challenges to

inform more effective treatment strategies for osteosarcoma.
2 Classification and biological
characteristics of osteosarcoma

Osteosarcoma is a heterogeneous malignancy primarily affecting

bone and soft tissues, commonly seen in children and adolescents. Its

pathogenesis involves genetic mutations in MSCs, notably in P53 and

RB1 genes, which promote malignant transformation (2).

Osteosarcoma and chondrosarcoma cells express Runx2 and Sox9

genes, indicating osteogenic and chondrogenic differentiation,

respectively (7). Ewing sarcoma’s cellular origin remains debated,

with possible derivations from neural crest stem cells, embryonic

bone and cartilage progenitors, or MSCs. Fusion proteins in Ewing

sarcoma complicate its classification (19). While impaired MSC

differentiation is believed to contribute to osteosarcoma and

chondrosarcoma, the exact mechanisms are still unclear.

At the molecular level, osteosarcoma shows significant genetic

heterogeneity, with about 21% of patients harboring actionable

mutations, especially in the IGF signaling pathway. Genome-wide

association studies (GWAS) have identified susceptibility loci,

including the GRM4 gene (6p21.3) and a gene desert region at

2p25.2 (20). High-grade osteosarcoma samples also show

mutations in TP53, RB1, and 82 other genes. The TARGET-OS

database has identified 12 survival-related genes, with eight

downregulated (e.g., ERCC4, CLUAP1) and four upregulated (e.g.,

MUC1, JAG2) (21, 22). Recent studies highlight the role of various

signaling pathways and genetic alterations in osteosarcoma

progression. Weighted gene co-expression network analysis has

linked osteosarcoma metastasis to pathways like microtubule

formation, Cytochrome P450 drug metabolism, IL-17 signaling,

DNA replication, cell adhesion, and heparin binding (23). Whole-

transcriptome analysis reveals changes in extracellular matrix

degradation and collagen biosynthesis (24). Additionally, CD99

suppresses osteosarcoma malignancy (25). These findings

underscore the importance of genomic and transcriptomic analyses
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for uncovering osteosarcoma’s biological mechanisms and identifying

new therapeutic targets for precision medicine.
3 Tumor immune microenvironment
of osteosarcoma

TME is a complex system composed of immune cells, cytokines,

and regulatory factors surrounding tumor cells. It plays a crucial

role in osteosarcoma initiation, progression, and metastasis (26).

This section explores the immune cells, regulatory factors, immune

suppression and activation mechanisms, and tumor cell strategies to

evade immune surveillance within the osteosarcoma TME.
3.1 Immune cells and immune
regulatory factors

The osteosarcoma TME includes a variety of immune and non-

immune cells, with stromal cells playing a key role in expressing EMT

genes, which are linked to immune responses (27, 28). Alaa et al. found

that stromal cells secrete cytokines promoting EMT, increasing tumor

invasiveness and metastatic potential (29). Osteosarcoma stem cells,

due to their chemoresistance, plasticity, and immune modulation

abilities, contribute to metastasis and immune evasion (30). Several

immune-related genes and cytokines are crucial in the TME (31–34).

Liang et al. developed a three-gene risk model (TYROBP, TLR4, and

ITGAM), regulating macrophage activation and predicting patient

outcomes (35). Lipid metabolism genes were linked with the TME,

suggesting their potential as prognostic biomarkers (36–38). Cytokines

like IL-6 are pivotal in immune evasion and chemoresistance. Huang

et al. identified IL-6’s role in promoting cell proliferation and anti-

apoptotic mechanisms via the STAT3 signaling pathway (39).

Additionally, mutations in P53 and RB1 within the TME can

influence the behavior of immune cells (40). P53 mutations can lead

to an immunosuppressive microenvironment by upregulating PD-L1

expression, thereby facilitating immune escape (41). RB1 mutations

may enhance the recruitment of myeloid-derived suppressor cells

(MDSCs), further contributing to immune evasion and promoting a

tumor-friendly environment (42–44). These findings highlight the

importance of immune regulatory factors in the osteosarcoma TME

and their potential as therapeutic targets.
3.2 Interactions between osteosarcoma
cells and immune cells

Single-cell RNA sequencing (scRNA-seq) and multi-omics has

revealed the complexity of the TME (45–50). Huang et al. identified

the diverse spatial distribution and functional states of immune cells

in the osteosarcoma TME (51). Chen et al. found that lipid

metabolism gene expression is closely linked to the TME, serving

as reliable prognostic biomarkers (52). These studies highlight the

importance of immune cell distribution and gene expression in

developing targeted therapies and improving patient outcomes.
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Interactions between osteosarcoma cells and immune cells are

pivotal in tumor immune evasion and progression. While normal

lymphocytes can exert cytotoxic effects on osteosarcoma cells in

vitro, osteosarcoma cells can disrupt dendritic cell (DC) function,

impairing immune responses (53, 54). Grzegorz et al. showed that

osteosarcoma cells secrete IL-10, inhibiting DC maturation and

antigen presentation (55). Additionally, osteosarcoma cells interact

with host cells and immune responses at multiple levels (56). These

interactions provide insights into osteosarcoma pathogenesis and

suggest potential targets for immune-based therapies. Audrey et al.

found that osteosarcoma cells secrete TGF-b, which suppresses T

cell activity and aids immune evasion (57).
3.3 Immune suppression and activation
in osteosarcoma

Osteosarcoma is often a “cold tumor” with limited immune cell

infiltration, leading to immune suppression through upregulated

factors like PD-L1 (58). Despite this, some studies suggest that

immune activation is possible using immune checkpoint inhibitors.

Park et al. demonstrated that PD-1 inhibitors enhanced T cell

cytotoxicity against osteosarcoma cells (17). Additionally,

osteosarcoma cells suppress immune responses by modulating

CXCL12 (59). Neoadjuvant chemotherapy can transform

osteosarcoma into an immunologically “hot” tumor, activating

the local immune environment. Myrofora et al. found that

chemotherapy increased T cell infiltration in osteosarcoma,

suggesting it promotes immune activation, creating potential for

immunotherapeutic strategies (60).
3.4 Immune evasion mechanisms

Osteosarcoma cells evade immune responses through extracellular

matrix alterations, immune suppressive pathways, and high PD-L1

expression, which inhibit T cell activity (17). Osteosarcoma cells

upregulate PD-L1 as a strategic mechanism to evade immune

surveillance, thereby facilitating tumor progression and resistance to

therapeutic interventions (61). Additionally, TGF-b promotes

regulatory T cell (Treg) expansion, further suppressing immunity

(62). Targeting immune evasion mechanisms offers promising

strategies. Dong et al. showed that inhibiting TGF-b reduced

osteosarcoma cell invasiveness (63). Combining PD-L1 and TGF-b
inhibitors enhanced immune cell cytotoxicity against osteosarcoma,

underscoring the potential of combination therapies to overcome

immune escape (64).
4 Immunotherapy strategies
for osteosarcoma

Immunotherapy offers a more targeted approach to cancer

treatment compared to traditional chemotherapy, which generally

attacks rapidly dividing cells (65). The immune system, through

processes like immune surveillance and cell infiltration, plays a
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crucial role in fighting cancer (66). However, tumor cells can evade

immune responses through mechanisms such as immune editing,

which includes three phases: elimination, equilibrium, and escape

(67). In the elimination phase, immune cells target and destroy

cancer cells. In the equilibrium phase, some tumor cells survive and

adapt, entering a dormant state. Eventually, these cells may escape

immune detection and proliferate (68, 69). Mechanisms of immune

escape include loss of tumor antigens, downregulation of HLA

expression, recruitment of immune-suppressive cells like Tregs and

M2 macrophages, and the upregulation of immune checkpoint

receptors such as CTLA-4 and PD-1 (70–72). Immunotherapy

seeks to counteract these escape mechanisms by boosting the

immune system’s ability to recognize and destroy tumor

cells (Figure 1).
4.1 Antibody-based therapies targeting cell
surface proteins

Osteosarcoma cells express specific surface antigens that are

potential targets for immunotherapy (17). Monoclonal antibodies

can bind to these antigens, activating NK cells and macrophages to

release cytotoxic substances, leading to tumor destruction via

antibody-dependent cellular cytotoxicity (ADCC) (73, 74). For

instance, Persaud et al. (75) demonstrated the efficacy of antibody

therapy in neuroblastoma, suggesting similar potential in

osteosarcoma. Bispecific T-cell engagers (BiTEs), which bind both

T cell CD3 receptors and tumor antigens, enhance T cell activation

and cancer cell lysis (76). Holzmayer et al. showed that bispecific

antibodies boosted T cell-mediated osteosarcoma cell killing (77).

Additionally, antibody-drug conjugates (ADCs) link antibodies to

cytotoxic agents like vedotin, targeting cancer cells with higher

specificity and efficacy (78). Antibody-based therapies can cause

infusion reactions (fever, chills, allergies), cardiotoxicity,

neurotoxicity, infections, requiring careful monitoring and

supportive care (79).
4.2 Tumor vaccines

Tumor vaccines function by exposing or administering tumor

antigens to induce tumor-specific immune responses, thereby

enabling the immune system to recognize and attack tumor cells.

These vaccines come in various forms, including whole tumor cells,

lysates, proteins, DNA, RNA, and peptides (80). DCs are pivotal

antigen-presenting cells capable of activating T cells and stimulating

the proliferation of cytotoxic T lymphocytes (CTLs) (81). For

instance, Lu et al. (3) developed DC vaccines by combining

tumor cell lysates with immunostimulatory adjuvants,

significantly enhancing immune-mediated cytotoxicity against

osteosarcoma in patients. Moreover, the development of

personalized tumor vaccines, such as those based on patient-

specific tumor mutations, is emerging as a critical component of

precision medicine (82). These vaccines offer new avenues for

osteosarcoma immunotherapy by providing tailored immune

responses against unique tumor antigens. The integration of
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personalized vaccines into clinical practice holds promise for

improving treatment outcomes and patient survival rates. Adverse

reactions to tumor vaccines are generally mild, including injection

site inflammation and systemic symptoms, though rare severe

immune-mediated events may occur (83). Ongoing research aims

to mitigate these effects through enhanced vaccine design

and delivery.
4.3 Immune cell therapy

Immune cell therapy is a promising approach for metastatic and

recurrent osteosarcoma, particularly when combined with

neoadjuvant chemotherapy. Neoadjuvant chemotherapy activates

the local immune milieu, transforming osteosarcoma into an

immunologically “hot” tumor, thereby enhancing the efficacy of

subsequent immunotherapies (59). Wang et al. observed increased

T cell infiltration in the tumor microenvironment post-

chemotherapy, improving immune responses (84). Mifamurtide

has shown clinical efficacy as adjuvant therapy for non-metastatic

osteosarcoma, indicating that immune checkpoint inhibitors may

significantly improve prognosis (85). Additionally, immune-related

gene expression diagnostics could support personalized treatments
Frontiers in Immunology 04
(86). Challenges include patient selection and managing immune-

related adverse effects (87). Phase I/II trials are addressing these to

enhance safety and efficacy while elucidating the tumor

microenvironment’s role in osteosarcoma pathogenesis (88).

Integration of immunotherapies, such as mifamurtide and

checkpoint inhibitors, holds substantial potential for better

outcomes (89). Adoptive cell therapy, including Chimeric antigen

receptor T-cell (CAR-T) therapy targeting HER2 (90), NK cells and

tumor-infiltrating lymphocytes (TILs) enhances anti-tumor

immunity by overcoming immune escape (91, 92). These findings

highlight the potential of adoptive cell therapy in osteosarcoma

treatment, though clinical application requires further optimization.

However, immune cell therapies may induce cytokine release

syndrome, neurotoxicity, and autoimmunity (93), which can be

mitigated through monitoring, safety switches, and supportive care.
4.4 Checkpoint inhibitors

Immune checkpoint inhibitors block inhibitory signals between

tumor and immune cells, reactivating T cell-mediated anti-tumor

responses. Osteosarcoma cells often upregulate immune checkpoint

molecules like PD-L1, which suppress T cell activity and facilitate
FIGURE 1

Clinical immunotherapy in Osteosarcoma.
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immune escape (15). Studies show that anti-PD-1 and anti-PD-L1

antibodies significantly improve survival in osteosarcoma mouse

models and reduce pulmonary metastasis (94). Zheng et al. found

that anti-PD-1 antibody treatment effectively controlled lung

metastases in osteosarcoma models (95). Combining checkpoint

inhibitors with chemotherapeutic agents (e.g., doxorubicin) is an

effective strategy, as chemotherapy can reverse the tumor’s

immunosuppressive state, enhancing inhibitor efficacy (96).

Additionally, combining checkpoint inhibitors with radiotherapy

shows potential, though more clinical evidence is needed. Overall,

immune checkpoint inhibitors offer substantial promise for

osteosarcoma treatment, particularly in prolonging survival and

addressing pulmonary metastasis. However, optimizing and

personalizing their use remains an important area for future

research. Checkpoint inhibitors, while effective, induce immune-

related adverse events across multiple organs (97), necessitating

immunosuppression and careful monitoring.
4.5 Oncolytic virus therapy

Oncolytic virus therapy employs genetically engineered viruses

that selectively replicate within and lyse malignant cells, representing

an innovative immunotherapeutic approach. These viruses not only

exert specific cytotoxic effects on tumor cells but also promote an

inflammatory response within the tumor microenvironment,

enhancing antigen presentation and the maturation of antigen-

presenting cells, thereby boosting the immune system’s ability to

recognize and attack tumors (98, 99). Recently, several genetically

modified oncolytic viruses have shown promise in preclinical and

clinical trials for osteosarcoma. Herpes simplex virus (HSV), a

complex double-stranded DNA virus, has been genetically modified

(e.g., G207 and NV1020) to enhance its selective oncolytic activity

against tumor cells while minimizing damage to normal cells (100).

Neeti et al. reported that G207 exhibited significant oncolytic activity

in osteosarcoma cell lines and effectively inhibited tumor growth in

animal models (101). Similarly, adenoviruses (e.g., VCN-01) and

modified Delta-24-RGD oncolytic adenoviruses have demonstrated

potent anti-tumor effects, capable of suppressing primary

osteosarcoma growth and preventing metastasis (102, 103).

Additionally, vaccinia virus (VV), known for its efficient replication

and large genome capacity, has shown considerable potential in

tumor therapy (104). Morales et al. found that genetically modified

VV exhibited significant anti-tumor efficacy in osteosarcoma models,

further validating its feasibility as an emerging immunotherapeutic

agent (105). In summary, oncolytic virus therapy, as an innovative

immunotherapeutic approach, has demonstrated favorable safety and

efficacy profiles in osteosarcoma treatment, supporting its further

clinical application and research. Adverse reactions to oncolytic virus

therapy include flu-like symptoms, injection site reactions, rare

systemic inflammation (e.g., myocarditis, cytokine release

syndrome), and potential viral transmission, necessitating strict

biosafety protocols (106).
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4.6 Combination therapy strategies

Combination therapies are increasingly recognized as essential

for osteosarcoma treatment, integrating traditional approaches such

as chemotherapy, radiotherapy, and surgery with emerging

immunotherapies (107). This integrative strategy enhances

therapeutic efficacy, reduces recurrence, and improves survival. For

instance, a recent phase II clinical trial combined PD-L1 inhibitors

with doxorubicin-based chemotherapy, demonstrating a synergistic

effect that improved response rates and overcame chemoresistance in

osteosarcoma patients (108). Another study combined CTLA-4

inhibitors with targeted therapies against the IGF signaling

pathway, resulting in enhanced tumor regression and reduced

metastatic spread (109). These examples illustrate how combination

therapies can effectively address the complex resistance mechanisms

inherent in osteosarcoma. Additionally, combining PD-L1 antibodies

with chemotherapy agents can reverse chemotherapy-induced

immunosuppression, boosting the immune system’s ability to target

tumor cells (110). Additionally, trials involving the combination of

immune checkpoint inhibitors with PARP inhibitors have shown

promising results in preclinical models, suggesting potential for

overcoming DNA repair-related resistance in osteosarcoma.

Clinical trials by Zhang et al. demonstrated improved response

rates with this combination (111). Demethylation pretreatment

combined with immunotherapy also shows promise, with Wang

et al. finding that demethylating agents enhance immune recognition

and treatment efficacy (112). Furthermore, integrating oncolytic virus

therapy with checkpoint blockade has enhanced antigen presentation

and T cell infiltration, overcoming the immunosuppressive tumor

microenvironment (113). Other novel therapies, including inhalation

therapy, targeted radiotherapy, and antibody therapy, improved

survival when combining targeted radiotherapy with antibody

therapy (114).

Multimodal approaches incorporating surgery and

radiotherapy have shown significant benefits, such as reducing

tumor recurrence and enhancing survival rates in jaw

osteosarcoma (114). Furthermore, the presence of P53 and RB1

mutations may influence the efficacy of combination therapies. For

instance, tumors harboring P53 mutations may exhibit resistance to

certain chemotherapeutic agents, necessitating the inclusion of

targeted immunotherapies to overcome this resistance (115).

Similarly, RB1 mutations may enhance the metastatic potential of

osteosarcoma cells, making it imperative to integrate therapies that

specifically address metastatic pathways alongside conventional

treatments (116). Overall, combination therapy offers more

comprehensive, personalized treatment options, improving

therapeutic outcomes by integrating traditional and novel

approaches and significantly reducing recurrence and mortality

rates. However, combination therapies may exacerbate adverse

reactions, including myelosuppression and organ toxicities (117,

118). This underscores the imperative for meticulous monitoring

and the development of individualized treatment protocols to

mitigate such risks effectively.
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5 Conclusion

Immunotherapy strategies for osteosarcoma encompass a range

of approaches, including antibody-based therapies, tumor vaccines,

immune cell therapies, adoptive cell therapies, checkpoint

inhibitors, and oncolytic virus therapies. By thoroughly

understanding the distribution and roles of immune cells within

the tumor immune microenvironment, the mechanisms of immune

regulation, and the strategies employed by tumor cells to evade

immune responses, researchers can develop more precise and

effective immunotherapeutic protocols. Although immunotherapy

has shown substantial promise in the treatment of osteosarcoma,

several challenges remain, such as the realization of personalized

treatment, management of immune-related adverse effects, and

control of treatment costs. Future research should focus on

optimizing immunotherapy strategies, exploring the best

combinations for multimodal therapy, and validating their safety

and efficacy through clinical trials. These efforts are essential to

advancing immunotherapy for osteosarcoma, ultimately improving

clinical outcomes and the quality of life for patients.
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