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Dynamic changes in
peripheral blood lymphocyte
trajectory predict the
clinical outcomes of sepsis
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Xianli Lei1, Yawen Xie1, Na Cui1* and Hao Wang2*

1Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China,
2Department of Critical Care Medicine, Beijing Jishuitan Hospital, Beijing, China
Background: Sepsis induces profound derangements in the immune system,

including lymphopenia, which correlates with immunosuppression and poor

prognosis. However, most evaluations of immunosuppression in sepsis patients

rely on static, sporadic lymphocyte counts, lacking dynamic modeling over the

disease course. This study aimed to apply latent class mixed modeling on

longitudinal lymphocyte counts to uncover heterogeneous trajectory

phenotypes in sepsis patients and assess their predictive value for

clinical outcomes.

Results: Four lymphocyte trajectory phenotypes were identified in the

retrospective cohort (n=2,149) and externally validated (n=2,388): high–

declining (a, 3.8%), stable–medium (b, 69.3%), high–increasing (g, 3.2%), and
stable–low (d, 23.8%). The a phenotype exhibited the highest disease severity and

mortality (25.9%) compared with other phenotypes in both cohorts. In the

prospective cohort (n=1,056), all lymphocyte subset counts differed among

phenotypes on admission (P <.001) and were lower in non-survivors (P<.05).

Multivariable regression demonstrated that age, Acute Physiology and Chronic

Health Evaluation-II score, heart rate, natural killer cell count, infection source,

and lymphocyte trajectory phenotype were independent predictors of 28-day

mortality. A nomogram combining these variables provided individualized

risk estimations.

Conclusions: The lymphocyte trajectories delineated novel dynamic phenotypes

associated with divergent sepsis outcomes. Incorporating longitudinal trajectory

modeling and lymphocyte subsets may improve prognostic risk assessment and

guide the selection of immunotherapies tailored to specific immune phenotypes

in sepsis patients.

Clinical trial registration: https://www.chictr.org.cn/showproj.aspx?proj=18277,

identifier ChiCTR-40 ROC-17010750.
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Background

Sepsis remains a major cause of mortality andmorbidity in critically

ill patients (1). Impaired immune function is integral to the pathogenesis

of sepsis (2), and lymphopenia is correlated with immunosuppression

and a poor prognosis (3–5). Lymphocyte apoptosis in lymphoid organs

contributes to sepsis-induced lymphopenia (6); however, only sporadic

and static lymphocyte counts are measured clinically. Dynamic

fluctuations and kinetic patterns over the course of sepsis remain

underexplored. Moreover, changes in lymphocyte subsets may better

reflect immune derangements than total counts; however, few studies

have examined their value for predicting sepsis outcomes (3). A deeper

understanding of lymphocyte kinetics and derangements could enhance

risk stratification and inform the selection of immunomodulatory

therapy for patients with sepsis.

Latent class mixed modeling (LCMM) distinguishes heterogeneity

in longitudinal data by identifying latent subgroups following distinct

trajectory patterns (7). LCMM offers advantages over conventional

growth modeling in that it accommodates individual variation in

trajectories (8). Recent studies have used LCMM to model disease

progression trajectories in Alzheimer’s disease (9), acute respiratory

distress syndrome (10) and depression (11), revealing novel

phenotypes. However, no studies have delineated the temporal

lymphocyte phenotypes of patients with sepsis using LCMM.

Immunosuppression is increasingly recognized in the pathogenesis

of sepsis, necessitating immunomodulatory therapy (12). Some trials

have attempted to reverse lymphopenia and immune paralysis in

patients with sepsis using antibodies against interleukin-7 (IL-7) and
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programmed cell death protein (PD)-1, as well as other agents, with

mixed results (13, 14). Defining the immune trajectory phenotypes of

patients with sepsis could better inform the selection of

immunotherapies matched to specific immune states.

In this study, we used LCMM to unveil the heterogeneous

peripheral blood lymphocyte trajectories of patients with sepsis and

identify the correlations between these trajectories and patient

outcomes. We further sought to externally validate the derived

phenotypes and evaluate the associations between the lymphocyte

counts on admission and the trajectory classification. Elucidating

the kinetic patterns of lymphocyte subsets and identifying early

derangements may provide insights into the prognosis and

appropriate immunotherapies for patients with sepsis.
Methods

Study design and participants

This study included a retrospective cohort, an external validation

cohort, and a prospective cohort (Figure 1). The retrospective cohort

included adult patients (n = 2,149 patients) with sepsis who were

admitted to the intensive care unit (ICU) of Peking Union Medical

College Hospital, Beijing, China, between 2010 and 2019. Sepsis was

defined according to the Sepsis-3 criteria (1). Patients were identified

as having sepsis if they had a documented or suspected infection

along with an acute increase of ≥2 points in the Sequential [Organ

Failure Assessment] (SOFA) score. The inclusion criteria were (1) age
FIGURE 1

Schematic of the overall study. MIMIC, Medical Information Mart for Intensive Care; PUMCH, Peking Union Medical College Hospital; ICU, Intensive
Care Unit.
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≥18 years; (2) ICU length of stay ≥48 hours; (3) no history of

immunosuppression; and (4) at least two measurements of absolute

peripheral lymphocyte count within the first 3 days of ICU

admission. For external validation, data from the public Medical

Information Mart for Intensive Care IV (MIMIC-IV v2.2) database

were obtained according to the same inclusion criteria as the

retrospective analysis cohort (n=2,388 patients). To explore

the clinical significance of peripheral lymphocyte subset counts in

the above phenotypes, a prospective analysis was conducted to

evaluate quantitative changes in immune status along with their

predictive value for 28-day mortality (n=1,056 patients). The sample

sizes of retrospective cohort, external validation cohort and

prospective validation cohort were determined by the available

patients meeting inclusion criteria during the study periods. The

prospective cohort was used for validation rather than de novo

phenotype identification. Therefore, patients were classified into the

previously identified phenotypes using the established criteria from

the retrospective analysis. This approach was chosen to validate the

reproducibility of the phenotype classifications. This study was

approved by the institutional review board of Peking Union

Medical College Hospital (approval number JS-2800 and K3148).

This study was conducted in accordance with the ethical standards of

the Declaration of Helsinki (as revised in 2013). Informed consent

was obtained from all patients, and the study is registered at

chictr.org.cn (identifier ChiCTR-ROC-17010750).
LCMM analysis

LCMM is a type of finite mixture model that can identify

unobserved heterogeneity in longitudinal data by classifying

individuals into distinct latent trajectory classes (9). LCMM assumes

that the population comprises a mixture of distinct subgroups

characterized by different patterns of evolution over time. It uses a

polynomial regression model to approximate the shape of the

trajectory within each latent class. Maximum-likelihood estimation

is applied to determine the optimal number of latent classes that best

fit the data based on certain criteria, such as the Bayesian information

criterion (BIC) (8). Compared with conventional growth modeling,

LCMM better accounts for individual variability in trajectories by

allowing subject-specific random effects within each class (7). Recent

studies have used LCMM to uncover novel phenotypes of disease

progression for certain conditions (9–11). In this study, lymphocyte

counts were available at four time points (0, 24, 48, and 72 hours after

ICU admission) for each patient and were used for trajectory

modeling. Then the LCMM analysis was performed using the lcmm

package of R software, which contains tools for fitting LCMM and

deriving trajectories (8). LCMM was applied to the retrospective

cohort to identify distinct lymphocyte trajectory phenotypes over

the course of sepsis. The optimal number of clusters was

determined using Bayesian information criterion (BIC) scores.

These derived phenotype patterns were then used to classify patients

in both the external validation and prospective cohorts.
Frontiers in Immunology 03
External validation cohort

For external validation, we used data from the MIMIC-IV v2.2

database, which is a publicly available database (12). MIMIC-IV

contains deidentified health data associated with over 200000 ICU

admissions between 2008 and 2019 at Beth Israel Deaconess

Medical Center in Boston, MA, USA (12). The database includes

data on vital signs, medications, diagnostic codes, laboratory values,

imaging reports, clinical notes, and mortality. For the validation

cohort, MIMIC-IV was queried using Structured Query Language

to identify patients who met the same inclusion criteria as the

derivation (retrospective) cohort.
Clinical data collection and outcomes

Demographics, clinical data, and infection source details were

extracted from the hospital electronic medical records system and

MIMIC-IV database. In all of the retrospective, external validation

and prospective validation analyses, patient demographics; clinical

data, such as mean arterial pressure, heart rate, duration of

ventilator treatment, Acute Physiology and Chronic Health

Evaluation (APACHE)-II score (or Simplified Acute Physiology

Score (SAPS) for the MIMIC-IV external validation cohort), and

Sequential Organ Failure Assessment (SOFA) score; and outcomes,

such as the duration of ICU and in-hospital stay and 28-day

mortality, were recorded.

In the prospective analysis, blood samples were obtained upon ICU

admission and for 3 consecutive days after ICU admission, including

complete blood counts; C-reactive protein and procalcitonin

concentrations; blood gas analysis. Upon admission to ICU, the

immunological assessment was conducted on peripheral blood

specimens at PUMCH laboratory facilities, following previously

established protocols (13). The procedure involved taking fresh

whole blood samples treated with EDTA anticoagulant, which were

then stained using fluorochrome-conjugated monoclonal antibodies.

These antibodies targeted specific combinations: CD3/CD8/CD4,

CD3/CD16CD56/CD19, along with appropriate isotype controls

(sourced from Immunotech, France). The samples underwent three-

color flow cytometric analysis using an EPICS-XL flow cytometer

(Beckman Coulter, Brea, CA, USA) to identify and quantify T-

lymphocytes (CD3+), their CD4+ and CD8+ subpopulations, B-

lymphocytes (CD19+), and natural killer cells (CD3-CD16+CD56+).

The specific fluorescent monoclonal antibodies utilized included

CD45-FITC/CD4-RD1/CD8-ECD/CD3-PC5, CD45-FITC/CD56-

RD1/CD19-ECD/CD3-PC5, and CD16-PE (all from Beckman

Coulter, Brea, CA, USA). Additionally, serum immunoglobulin levels

(IgA, IgG, and IgM) and complement components (C3 and C4) were

measured using rate nephelometry on an Array 360 system (Beckman

Coulter, Brea, CA, USA). Measurements of immunological parameters

and lymphocyte subset counts were performed using peripheral blood

samples obtained at Peking Union Medical College Hospital.
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Statistical analysis

Clinical characteristics and outcomes were compared among

the lymphocyte trajectory phenotypes by analysis of variance or the

Kruskal–Wallis test. Continuous variables are expressed as the

mean ± standard deviation or median (interquartile range), as

appropriate. The Student’s t-test or the Mann–Whitney U test

was used for comparisons. Categorical variables are expressed as

frequencies and proportions and were compared using the c2 test or
Fisher’s exact test, as appropriate. Survival analyses were performed

using the Kaplan–Meier method with the log-rank test.

Multivariable logistic regression was used to identify independent

predictors of 28-day mortality for nomogram construction. All

statistical analyses were performed using R statistical software

(version 4.3.0, The R Foundation for Statistical Computing,

https://www.r-project.org/) and RStudio (2023.06.2 Build 561,

RStudio, Posit Software, PBC, http://www.rstudio.com/) with the

lcmm, survminer, and survival packages. A nomogram based on the

selected final model was constructed from the prospective cohort

using the rms package. A significance level of p < 0.05 from two-

sided statistical tests (e.g. t-test, ANOVA) was used to determine

statistical significance for all analyses.
Results

Retrospective cohort trajectory analysis

The retrospective cohort included 2149 patients with sepsis who

were admitted to the ICU (Supplementary Figure S1). The mean age

of the patients was 59.39 ± 17.58 years, and 1,310 of 2,149 (61.0%)

were male. The mean APACHE-II score was 19.7 ± 7.7, and the

mean SOFA score was 9.1 ± 4.0. Overall, 1220 of 2149 patients

(56.8%) had pulmonary infection as the main infection source, and

the overall 28-day mortality rate was 16.3% (351/2149)

(Supplementary Table S1).

The LCMM analysis of longitudinal peripheral lymphocyte

counts revealed four phenotypes with heterogeneous trajectories

(Figure 2): high–declining (a; n = 81), stable–medium (b; n =

1,488), high–increasing (g; n = 69), and stable–low (d; n = 511).

The optimal four clusters were determined by the BIC–cluster curve

(Supplementary Figure S2). Based on these identified patterns,

classification thresholds were established with a phenotype

showing Initial count >1.5×109/L with negative slope, b phenotype

maintaining 0.8-1.5×109/L with minimal variation, g phenotype with
initial count >1.5×109/L with positive slope, and d phenotype

maintaining counts <0.8×109/L with minimal variation. These

phenotypes and their classification criteria were subsequently

validated in the MIMIC-IV cohort (n=2,388) and applied to

classify patients in the prospective cohort (n=1,056).

Compared with the other phenotypes, patients classified as the

a phenotype were older and had higher APACHE-II and SOFA

scores (suggesting greater disease severity), a higher lactate

concentration, lower oxygenation, longer durations of vasopressor

and mechanical ventilation use, and higher 28-day mortality (25.9%
Frontiers in Immunology 04
vs. 14.0%–16.3% for the other phenotypes, p < 0.001). The g
phenotype exhibited the lowest disease severity and the lowest

mortality rate. There were no differences in sex, heart rate,

temperature, respiratory rate, or source of infection among

the groups.
External validation cohort

The external MIMIC-IV cohort included 2388 patients with

sepsis who were admitted to the ICU (Supplementary Figure S1).

The mean age of the patients was 64.76 ± 16.21 years, and 1059 of

2388 patients (44.3%) were male. The mean SAPS II score was 43.75

± 14.66, and the mean SOFA score was 4.20 ± 2.36, reflecting

moderate-to-severe disease severity. In the external validation

cohort, the overall 28-day mortality rate was 25.7% (613/2388)

(Supplementary Table S2).

The LCMM trajectory analysis confirmed similar longitudinal

peripheral lymphocyte patterns (Figure 2) for the a (n = 91), b (n =

1,043), g (n = 780), and d (n = 474) phenotypes. The optimal four

clusters were determined by the BIC–cluster curve (Supplementary

Figure S2). Similar to the retrospective cohort, patients classified as

the a phenotype were more severely ill, with a higher lactate

concentration, longer vasopressor and ventilation use, and a

higher 28-day mortality rate (38.5% vs. 21%–32% for the other

phenotypes, p < 0.001). The g phenotype continued to display the

lowest disease severity and mortality risk, while the a phenotype

showed the highest disease severity and mortality risk. Heart rate,

temperature, and respiratory rate did not differ among the

phenotypes. In the survival analysis of both the retrospective

(PUMCH) and external validation (MIMIC) cohort, the a
phenotype showed significantly lower survival over the 28-day

period compared to the other three phenotypes (p < 0.001), as

showed in Supplementary Figure S3. The dynamic changes in SOFA

scores and subsystem scores over time are shown in Supplementary

Figure S4 for the retrospective and validation cohorts. The

progression of organ dysfunction aligned with the clinical

deterioration in the more severe a phenotype compared with the

less severe g phenotype. For both the restrospective and external

validation cohorts, the chord diagrams in Figure 3 demonstrate the

relationship between the trajectory phenotypes and abnormalities

in clinical variables, conveying the associations between immune

trajectories and organ dysfunction.
Prospective cohort and nomogram
model construction

The prospective cohort included 1056 patients who were

admitted to the ICU of Peking Union Medical College Hospital

(Supplementary Figure S1). The mean age of the patients was 60.0 ±

16.6 years, and 688 of 1056 patients (65.2%) were male. The mean

APACHE-II score was 19.8 ± 7.5, and the mean SOFA score was 6.9

± 3.0. Overall, 753 patients (71.3%) had pulmonary infection as the

main infection source, and the overall 28-day mortality rate was

16.4% (173/1056) (Supplementary Tables S3, S4).
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Patients were classified into the four phenotypes: a (n = 241), b
(n = 535), g (n = 225), and d (n = 55). Patients classified as the a
phenotype were older and had higher APACHE-II scores, a longer

ICU stay, and higher 28-day mortality (22.8% vs. 11.6%–15.6% for

the other phenotypes, p < 0.001). The sex distribution was similar

among phenotypes. All lymphocyte subset counts measured upon

admission differed significantly among the phenotypes and were

lowest in the d group (Supplementary Figure S5). The lymphocyte
Frontiers in Immunology 05
subset counts were also lower among non-survivors than among

survivors (Supplementary Table S4).

Binary logistic regression was conducted to identify

independent predictors of 28-day mortality in the prospective

cohort, as showed in Table 1. Univariable logistic regression first

examined the association between each variable and mortality.

Variables with p values of <0.1 were entered into the

multivariable logistic regression model using the forward stepwise
FIGURE 2

Longitudinal lymphocyte count trajectories in the first 72 hours among the four phenotypes. (A) Retrospective cohort (PUMCH). (B) External
validation cohort (MIMIC). The x-axis represents the timing of lymphocyte measurement (0, 24, 48, and 72 hours after ICU admission), and the y-axis
represents the lymphocyte counts (x109/L). The shaded area represents the confidence interval around the smooth curve, with a confidence level of
0.95. MIMIC, Medical Information Mart for Intensive Care; PUMCH, Peking Union Medical College Hospital; ICU, Intensive Care Unit.
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method. The variables of age, APACHE-II score, heart rate, NK cell

count, infection source (pulmonary or non-pulmonary), and

lymphocyte trajectory phenotype were independent predictors of

28-day mortality (p < 0.05). A nomogram prediction model was

constructed using these four independent predictors of 28-day

mortality (Figure 4). The nomogram developed in this study

provides a visual representation of the independent predictors of
Frontiers in Immunology 06
28-day mortality, allowing clinicians to estimate individualized risk

based on a patient’s age, APACHE-II score, heart rate, NK cell

count, infection source, and lymphocyte trajectory phenotype. This

nomogram can aid in risk stratification and triage decisions for

sepsis patients upon ICU admission.
Discussion

In this study, we identified four peripheral blood lymphocyte

trajectory phenotypes in patients with sepsis and determined their

associations with clinical outcomes. Few studies have delineated

heterogeneity in longitudinal lymphocyte kinetics in patients with

sepsis. To our knowledge, this is the first study to use LCMM to

identify clinically meaningful temporal phenotypes in patients with

sepsis. The lymphocyte trajectories likely reflect sequential immune

states in sepsis progression (14). The a phenotype represented an

initial proinflammatory phase followed by immunosuppression,

while the g phenotype denoted delayed immune activation.

Identifying these phenotypes and understanding their correlations

with prognosis in patients with sepsis are significant innovations.

Several previous studies have attempted to identify sepsis

phenotypes using clustering methods on admission clinical and

biomarker data (15). These approaches defined phenotypes based

on inflammation phenotypes, metabolic phenotypes, and static

immuno-biological phenotypes (14, 16, 17). However, prior works

were limited by solely utilizing cross-sectional data at discrete

timepoints, often just at ICU admission. The temporal dynamics

and heterogeneity of sepsis progression over time were not well

delineated. No study has characterized potential heterogeneous

trajectories of immune cells or biomarkers. Our analysis addresses

this gap through modeling longitudinal lymphocyte counts to

uncover kinetic phenotypes over the early sepsis course. The

trajectories provide novel insights beyond conventional static

clusters and reflect potential sequential immune states in

sepsis immunopathology.

We also demonstrated that quantification of lymphocyte subsets

on admission allowed early risk stratification. Previous small-sample

studies have delineated lymphocyte trajectories in patients with

sepsis, but these studies were limited by their small sample sizes

and lack of external validation (3, 5). The present study leveraged

LCMM in a much larger cohort and validated the findings externally,

better characterizing lymphocyte trajectories, which likely reflect

sequential immune states (14). We also expanded the analysis

across multiple lymphocyte subsets and evaluated their significance

combining with phenotypes. Incorporating lymphocyte subset

variables with conventional risk factors improved mortality

prediction, as evidenced by the nomogram. This study uniquely

analyzed lymphocyte trajectories and lymphocyte subsets at ICU

admission to improve the risk assessment of patients with sepsis.

Interestingly, quantifying NK cells enabled additional mortality

prediction, affirming the role of NK cells in immunity. NK cell

dysfunction occurs in sepsis, contributing to immunosuppression

(18). LowNK cell counts at sepsis onset are associated with secondary
FIGURE 3

Chord diagrams showing the relationship among the four
lymphocyte trajectory phenotypes and abnormal clinical variables.
(A) Retrospective (PUMCH) cohort. (B) External validation (MIMIC)
cohort. In each diagram, the ribbons connect from an individual
phenotype to an indicator if the cohort with that phenotype
included patients in which the indicator was greater or less than the
normal range. ALT, alanine transaminase; AST, aspartate
transaminase; CRP, C-reactive protein; ESR, erythrocyte
sedimentation rate; GCS, Glasgow Coma Scale; HR, heart rate; INR,
international normalized ratio; OI, oxygenation index; PaO2, partial
pressure of oxygen; PLT, platelet; RR, respiration rate; SBP, systolic
blood pressure; SvO2, venous oxygen saturation; T, temperature;
TBil, total bilirubin; WBC, white blood cell.
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infections and mortality (19). Therefore, evaluating NK cells at

admission may identify high-risk patients requiring intervention.

The lymphocyte trajectory phenotypes identified in this study

provide perspectives into the longitudinal immune dysregulation in

sepsis (11). The a phenotype (high–decline) and d phenotype

(stable–low) manifest immunosuppressive states, supporting the

concept of sepsis-induced immunoparalysis (10, 20). The g
phenotype (high–increase) and b phenotype (stable–medium)

present contrasting activating and balanced immunity. These

trajectories may indicate the significance of staging sepsis into

sequential immune phenotypes. Further research should

investigate whether transitioning patients’ trajectories to more

favorable states may improve outcomes. Some studies have trialed

immunostimulatory therapies, such as anti-IL-7 and anti-PD-1

antibodies, in patients with sepsis to counter immunosuppression,

with mixed results (21, 22). Our findings provide a framework to

select immunotherapies matched to a patient’s immune trajectory

phenotype, which could optimize the treatment response.

This study had several limitations. First, this was a single-center

retrospective study with inherent selection bias. The lymphocyte

trajectory phenotypes require further external validation in other

cohorts and settings. Second, the effects of medications, fluids, and

interventions on lymphocyte counts were not assessed. Third, while
Frontiers in Immunology 07
our prospective cohort included detailed lymphocyte subset data,

we focused primarily on cell counts rather than functional analyses.

Future studies should incorporate functional assays of NK cells

and other lymphocyte subsets to better understand their

mechanistic roles in different phenotypes. Additionally, serial

measurements of lymphocyte subsets could provide insights into

the dynamic changes in immune cell populations and reveal

additional phenotype-specific patterns. While this study identified

associations between lymphocyte trajectory phenotypes and clinical

outcomes, it did not establish a causal relationship. Further

studies should focus on prospectively validating the lymphocyte

trajectory phenotypes, delineating the potential mechanisms of the

phenotypes, and explore whether interventions that modulate

lymphocyte kinetics can alter the trajectory phenotypes and

improve outcomes.

Another potential limitation of this study is the heterogeneity in

the sepsis cohorts and the unknown stage of sepsis at the time of

ICU admission. The lymphocyte trajectory phenotypes identified

may reflect different stages of the same underlying sepsis process,

combined with variable disease severity. For example, the high-

declining phenotype could represent early, actively propagating

sepsis, while the stable phenotypes may reflect later, more stable

stages. The increasing phenotype might indicate recovering
TABLE 1 Multivariable logistic regression analysis of predictors of 28-day mortality in the prospective cohort.

Variables
Unadjusted Adjusted

OR (95% CI) p value OR (95% CI) p value

Age 1.016 (1.005, 1.026) <.005 1.013 (1.000, 1.026) .059

APACHE-II 1.086 (1.062, 1.109) <.005 1.033 (1.059, 1.086) <.005

HR 1.019 (1.010, 1.027) <.005 1.010 (1.000, 1.019) .040

T 1.360 (1.150, 1.607) <.005 1.170 (0.962, 1.423) .117

RR 1.013 (0.991, 1.035) .246 1.004 (0.981, 1.028) .724

OI 1.000 (0.999, 1.001) .892 1.001 (1.000, 1.001) .262

BLC 0.999 (0.997, 1.001) .154 0.998 (0.999, 1.001) .462

TLC 0.999 (0.999, 1.000) .001 0.992 (0.984, 1.001) .088

CD4+ TLC 0.999 (0.998, 1.000) .065 1.008 (0.999, 1.017) .074

CD8+ TLC 0.997 (0.996, 0.999) <.005 1.007 (0.998, 1.016) .126

CD4/CD8 1.098 (1.026, 1.176) .007 1.013 (0.916, 1.121) .797

NK LC 0.992 (0.989, 0.995) <.005 0.994 (0.997, 1.000) .051

Infection source* 3.152 (1.886, 5.267) <.005 2.890 (1.655, 5.048) <.005

Lymphocyte trajectory phenotype

a 0.479 (0.257, 0.891) .020 0.271 (0.559, 1.154) .116

b 0.212 (0.116, 0.389) <.005 0.179 (0.403, 0.910) .029

g 0.298 (0.155, 0.573) <.005 0.384 (0.181, 0.815) .013

d 1.000 — 1.000 —
*Compared between the patients with pulmonary infection vs. non-pulmonary.
OR, odds ratio; CI, confidence interval; APACHE-II, Acute Physiology and Chronic Health Evaluation II; HR, heart rate; T, temperature; RR, respiratory rate; OI, oxygenation index; BLC, B-
lymphocyte count; TLC, T-lymphocyte count; NK LC, natural killer lymphocyte count; CNS, central nervous system; SST, skin, and soft tissue; UTI, urinary tract infection.
P values <0.05 were displayed in bold and considered as independent predictors of 28-day mortality.
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patients. Also, while our study demonstrates the utility of

longitudinal lymphocyte trajectory analysis in sepsis, the need for

72-hour data collection may delay phenotype classification and

clinical application. Future studies incorporating longitudinal

lymphocyte subset measurements could provide deeper insights

into immune dysfunction patterns and the relationship between

lymphocyte kinetics, sepsis stage, and outcomes.

Despite its limitations, this study, which identified dynamic

lymphocyte trajectories, provides novel insights into the

heterogeneous immune pathophysiology of patients with sepsis

over time. Early quantification of changes in lymphocyte counts

and classification of these changes into phenotypes predicts clinical

outcomes. Incorporating this approach could enhance prognostic

risk stratification and guide the selection of immunotherapies

tailored to distinct immune phenotypes in patients with sepsis.
Conclusions

Patients with sepsis demonstrate heterogeneous temporal

peripheral blood lymphocyte trajectory phenotypes that correlate

with disease severity and mortality risk. LCMM of dynamic

lymphocyte counts facilitates the classification of patients with

sepsis into phenotypes based on their lymphocyte trajectories,

with divergent clinical outcomes. Quantifying lymphocyte subsets

at ICU admission serves as an early prognostic tool for mortality

prediction. Incorporating the analysis of lymphocyte counts, both

longitudinally and at admission, could enhance risk stratification
Frontiers in Immunology 08
and guide the selection of immunotherapy strategies for patients

with sepsis.
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