
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Zhengrui Li,
Shanghai Jiao Tong University, China

REVIEWED BY

Ancuta Lupu,
Grigore T. Popa University of Medicine and
Pharmacy, Romania
Yu Shuo Pan,
Affiliated Hospital of Liaoning University of
Traditional Chinese Medicine, China

*CORRESPONDENCE

Ji Wang

doctorwang2009@126.com

Qi Wang

wangqi710@126.com

RECEIVED 22 May 2024

ACCEPTED 03 March 2025
PUBLISHED 21 March 2025

CITATION

Guo W, Hong E, Ma H, Wang J and Wang Q
(2025) Effect of the gut microbiome, skin
microbiome, plasma metabolome, white
blood cells subtype, immune cells,
inflammatory proteins, and inflammatory
cytokines on asthma: a two-sample
Mendelian randomized study and
mediation analysis.
Front. Immunol. 16:1436888.
doi: 10.3389/fimmu.2025.1436888

COPYRIGHT

© 2025 Guo, Hong, Ma, Wang and Wang. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 21 March 2025

DOI 10.3389/fimmu.2025.1436888
Effect of the gut microbiome,
skin microbiome, plasma
metabolome, white blood cells
subtype, immune cells,
inflammatory proteins, and
inflammatory cytokines on
asthma: a two-sample Mendelian
randomized study and
mediation analysis
Wenqian Guo1,2, Er Hong3, Han Ma2,4, Ji Wang2*

and Qi Wang1,2*

1School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China, 2National
Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of
Chinese Medicine, Beijing, China, 3Department of Respiratory Medicine, Ningbo Hospital of
Traditional Chinese Medicine, Zhejiang University of Chinese Medicine, Ningbo, China, 4The Second
Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
Background: Asthma is a chronic inflammatory disorder arising from

incompletely understood heterogenic gene–environment interactions. This

study aims to investigate causal relationships among gut microbiota, skin

microbiota, plasma metabolomics, white blood cells subtype, immune cells,

inflammatory proteins, inflammatory cytokines, and asthma.

Methods: First, two-sample Mendelian randomization analysis was used to

identify causal relationships. The summary statistics of 412 gut microbiota traits

(N = 7 738), 150 skin microbiota traits (N = 579), 1 400 plasma metabolite traits (N

= 8 299), white blood cells subtype counts (N = 746 667), 731 immune cell traits

(N = 3 669), 91 circulating inflammatory proteins (N = 14 744), 41 inflammatory

cytokine traits (N = 8 293), and asthma traits (N = 244 562) were obtained from

publicly available genome-wide association studies. Inverse–variance weighted

regression was used as the primary Mendelian randomization method. A series of

sensitivity analyses was performed to test the robustness of causal estimates.

Subsequently, mediation analysis was performed to identify the pathway from

gut or skin microbiota to asthma mediated by plasma metabolites, immune cells,

and inflammatory proteins.

Results: Mendelian randomization revealed the causal effects of 31 gut bacterial

features (abundances of 19 bacterial pathways and 12 microbiota), 10 skin

bacterial features, 108 plasma metabolites (81 metabolites and 27 ratios), 81

immune cells, five circulating inflammatory proteins, and three inflammatory

cytokines and asthma. Moreover, the mediation analysis results supported the
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1436888/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1436888/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1436888/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1436888/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1436888/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1436888/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1436888/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1436888/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1436888/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1436888&domain=pdf&date_stamp=2025-03-21
mailto:doctorwang2009@126.com
mailto:wangqi710@126.com
https://doi.org/10.3389/fimmu.2025.1436888
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1436888
https://www.frontiersin.org/journals/immunology


Abbreviations: MR, Mendelian randomization; WBC,

dendritic cells; ILCs, innate lymphoid cells; AHR, airway

helper; IL, interleukin; GWASs, genome-wide association

disequilibrium score regression; ASV, amplicon sequen

nucleotide polymorphism; AC, absolute cell; MFI,

intensities; MPs, morphological parameters; RC, relative

natural killer cells; IV, Instrumental variable; MR–PR

residual sum and outlier; IVW, Inverse–variance

discovery rate; CI, Confidence interval; OR, Odds ratio.

Guo et al. 10.3389/fimmu.2025.1436888

Frontiers in Immunology
mediating effects of one plasma metabolite, five immunophenotypes, and one

inflammatory protein on the gut or skin microbiota in asthma pathogenesis.

Conclusion: The findings of this study support a causal relationship among gut

microbiota, skin microbiota, plasma metabolites, immune cells, inflammatory

proteins, inflammatory cytokines, and asthma. Mediating pathways through

which the above factors may affect asthma were proposed. The biomarkers

and mediation pathways identified in this work provide new insights into the

mechanism of asthma and contribute to its prevention and treatment.
KEYWORDS

asthma, gut microbiota, skin microbiota, plasma metabolites, immune cells,
inflammatory proteins, inflammatory cytokines, Mendelian randomization
1 Introduction

Asthma is a heterogeneous chronic respiratory disease defined by

a history of respiratory symptoms (e.g., wheezing, shortness of

breath, chest tightness, and coughing) that vary over time and in

intensity together with variable expiratory airflow limitation. It affects

nearly 10% of the global population, and its prevalence has continued

to increase worldwide (1). Its prevalence, especially among children,

has increased in numerous countries (2). This condition also presents

challenges in terms of treatment efficacy and carries a substantial risk

of exacerbation (3). Asthma imposes a significant disease burden,

affecting all ages with increased mortality and reduced quality of life.

Its pathogenesis, influenced by genetic and environmental factors,

remains unclear, with genetic contributions estimated at 25%–80%

(4). Given that asthma is a crucial public health concern associated

with a high prevalence of morbidity and mortality, the study of its

pathogenesis has certain importance.

The human gut microbiota is a dynamic ecosystem of

microorganisms that interact with each other and the host.

Dysbiosis not only impacts gut immunity but also influences lung

health, contributing to the gut–lung axis concept (5). Gut

microbiota influence lung immunity through immune cell

differentiation and metabolite production affecting distal sites (6).

The gut microbiota influences asthma susceptibility, with studies

showing increased histamine-secreting microbes in asthma patients

(7). In addition, research suggests that gut microbiota variation may
white blood cells; DCs,

hyperreactivity; Th, T

studies; LDSC, linkage

ce variant; SNP, Single

median fluorescence

cell; TBNK - T, B, and

ESSO, MR pleiotropy

weighted; FDR, false

02
help prevent or alleviate asthma by modulating inflammation,

producing short-chain fatty acids, and regulating T cells (8). For

example, the perturbed gut microbiota triggered by antibiotic use in

individuals with asthma can be characterized by an exacerbated T

helper (Th) 2 and Th1/Th17 immune response and diminished

Treg population (9).

The mechanisms underlying the link between gut microbiota

and asthma involve the complex metabolic and immune

interactions of microbes, metabolites, and host immune responses

(10). Moreover, gut microbiota is thought to play an important role

in altering lung function, and several contributing pathways (Treg,

iNKT, and Th17 cells) have been identified (6). Plasma

metabolomics has identified key asthma-related metabolites (e.g.,

acetate, adenosine, alanine, and succinate) linked to hypoxia,

oxidative stress, immunity, and lipid metabolism (11), with

pediatric cases showing reduced citrate, ketone bodies, histidine,

and glutamine (12), and aberrant purine metabolism in allergic

asthma (13). Asthma arises from interactions between structural

and immune cells triggered by environmental exposures (14),

leading to airway obstruction mediated by chronic inflammation

involving DCs, eosinophils, neutrophils, lymphocytes, ILCs, and

mast cells. Altered microbiota disrupts immune homeostasis,

impacting tolerance and inflammation (15). Airway inflammation

drives hyperreactivity, mucus production, smooth muscle

proliferation, and angiogenesis, worsening obstruction and lung

function decline (16). Th2 CD4 activation promotes cytokine

release (IL-4, IL-5, IL-13), leading to IgE synthesis, mast cell

activation, and eosinophilic recruitment (17), with Th2–high

inflammation commonly observed in allergic asthma (18).

Skin is colonized by diverse microbial communities and can be

influenced over time in response to environmental factors. Skin

microbiome plays an important role in tissue homeostasis and local

immunity (19). One study found that Russian children had a higher

abundance of Acinetobacter in their skin and nasal passages, which

led to fewer cases of asthma and allergies, than Finnish individuals

(20). A certain correlation exists between skin microbiota and
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environmental biodiversity in patients with allergies (21) Although

the mechanistic role of skin dysbiosis in asthma pathogenesis

remains uncertain, changes in the environment initiate dysbiosis

in the skin along with the lung and gut, inducing functional and

compositional changes in microbiota; such changes can affect the

immunological mechanisms of allergic diseases, including

asthma (22).

Observational studies make inferring true causality difficult given

the presence of reverse causality and potential confounding factors.

Mendelian randomization (MR) has a unique advantage in exploring

the potential causal relationship between two traits on the basis of the

Mendelian laws of inheritance and minimizes the effect of

confounding factors on causal estimation (23). Mediation analysis

can further evaluate the effects of an exposure on an outcome through

a mediator (24). In contrast to airway microbiota, whose potential to

modulate asthma is well recognized, gut and skin microbiota are

anatomically distinct from the site of asthma occurrence but still play

an important role in asthma. Meanwhile, the understanding of the

effect of the skin microbiome on asthma is limited. In this study, we

conducted aMR study based on recently published summary datasets

of large genome-wide association studies (GWASs) to evaluate the

causal relationship among gut microbiota, skin microbiota, plasma

metabolites, circulating white blood cells (WBC), immune cells,

circulating inflammatory proteins, inflammatory cytokines, and

asthma and identify pathways from the gut or skin microbiota to

asthma mediated by plasma metabolites, immune cells, and

inflammatory proteins.
Frontiers in Immunology 03
2 Methods

2.1 Study design
The study flowchart is illustrated in Figure 1. First, published

GWAS summary data that included traits, such as gut microbiota,

skin microbiota, plasma metabolites, circulating WBC, circulating

inflammatory proteins, inflammatory cytokines, and asthma, were

obtained (Supplementary Table S1). Second, two-sample MR

analyses were used to evaluate the causal relationship among gut

microbiota, skin microbiota, plasma metabolites, circulating WBC,

immune cell traits, circulating inflammatory proteins, inflammatory

cytokines, and asthma. In addition, gut microbiota, skin microbiota,

and asthma were further analyzed through bidirectional two-

sample MR. Furthermore, linkage disequilibrium score regression

(LDSC) was performed to identify causal microbiota and gut

bacterial pathways. Finally, two-step analyses were used to

identify the mediation effect of plasma metabolites, circulating

inflammatory proteins, and inflammatory cytokines on the

relationship among gut microbiota, skin microbiota, and asthma.

The Strengthening the Reporting of Observational Studies in

Epidemiology Using MR checklist was completed for this

observational study (Supplementary Table S2) (25). The GWAS

data were obtained from publicly available datasets published

between 2020 and 2023, and all data analyses were conducted

in 2024.
FIGURE 1

Flow chart of the study. Mendelian randomization study rationale: assumption 1, genetic instruments are associated with exposure; assumption 2,
genetic instruments are not associated with confounders; assumption 3, genetic instruments are not associated with outcome, and genetic instruments
act on outcome only through exposure. MR, Mendelian randomization. Created in BioRender. Wenqian, G. (2025) https://BioRender.com/w65a330.
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2.2 Data sources

2.2.1 Source of GWAS data on gut microbiota
A GWAS dataset that included 7738 Dutch Microbiome Project

participants whose microbiota data were quality-controlled with

LifeLines (26) was used. A total of 207 taxa (five phyla, 10 classes, 13

orders, 26 families, 48 genera, and 105 species) and 205 pathways

representing microbial composition and function were included in

the subsequent analysis.

2.2.2 Source of GWAS data on skin microbiota
Data on skin microbiota in this study were obtained from the

participants of two cross-sectional, population-based German

cohorts , KORA FF4 (indiv iduals = 324) and PopGen

(individuals = 273), with a total of 1656 skin samples (27). Skin

samples were taken from dry (dorsal and volar forearm [PopGen]),

moist (antecubital fossa [KORA FF4 and PopGen]), and sebaceous

(retro auricular fold [KORA FF4] and forehead [PopGen]) skin

microenvironments. Microbial community profiles were obtained

from the sequencing of the V1–V2 regions from the 16 S ribosomal

RNA gene. Genome-wide association analyses were conducted on

the univariate relative abundances of individual bacteria (amplicon

sequence variants [ASVs]) and 79 nonredundant taxonomic groups

ranging from genus to phylum levels.

2.2.3 Source of GWAS data on metabolites
The summary statistics of plasma metabolomics were acquired

from the GWAS Catalog (https://www.ebi.ac.uk/gwas/) with the

study accession numbers GCST90199621–GCST90201020. The

latest study included 1091 plasma metabolites and 309 metabolite

ratios from 8299 European individuals and involved 8299 samples

and approximately 150 000 single-nucleotide polymorphism (SNP)

loci (28). The above study included 850 known metabolites out of

1091 plasma metabolites, which could be divided into eight broad

metabolic groups: lipids (395), amino acids (210), xenobiotics (130),

nucleotides (33), cofactors and vitamins (31), carbohydrates (22),

peptides (21), and energy (8). The remaining metabolites were

partially characterized molecules (21) and unknown (220).

2.2.4 Source of GWAS data on WBC counts
Effect estimates for SNPs associated with WBC subtype counts,

which included basophils, eosinophils, monocytes, lymphocytes,

and neutrophils, were obtained from the Blood Cell Consortium

meta-analysis involving 746 667 participants, including 184 424

individuals of non-EUR descent (29).
2.2.5 Source of immunity-wide GWAS data
The GWAS summary statistics for each immune trait used for

cellular subpopulation analyses are publicly available from the GWAS

Catalog (accession numbers GCST0001391–GCST0002121) (30). A

total of 731 immunophenotypes, including absolute cell (AC) counts

(n = 118), median fluorescence intensities (MFI) reflecting surface

antigen levels (n = 389), morphological parameters (MPs) (n = 32),

and relative cell (RC) counts (n = 192), were included. Specifically, the
Frontiers in Immunology 04
MFI, AC, and RC features contained B cells, CDCs, mature stages of

T cells, monocytes, myeloid cells, TBNK (T, B, and natural killer

cells), and Treg panels, whereas the MP feature contained cDC and

TBNK panels. The original GWAS on immune traits was performed

by using data from 3757 individuals through flow cytometry with the

Sardinian founder population (31).

2.2.6 Source of GWAS data on circulating
inflammatory proteins

The summary statistics of plasma metabolomics were acquired

from the GWAS Catalog (https://www.ebi.ac.uk/gwas/) under the

study accession numbers GCST90274758–GCST90274848. The

study conducted a genome-wide protein quantitative trait locus

study of 91 plasma proteins on 14824 participants measured by

using the Olink Target platform (32).

2.2.7 Source of GWAS data on
inflammatory cytokines

GWAS data for 41 inflammatory cytokines were collected from

the University of Bristol (https://data.bris.ac.uk/data/dataset). They

included three Finnish cohort studies (N = 8,293): the

Cardiovascular Risk in Young Finns Study, FINRISK1997, and

FINRISK2002 (33, 34).

2.2.8 Source of GWAS data on asthma
The GWAS summary-level data of asthma were extracted from

FinnGen Biobank by the IEU open GWAS project, which included 42

163 European-descent cases and 202 399 European-descent controls.
2.3 Instrumental variable selection

In MR analysis, Instrumental variables (IVs) were utilized as

mediators between exposure factors and outcomes to explore the

causal relationship between exposure and outcomes. IVs are

generally genetic variations, among which SNPs are the most used.

Strict quality control was performed on the SNPs to select valid

IVs for MR analysis. Three basic assumptions of IVs must be

satisfied. 1) Relevance assumption: IVs are related to the exposure

studied. 2) Independence assumption: IVs are not associated with

confounding factors. 3) Exclusion assumption: IVs do not directly

affect the outcome. They can only affect the outcome by influencing

exposure factors.

Three core assumptions were followed to identify the

IVs needed:
1. The genome-wide significance threshold of P < 5 × 10−8 is

used as a potential tool variable related to each exposure

trait. When few whole-genome significance loci were found

in the original GWAS results (35, 36), a loose P value of

1 × 10−5 was used to select SNPs associated with gut

microbiota and plasma metabolomics, and a P value of

5 × 10−5 was applied to select SNPs associated with skin

microbiota as candidate IVs.

2. SNPs related to outcome variables were excluded (P < 0.05).
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3. Independent SNPs were then clumped to a linkage

disequilibrium threshold of r2 < 0.001 in accordance with

the 1000 Genomes reference panel.

4. The MR–Egger andMR pleiotropy residual sum and outlier

(MR–PRESSO) test was used to assess horizontal

pleiotropy. The pleiotropy effect was eliminated by

removing outliers (37).

5. The strength of the selected SNPs was assessed by using the

F-statistic, and variants with F statistic < 10 were excluded

from the analysis to avoid weak instrumental bias. The F

statistic formula is F = [R2 × (n − k − 1)]/[k × (1 − R2)],

where R2 is the portion of the exposure variance explained

by the IVs, n is the sample size, and k represents the

number of IVs (38).

6. Steiger filtering was used to remove variants with evidence

of a stronger association with the outcome than its

association with the exposure.
2.4 Statistical analysis

2.4.1 Two-sample MR analysis
A two-sample MR was conducted to assess the causal

relationship among gut microbiota, skin microbiota, plasma

metabolites, WBC subtype counts, immune cell traits,

inflammatory proteins, inflammatory cytokines, and asthma.

Various methods were employed to estimate MR effects, ensuring

robustness. Inverse–variance weighted (IVW) served as the primary

approach (39) and was supplemented by the MR–Egger (40),

weighted mode (41), and weighted median (42) methods, each

tailored to different assumptions of instrument validity.

Sensitivity analyses were performed to verify the robustness of

causality and thus determine whether heterogeneity and pleiotropy

within IVs could bias the MR results. Heterogeneity testing was

performed by using the MR–Egger and IVWmethods. Cochrane’s Q

statistic was utilized to assess heterogeneity among genetic

instruments, with P > 0.05 indicating the absence of significant

heterogeneity. The MR–Egger regression equation was employed to

evaluate the horizontal pleiotropy of genetic instruments, with

P > 0.05 suggesting the absence of horizontal pleiotropy (43).

Furthermore, a powerful method, MR–PRESSO (37), in the MR–

PRESSO package was utilized to exclude possible horizontal

pleiotropic outliers that could substantially affect estimation results.

Steiger filtering (44) was conducted to remove variants with evidence

of a stronger association with the outcome than its association with

the exposure. To test the robustness of our MR results, we performed

a leave-one-out sensitivity analysis, sequentially removing each SNP

and recalculating the causal estimates.

Furthermore, in consideration of the potential chance to increase

the overall type I error during multiple comparisons, false discovery

rate (FDR) correction was implemented on the primary IVW results by

using the Benjamini–Hochberg procedure. A significance threshold of

FDR < 0.1 indicates a significant association, whereas PIVW < 0.05 but
tiers in Immunology 05
FDR > 0.1 implies a suggestive association (45). The source code used

to analyze experiment results is publicly available at https://

www.frontiersin.org/journals/immunology/articles/10.3389/

fimmu.2025.1436888/abstract#supplementary-material.

All analyses were performed by using two-sample MR (version

0.6.0), MR (version 0.8.0), and MRPRESSO package (1.0) in R

Software 4.3.3 (https://www.R-project.org).
2.4.2 Reverse MR analysis
Reverse MR analysis was performed to investigate whether

asthma had a causal effect on gut microbiota and skin microbiota

(PIVW < 0.05). In this context, asthma SNPs were regarded as IVs,

asthma as exposure, and gut, and skin microbiological features as

outcomes. The procedure for reverse MR analysis was similar to

that used for MR analysis.
2.4.3 Metabolic pathway analysis
The HMDB IDs of known metabolites were retrieved from The

Human Metabolome Database (https://hmdb.ca/) to identify

known plasma metabolites (PIVW < 0.05), and enrichment

analysis was conducted on the metabolic pathways associated

with these metabolites by using MetaboAnalyst 5.0 (https://

www.metaboanalyst.ca/). The pathway libraries selected for this

analysis were the Small Molecule Pathway Database and Kyoto

Encyclopedia of Genes and Genomes. The enrichment method

employed was the hypergeometric test, and the significance level

for metabolic pathway analysis was set at 0.01.
2.4.4 Linkage disequilibrium score
regression analysis

Bivariate LDSC was performed by using GWAS summary

statistics to show the genetic correlation among causal gut

microbiota, causal skin microbiota, and asthma (46). c2 statistics

based on SNPs were regressed through LDSC regression to

determine the heritability of a single trait and coheritability of

two traits, which can identify whether confounding factors were

present in MR analysis.
2.4.5 Mediation analysis
Mediation analysis can help explore potential mechanisms

through which exposure affects outcomes. MR can be used to

improve causal inference for mediation analysis (24). The

mediation analysis in this study focused on asthma-related gut

microbiota, skin microbiota, plasma metabolites, immune cell traits,

inflammatory proteins, and inflammatory cytokines. The causal

effect of exposure on the outcome (beta of IVW is c) was calculated

before the two-step MR analysis was performed.

The mediation effect was calculated by using two-step MR as

follows: mediation effect = beta (A) × beta (B). The total effect of gut

microbiota on asthma was obtained through the previous two-sample

MR and direct effect = (total effect −mediation effect). The mediation

proportion was calculated by using the following formula: mediation
frontiersin.org
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proportion = (mediation effect/total effect) × 100%. The 95%

confidence intervals (CI) for the mediation effects and proportions

mediated were estimated by using the delta method.
3 Results

3.1 Causal effects of gut microbiota
on asthma

Through two-sample MR analysis, we identified 31 suggestive

associations between gut microbiota and asthma (PIVW < 0.05, FDR

> 0.1; including the abundances of 19 gut bacterial pathways and 12

gut microbiota) (Figure 2; Supplementary Tables S3–5).

The phylum Actinobacteria and class Actinobacteria in the

phylum Actinobacteria had a positive causal relationship with

asthma. The species Parabacteroides merdae, Alistipes sp AP11, and

Bacteroides fragilis in the phylum Bacteroidetes had a positive causal

relationship with asthma. By contrast, the genus Paraprevotella,

species Barnesiella intestinihominis, and species Bacteroides dorei in

the phylum Bacteroidetes had a negative causal relationship with

asthma. The genus Parasutterella and species Parasutterella

excrementihominis in the phylum Proteobacteria had a negative

causal relationship with asthma. The species Eubacterium eligens

and Lachnospiraceae bacterium 7 1 58FAA in the phylum Firmicutes

had a negative causal relationship with asthma.

Dangerous and protective bacteria are partly independent and

intertwined. The species Bacteroides dorei and Bacteroides_fragilis

belong to the genus Bacteroides. The species Barnesiella

intestinihominis and Parabacteroides merdae belong to the family

Porphyromonadaceae. The above strains are members of the phylum

Bacteroidetes together with the genus Paraprevotella and species

Alistipes sp AP11. Meanwhile, the phyla Proteobacteria, Firmicutes,

and Actinobacteria have an internal unified direction of influence on

asthma (Figure 2A). The abundances of nine gut bacterial pathways

had a positive causal relationship with asthma, whereas those of 10

gut bacterial pathways had a negative causal relationship (Figure 2B).

Sensitivity analysis further verified the robustness of the MR

results (Supplementary Table S6). The Q statistics showed that only
Frontiers in Immunology 06
the species Bacteroides dorei had heterogeneity, whereas the

remaining species did not show evidence of heterogeneity.

Furthermore, the results of MR–Egger regression and MR–

PRESSO did not reveal horizontal pleiotropy (dual validation was

conducted on the abundances of 18 gut bacterial pathways and 11

gut microbiota). We did not find any reverse causality on the basis

of the MR–Steiger test.

We conducted reverse MR and found a negative causal

relationship between asthma and the family Streptococcaceae

(odds ratio [OR] = 0.854, 95% CI [0.742–0.982], P = 0.027),

genus Streptococcus (= 0.831, 95% CI [0.721–0.957], P = 0.010),

family Oscillospiraceae (OR = 0.857, 95% CI [0.769–0.955], P =

0.005), genus Oscillibacter (OR = 0.857, 95% CI [0.769–0.955], P =

0.005), and species Oscillibacter unclassified (OR = 0.850, 95% CI

[0.764–0.947], P = 0.003) (Supplementary Tables S7–10).

Interestingly, all the above strains belonged to the phylum

Firmicutes, which was negatively associated with asthma in

forward and reverse analyses.

We then performed bivariate LDSC and identified a strong

positive genetic correlation between the species Alistipes sp AP11

and asthma (rg = 0.06, P= 0.619) (Supplementary Tables S11).
3.2 Causal effects of skin microbiota
on asthma

The results obtained through the IVW method suggested 10

causal relationships between skin microbiota and asthma (PIVW <

0.05, FDR > 0.1) (Figure 3; Supplementary Tables S12–14).

We found that the phylum Proteobacteria and ASV ASV013 in

skin samples taken from a sebaceous (retro auricular fold [KORA

FF4]) skin microenvironment had a positive causal relationship

with asthma. The class Betaproteobacteria and ASV ASV012 in skin

samples taken from a moist (antecubital fossa [KORA FF4]) skin

microenvironment had a positive causal relationship with asthma.

The genus Paracoccus in skin samples taken from a moist

(antecubital fossa [PopGen]) skin microenvironment had a

positive causal relationship with asthma. The genus Kocuria in
FIGURE 2

Causal estimates of MR between gut microbiota and asthma. (A) Estimates from the IVW analysis of gut microbiota abundance on asthma.
(B) Estimates from the IVW analysis of gut bacterial pathway abundance on asthma.
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skin samples taken from a dry (volar forearm [PopGen]) skin

microenvironment had a positive causal relationship with asthma.

The family Streptococcaceae in skin samples taken from a moist

(Antecubital fossa KORAFF4]) skin microenvironment had a

negative causal relationship with asthma. The ASV ASV057 and

genus Acinetobacter in skin samples taken from a moist

(Antecubital fossa [PopGen]) skin microenvironment had a

negative causal relationship with asthma. The genus Haemophilus

in skin samples taken from a dry (dorsal forearm [PopGen]) skin

microenvironment had a negative causal relationship with asthma.

We performed reverse MR and found no causal relationship

between asthma and skin microbiota. Sensitivity analysis further

verified the robustness of the MR results. Furthermore, MR–Egger

regression and MR–PRESSO did not reveal horizontal pleiotropy.

We did not find any reverse causality on the basis of the MR–Steiger

test (Supplementary Table S15).
3.3 Causal effects of plasma metabolites
on asthma

The results obtained on the basis of the IVW method suggested

108 causal relationships between plasma metabolomics and asthma

(PIVW < 0.05, corresponding to 81 unique plasma metabolite levels

and 27 unique metabolic ratios) (Figures 4A, B; Supplementary

Figure S1, Supplementary Tables S16–18). Plasma metabolites

included amino acids (17), carbohydrates (2), cofactors and

vitamins (3), lipids (30), nucleotides (1), partially characterized

molecules (1), peptides (3), xenobiotics (4), and unknown (20).

However, following FDR correction, only four results

maintained significant negative or positive causal relationships

with asthma. Adenosine-5′-diphosphate-to-choline phosphate

ratio maintained a significant negative causal relationship with

asthma (OR = 0.9171, 95% CI [0.8804–0.9554], P = 0.00003307,

FDR = 0.0186). X-16580 levels maintained a significant negative

causal relationship with asthma (OR = 0.8674, 95% CI [0.8217–

0.9155], P = 0.00000025, FDR = 0.0003). X-13007 levels maintained

a significant positive causal relationship with asthma (OR = 1.0808,

95% CI [1.0389–1.1242], P = 0.00011440, FDR = 0.0400). Gamma-

glutamyl glutamate levels maintained a significant positive causal

relationship with asthma (OR = 1.1045, 95% CI [1.0534–1.1581],

P = 0.00003978, FDR = 0.0186).
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Sensitivity analysis further verified the robustness of the MR

results. The Q statistics showed that nine plasma metabolites had

heterogeneity, whereas the rest did not show evidence of

heterogeneity. Furthermore, the results of MR–Egger regression

and MR–PRESSO did not reveal horizontal pleiotropy (dual

validation using 72 plasma metabolite levels and 23 metabolic

ratios). We did not find any reverse causality on the basis of the

MR–Steiger test (Supplementary Table S19).

We queried the HMDB IDs for the 81 known metabolites

associated with asthma and conducted metabolic pathway

enrichment analysis on 51 identifiable compounds. The enrichment

results highlighted the metabolic pathways of glycine, serine and

threonine metabolism; phenylalanine, tyrosine, and tryptophan

biosynthesis; and methionine metabolism (Figures 4C, D;

Supplementary Table S20).
3.4 Causal effects of WBC subtype counts
and immune cell traits on asthma

The IVW method revealed 35 associations between 81 unique

immune cell traits and asthma (PIVW < 0.05) (Figure 5;

Supplementary Tables S21–24). Immune cell traits included B

cells (10), cDC (16), maturation stages of T cells (11), monocytes

(5), myeloid cells (16), TBNKs (13), and Tregs (10) (Supplementary

Table S25). In the results of a further step following FDR correction,

those marked with stars indicated the maintenance of significant

negative or positive causal relationships with asthma. The MR

results remained stable in sensitivity analyses, suggesting the

absence of significant heterogeneity and horizontal pleiotropy

(Supplementary Table S26).

Although bivariate LDSC analysis identified a strong negative

genetic association between eosinophil cell count and asthma, the

MR analysis of eosinophil cell count in asthma identified

heterogeneity and pleiotropy, which affected the results of

causality (Supplementary Table S11).
3.5 Causal effects of inflammatory proteins
and cytokines on asthma

The IVWmethod revealed five associations between inflammatory

proteins and asthma and three associations between inflammatory
FIGURE 3

Causal estimates of MR between skin microbiota and asthma. Estimates from the IVW analysis of skin microbiota on asthma.
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cytokines and asthma (PIVW < 0.05) (Figures 6, 7; Supplementary

Tables S27–30). Following FDR correction, four results maintained a

significant positive causal relationship with asthma. CD40L receptor

levels maintained a significant positive causal relationship with asthma

(OR = 1.05, 95% CI [1.02–1.09], P = 0.003, FDR = 0.0588). IL-17C

levels maintained a significant positive causal relationship with asthma

(OR = 1.23, 95% CI [1.08–1.40], P = 0.002, FDR = 0.0554). Leukemia

inhibitory factor receptor levels maintained a significant positive causal

relationship with asthma (OR = 1.11, 95% CI [1.05–1.18], P = 0.000,

FDR = 0.0057). IL-18 levels maintained a significant positive causal

relationship with asthma (OR = 1.07, 95% CI [1.03–1.11], P = 0.001,

FDR = 0.0518). The MR results remained stable in the sensitivity

analyses, suggesting the absence of significant heterogeneity and

horizontal pleiotropy (Supplementary Table S31).
3.6 Mediation analysis results

We based our findings on asthma-associated gut microbiota, skin

microbiota, metabolites, cells, proteins, and cytokines in two previously

identified samples of MR to explore the potential mechanisms for the

occurrence and development of asthma. We performed two-step MR

analysis with plasmametabolites, immune cell traits, and inflammatory

proteins and cytokines as mediator variables.
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We found seven mediators that were significant intermediate

variables linking gut microbiota or skin microbiota with asthma.

The results showed that three gut bacterial pathways play a

protective role in asthma through the mediation of IgD–CD27–B

cell %lymphocyte, CD62L-DC %DC, HLA DR++ monocyte %

monocyte, and perfluoro octane sulfonate levels. On the other

hand, three bacteria played a predisposing role in asthma through

the mediating effects of HLA DR+ natural killer %natural killer, and

CD16 on CD14+ CD16+ monocyte and CD40L receptor levels

(Figure 8; Supplementary Table S32).
4 Discussion

In this study, we first assessed the causal relationship among gut

microbiota, skin microbiota, plasma metabolome, WBC subtype

counts, immune cell traits, circulating inflammatory proteins,

inflammatory cytokines, and asthma by using MR analysis. We

found potential causal associations among 31 gut bacterial features

(abundances of 19 bacterial pathways and 12 microbiota), 10 skin

bacterial features, 108 plasma metabolites (81 metabolites and 27

ratios), 81 immune cell traits, five circulating inflammatory proteins,

three inflammatory cytokines, and asthma. Furthermore, the results

of our mediation analysis supported the mediating effects of one
FIGURE 4

Causal estimates of MR between plasma metabolites and asthma. (A) Volcano plots of the IVW MR for the associations between plasma metabolites
levels and asthma. (B) Volcano plots of the IVW MR for the associations between metabolic ratios and asthma. (C) The enrichment pathways of
metabolites in KEGG. (D) The enrichment pathways of metabolites in SMPDE database.
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plasma metabolite, five immunophenotypes, and one inflammatory

protein on gut or skin microbiota in asthma pathogenesis.

A previous study found that the phylum Firmicutes showed

significantly low abundance in children with asthma, and its dysbiosis

may be associated with an increased risk of asthma (10). The negative

association between the species Eubacterium eligens and

Lachnospiraceae bacterium 7 1 58FAA in the phylum Firmicutes

and asthma in our study was consistent with this previously reported
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finding. Another metabolomics-based study performed a

comparative analysis on stool samples from children with asthma

and healthy children aged 4–7 years. It found that children with

allergic airway illnesses tended to have a considerably lower

abundance of Firmicutes than those without. These results

suggested that childhood rhinitis and asthma may be caused by a

reduction in certain gut microbes in the phylum Firmicutes that are

involved in the up-regulation of fecal amino acids (47). Therefore,
FIGURE 5

Causal estimates of MR between immune cell traits and asthma. Estimates from the IVW analysis of immune cell traits on asthma. Immune cell traits
included (A) Maturation stages of T cell (B) B cell (C) Monocyte (D) Treg (E) TBNK (F) Myeloid cell (G) cDC. The results marked with green stars maintained
significant negative causal relationship with asthma. The results marked with orange stars maintained significant positive causal relationship with asthma.
FIGURE 6

Causal estimates of MR between inflammatory proteins and asthma. Estimates from the IVW analysis of inflammatory proteins on asthma. The
results marked with orange stars maintained significant positive causal relationship with asthma.
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through our study, we can infer whether the specific gut microbes in

the phylum Firmicutes showing reductions may be the species

Eubacterium eligens and Lachnospiraceae bacterium 7 1 58FAA.

Data from the Canadian Healthy Infant Longitudinal Development

Study demonstrated that the relative abundance of Rothia (phylum

Actinobacteria) was considerably reduced in the gut microbiome of

infants at risk for asthma in the first 100 days of life (48). We found

that phylum Actinobacteria and class Actinobacteria in phylum

Actinobacteria had a positive causal relationship with asthma likely

due to the role of other bacteria in Actinobacteria. A positive

association was found between Bacteroides fragilis colonization and

asthma predictive index (49), and we obtained findings consistent

with this result. The relative abundances of Bacteroidetes increased in

the symptomatic eosinophilic asthma group (49). In our study, the
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effects of bacteria in Bacteroidetes on asthma are complicated, and the

overall effects on asthma are unknown.

In healthy, but not in atopic, subjects, the relative abundance

of Acinetobacter species was associated with the expression of

anti-inflammatory molecules by PBMCs. Moreover, healthy

subjects exhibited a robust balance between anti-inflammatory

and Th1/Th2 gene expression, which was related to the

composition of the skin microbiota. In cell assays and a mouse

model, Acinetobacter species induced strong Th1 and anti-

inflammatory responses by immune and skin cells and protected

against allergic sensitization and lung inflammation through the

skin. Acinetobacter species in the skin microbiota were found to

protect against allergic sensitization and inflammation (19). These

findings are similar to ours.
FIGURE 8

Mediation effect of gut microbiota or skin microbiota on asthma via plasma metabolites, immune cell traits, and inflammatory proteins. The green
lines represent protective effects, and the orange lines represent risk effects. The mediation proportion is marked in the middle of the box. PFOS
Perfluoro octane sulfonate; c Total effect; GLYCOGENSYNTH.PWY.glycogen.biosynthesis.I.from.ADP.D.Glucose; PWY.2941.L.lysine.biosynthesis.II;
PWY0.1415.superpathway.of.heme.biosynthesis.from.uroporphyrinogen.III.
FIGURE 7

Causal estimates of MR between inflammatory cytokines and asthma. Estimates from the IVW analysis of inflammatory cytokines on asthma. The
results marked with orange stars maintained significant positive causal relationship with asthma.
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Patients with asthma were characterized by high levels of

methionine, glutamine, and histidine and low levels of formate,

methanol, acetate, choline, O-phosphocholine, arginine, and

glucose (50). Similarly, we found that histidine (OR = 1.046, 95%

CI [1.012–1.082], P = 0.009) and glutamine (OR = 1.053, 95% CI

[1.013–1.094], P = 0.009) levels had a positive causal relationship

with asthma. Metabolic pathway enrichment analysis on

51 identified compounds included methionine (Raw Pval =

0.0000682, FDR = 0.00284) and histidine (Raw Pval = 0.56,

FDR = 1) metabolism.

Asthma is a highly heterogeneous disease with numerous

endotypes based on discrete pathophysiological mechanisms. The

complexity of asthma is due to the involvement of multiple cell

types, including tissue-resident ILCs and other innate immune cells,

such as bronchial epithelial cells, DCs, macrophages, and eosinophils

(51). Numerous myeloid cells play a crucial role in asthma

pathogenesis (52). Meanwhile, allergic asthma is the most common

asthma phenotype (53). A considerable proportion of myeloid DCs

rapidly disappear from circulation following allergen inhalation,

suggesting that the margination of circulating myeloid DCs, as well

as their recruitment into the airway mucosa, is an important feature of

the immune response to inhaled allergens (54). Our findings are

consistent with the above results. Eosinophils, a type of immune cell,

play a critical role in the development and progression of asthma (55).

Eosinophils are more than a marker of type 2 high asthma (14).

Specifically, our bivariate LDSC analysis identified a strong negative

genetic association between eosinophil cell counts and asthma.

The CD40 receptor and its ligand CD40L is one of the most

critical molecular pairs of stimulatory immune checkpoints.

Nonhematopoietic cells expressing CD40 can also engage CD40L

and trigger a proinflammatory response (56). IL-17C has been

known to participate in allergic inflammation. It is produced by

distinct cellular sources and an essential autocrine cytokine that

regulates innate epithelial immune responses (57). IL-17C is a

member of the IL-17 family that is selectively induced in epithelia by

bacterial challenge and inflammatory stimuli. IL-17C stimulates

epithelial inflammatory responses, including the expression of

proinflammatory cytokines, chemokines, and antimicrobial peptides,

which are similar to those induced by IL-17A and IL-17F (58, 59). In

addition, IL-18 may act as a potential mediator in the causal

relationship between adult-onset asthma and ulcerative colitis (60).

IL-18 expression in the lamina propria in biopsies from subjects

with asthma did not differ from that in biopsies from controls but

decreased in the epithelium (61). Recent work identified the association

of IL-18 with the pathogenesis of asthma, wherein increased IL-18

expression was found in the serum of patients. Furthermore, IL-18

polymorphisms have been reported to be associated with susceptibility

to asthma, suggesting that IL-18 may be therapeutically relevant to

asthma (62). The above findings are similar to the results of our study.

Finally, we identified a few gut or skin bacteria on the basis of

plasma metabolites, immune phenotype, and inflammatory proteins

involved in the pathogenesis of asthma. Related research remains

scarce, and additional studies are needed on the role of the above
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factors in asthma in the future. This study has certain limitations. First,

under the currently set screening conditions, we obtained few SNPs for

some immune cells. This situation may have led to a bias in the results.

Second, given that our population data originated from individuals of

European ancestry, the generalizability of our research results to other

populations is limited. Third, asthma type analysis will provide a clear

information basis for subsequent clinical and experimental studies. The

validity of our study’s results should be further confirmed through

additional experimental and clinical studies.
5 Conclusion

Our MR study identified 31 gut bacterial features (abundances

of 19 bacterial pathways and 12 microbiota), 10 skin bacterial

features, 108 plasma metabolites (81 metabolites and 27 ratios),

81 immune cells, five circulating inflammatory proteins, and three

inflammatory cytokines involved in asthma. Moreover, the results

of our mediation analysis supported the mediating effects of

perfluoro octane sulfonate (PFOS, a plasma metabolite), IgD–

CD27–B cells, CD62L-DCs, HLA DR++ monocytes, HLA DR+

natural killer cells, and CD16 on CD14+ CD16+ monocytes (five

immunophenotypes), and CD40L receptor (an inflammatory

protein) on gut or skin microbiota in asthma pathogenesis. Our

findings contribute to the study of asthma mechanisms.
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