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Anti-glomerular basement membrane glomerulonephritis (anti-GBM GN) is a

rare autoimmune disease that often progresses to end-stage renal disease

(ESRD). Complement activation and anti-GBM GN are closely related, as

evidenced by the renal pathological characteristics of patients with anti-GBM

GN, which include the linear deposition of immunoglobulin G (IgG) and C3 along

the GBM. Increasing evidence suggests that all three pathways of complement

activation may be involved in the pathogenesis and progression of anti-GBM GN.

Anti-GBM GN’s clinical symptoms are linked to complement-related proteins,

which are risk factors that impact the disease’s prognosis. This suggests that

complement activation and activity may be the primary causes of renal damage

in anti-GBM GN. Therefore, biomarkers of complement activation can identify

anti-GBM GN cases that may progress to severe renal damage, and complement

inhibition may become a new strategy for the clinical treatment of anti-GBM GN.
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Introduction

Anti-glomerular basement membrane (anti-GBM) disease is a rare autoimmune

disorder in which the target antigen is located within the non-collagenous domain of the

alpha-3 chain of type IV collagen [a3(IV)NC1]. Blood contains anti-GBM antibodies,

which can accumulate in the kidneys and/or lungs and cause rapid progressive

glomerulonephritis (RPGN) and pulmonary hemorrhage. Because the alveoli and

glomeruli share basement membrane antigens, the kidneys and lungs are the primary

organs affected. In the revised International Chapel Hill Consensus Conference vasculitis

nomenclature, anti-GBM disease is classified as an immune complex small vessel vasculitis

(1). Lung involvement presents as diffuse alveolar hemorrhage, and simultaneous lung and

kidney damage is known as Goodpasture’s syndrome. Kidney involvement is referred to as

anti-GBM glomerulonephritis (GN). The overall incidence of anti-GBM disease is 0.5–1
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per million (2–4), with the precise incidence in children still

unclear. Anti-GBM GN is a rapidly progressive crescentic GN,

with approximately 80% of patients showing crescent formation in

over half of the glomeruli (5). In patients undergoing kidney biopsy,

anti-GBM disease accounts for 1%–5% of GN cases and 10%–15%

of crescentic GN cases (6, 7). There are 40%–60% of patients

present with Goodpasture’s syndrome (8). Isolated anti-GBM GN

has a poor prognosis, high rates of morbidity and mortality, and no

discernible gender or age differences in occurrence. Nearly all

individuals develop end-stage renal disease (ESRD) if therapy

is delayed.

The renal pathology characteristics of patients with anti-GBM

GN include crescent formation, Bowman capsule rupture,

segmental necrosis of the glomerular tuft, and linear deposits of

immunoglobulin G (IgG) and C3 along the GBM, indicating a close

relationship between antigen–antibody reactions, complement

activation, and disease pathogenesis. Increasing evidence suggests

that all three pathways of complement system activation are

involved in the development of anti-GBM GN. In this review, we

provide the latest preclinical and clinical evidence on the role of

complement activation in anti-GBM GN, aiming to offer new

potential therapeutic strategies for the clinical treatment of anti-

GBM GN.
The complement system

The complement system was first described in the 19th century.

It is considered an ancient protein-based defense mechanism and is

part of the innate immune system. There are three main activation

pathways of the complement system: the classical pathway (CP), the

alternative pathway (AP), and the lectin pathway (LP), although

cathepsin, proteolytic, and intracellular complement activation

pathways are receiving more and more attention as new routes to

trigger complement activation. For the purposes of this review, we

will focus on the more established pathways. Components involved

in the CP include C1, C4, and C2; components involved in the LP

include MBL and serine proteases; components involved in the AP

include factor B, factor D, and properdin, among others. These

three pathways converge at C3 and ultimately lead to the formation

of the membrane attack complex (MAC) C5b-9. Complement

activation mainly produces three types of effector molecules: (1)

anaphylatoxins, such as C3a and C5a, which interact with their

respective G protein-coupled receptors (C3a receptor and C5a

receptor) to attract and stimulate inflammatory cells to release

inflammatory substances; (2) opsonins, including C3b, iC3b, and

C3d, which primarily facilitate the movement and elimination of

target cells and immune complexes through covalent attachment;

and (3) C5b-9, which can directly destroy pathogens or damaged

cells. The kidney is uniquely susceptible to complement-mediated

damage for several reasons (9): (1) The kidney is one of the major

organs outside the liver for synthesizing complement proteins. The

epithelial cells of the glomerulus, mesangial cells, and epithelial cells

of the renal tubules can all synthesize and secrete complement

proteins such as C3 and C4. (2) A redundant system of soluble and
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membrane-bound regulators typically prevents uncontrolled

complement activation on host cells. However, there is a lack of

membrane-bound regulators in GBM, which is dependent on

circulating soluble complement regulators [principally factor H

(FH) and C4b binding protein]. Moreover, the FH co-localizes

with collagen IV alpha 3 (COLIV alpha 3), indicating the important

role of the FH in protecting the GBM. (3) The glomerulus is directly

exposed to circulating immune effector molecules, making it

susceptible to immune complex deposition, including

immunoglobulins and complement components along the GBM.
Complement pathway in animal
models of anti-GBM GN

The renal pathological features of wild-type anti-GBM GN

animals include neutrophil infiltration, glomerular capillary

thrombosis, proteinuria, and deposition of C3 and C4 in the

glomeruli. Compared to C3-deficient and C4-deficient mice, wild-

type mice exhibit more pronounced early neutrophil infiltration

into the glomeruli. In C3- and C4-deficient mice, the absence of

complement expression not only inhibits the progression of

proteinuria but also reduces glomerular capillary thrombosis.

Moreover, the renal protective effect of C3 deficiency is greater

than C4 (10). However, researchers have reported that in the

autologous phase of the same model, proteinuria and uremia are

more severe in C3- and C1q-deficient mice, possibly due to

impaired immune complex clearance mediated by C1q and C3

(11, 12). The same study also found that using cobra venom factor

(CVF) to stimulate anti-GBM GN WKY rats resulted in the

depletion of plasma complement on the third day. Regarding

proteinuria and the proportion of crescents, there were no

appreciable variations between the CVF treatment group and the

control group. This may be related to the construction of the animal

model, the type of experimental animals, and the titer of anti-GBM

antibodies (13).

Otten et al. (14). confirmed that the mice deficient in the CP

(C1q/mice) or the CP and LP (C4/mice) exhibit almost the same

degree of proteinuria, while the degree of proteinuria in C3/mice is

significantly reduced. In the kidneys of C1q/and C4/mice, C3

deposition remains detectable, whereas C1q and C4 deposition is

diminished or absent. This indicates that in anti-GBM GN,

complement activation can shift from the CP to the AP. The

standard complement route is first triggered by anti-GBM

antibodies, while the AP subsequently increases the synthesis of

inflammatory molecules (15, 16). This also explains why C1q/mice

and C4/mice maintain high levels of proteinuria.

Properdin is an important positive regulator. It can extend the

half-life of C3bBb by 10 times, thereby enhancing the cleavage of C3

(17). Recent studies on anti-GBM GN have demonstrated

significant deposition of properdin and other AP components in

human glomeruli affected by anti-GBM antibodies. Results of time-

course immunohistochemistry show that the deposition of C1q, C3,

and properdin in anti-GBM is consistent with serum levels,

suggesting complement activation mediated by the CP and AP.
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Moreover, 48 h after treatment with anti-GBM antibodies, the mice

showed enhanced C3 staining, which co-localized with properdin.

Deposition of C6 and C9 is only observed significantly 24 h after

administration and continues to increase within 48 to 72 h,

consistent with the increase in C3 and properdin deposition. This

indicates that complement-mediated injury in the anti-GBM GN

may weaken within 48 to 72 h (18).

The role of the complement in different stages of anti-GBM

disease is contradictory. During the acute phase of anti-GBM GN,

injury from inflammation is confirmed to be complement-

dependent, triggered by the binding of heterologous antibodies to

the GBM. Mice deficient in C3 exhibit milder renal damage. In

contrast, during the autologous phase, the immune response is

mediated by antibodies targeting antigens fixed within the GBM

and is largely complement-independent (12).
Complement pathway in humans of
anti-GBM GN

C3 is the most common complement deposition in anti-GBM

GN. C3 deposition can be observed in 41%–69.2% of the GBM of

patients with anti-GBM GN (19–21), while the decrease in serum

C3 levels is present in only 6%–27.7% of patients (20, 21). C3

activation fragments are the most commonly detected complement

proteins deposited in anti-GBMGN. According to the literature, the

kidney mesangial (22, 23), glomerular epithelial (22), endothelial

(24), and renal tubule cells (25) can produce C3. Locally synthesized

C3 may contribute to the pathogenesis of kidney injury, with a

function distinct from that of circulating complement (11).

Research indicates that serum C3 levels and renal C3 staining

intensity are independent predictors of renal prognosis in anti-

GBMGN (19, 21). C3 deposition can also promote T-cell expansion

(26), and in patients with anti-GBM GN, T-cell infiltration is

associated with renal damage (27, 28) and poor renal survival (29).

C1q deposition in anti-GBM GN is not common; it can be

observed in 3%–16.7% of the GBM in anti-GBM GN (19, 20). Anti-

C1q antibodies (a-C1q Abs) have been confirmed to promote the

deposition of C1q on target organs and cell surfaces. The plasma a-

C1qAb positivity rate in anti-GBM GN is 45.45%–63.64% (30, 31).

Currently, no association has been found between glomerular C1q

deposition and the severity of kidney injury or disease prognosis.

Additionally, circulating and urinary C1q levels are not significantly

correlated with kidney injury severity, and there is no cross-

reactivity between anti-C1q and anti-GBM antibodies (31). The

reasons for the absence of C1q deposition are unclear. a-C1q Abs

have been shown to promote the accumulation of C1q in target

organs and on the surfaces of cells. This may be due to two reasons.

Firstly, the levels of a-C1q Ab in circulation are mostly low, which

weakens their effect on C1q deposition. Secondly, unlike C3d and

C4d, C1q does not covalently bind to its ligands, thus having a short

half-life in the body and being easily cleared by macrophages (32).

In all patients with anti-GBM GN, linear and/or granular

deposits of C1q, factor B, properdin, C3d, C4d, and C5b-9 can be

detected in the glomeruli. C1q, factor B, and properdin co-localize
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with C5b-9, while properdin co-localizes with C3d. Deposition of

factor B and C5b-9 is significantly greater in glomeruli with a

crescent formation than in those without. Mannose-binding lectin

(MBL) shows diffuse deposition in the mesangium, GBM,

Bowman’s capsule, and crescents; does not co-localize with C5b-

9; and only partially co-localizes with C4d, suggesting that the LP

may not be involved in complement activation in human anti-GBM

disease. The reason is that in human anti-GBM GN, the

complement system is generally activated through the AP and the

CP. The AP may play an important role in complement activation-

induced renal damage (33). C4d is a by-product of the CP and LP,

and therefore, in cases of immune complex-mediated GN involving

the CP and LP, the deposition of C4d will be noted. Because of its

thioester bond, it can covalently bind to cell surfaces and serve as a

marker for complement activation. For anti-GBM GN, the most

common deposition site of C4d is the glomerular capillary wall,

which mostly activates the CP (34). However, there have been

reports that circulating anti-GBM antibodies are primarily of the

IgG4 subclass (35). While the IgG4 subclass are generally regarded

as having a diminished capacity for complement activation due to

their inability to bind to C1q, they retain the ability to activate the

lectin complement pathway through their interaction with MBL.

This interaction can subsequently trigger the complement system,

resulting in substantial deposition within the renal tissues (36).

Complement involvement in anti-GBM GN is reflected not only in

renal pathology. Researchers have found that 15% and 100% of

patients have elevated levels of C5a in plasma and urine,

respectively, while 30% and 92% of patients show increased levels

of soluble C5b-9 (SC5b-9) in plasma and urine. Additionally,

plasma SC5b-9 and urine C5a levels are positively correlated with

baseline serum creatinine levels and the proportion of crescents.

Therefore, the pro-inflammatory action of complement C5a and/or

the cell lytic action of C5b-9 plays a pathogenic role in anti-GBM

GN. Both can be used as indicators for clinical monitoring and

predicting disease prognosis (37).
Laminin-521 and complement in anti-
GBM GN

Laminin-521 (LM521) has recently been identified as a novel

autoantigen for anti-GBM disease (7). LM521 can induce anti-LM521

antibodies (Abs), leading to the pathogenesis of anti-GBM GN (38).

Anti-LM521 autoantibodies (autoAbs) are specific for anti-GBM/GP

diseases and are not detected in other glomerular diseases. The

positivity rate (10%–38%) of anti-LM521 autoAbs in anti-GBM GN

patients is comparable to that of anti-MPO autoAbs (39, 40). Among

101 Chinese patients, 33% were positive for LM521 autoAbs. The

presence of LM521 autoAbs is associated with younger age,

hemoptysis/pulmonary hemorrhage, and severe hematuria.

Importantly, the presence of LM521 autoAbs is associated with

worse prognosis, including a higher incidence of reaching the

composite endpoint of ESKD or death (40). Anti-LM521

autoantibodies mainly consist of IgG1 and IgG4, which may be

involved in tissue damage through different effector mechanisms.
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Tissue-bound anti-LM521 IgG1 can induce inflammation by

activating the complement system (40). Complement FH-related

protein 5 (CFHR5) is a surface complement activator that acts in

conjunction with LM521. FHR5 deposition can be detected in

glomeruli under pathological conditions, and it co-localizes with

LM521 in diseased kidneys (41). However, the precise mechanism

by which LM521 activates complement and contributes to anti-GBM

GN pathogenesis remains unclear and requires further investigation.
Heparan sulfate proteoglycan and
complement in anti-GBM disease

In addition to a345(IV) collagen and laminin 521, heparan

sulfate proteoglycan (HSPG) is also a major component of the

GBM. The main component of HSPG, heparan sulfate (HS),

regulates local complement activation by recruiting complement

regulatory protein FH. FH selectively inactivates C3b bound to host

HS, thereby limiting complement activation on the GBM (42). By

day 10 after inducing anti-GBM GN in mice, glomerular

heparanase levels had increased, coinciding with infiltration of

endothelial, epithelial, and inflammatory cells into the glomeruli.

Following administration of effective anti-heparanase polyclonal

antibodies, proteinuria in mice significantly decreased (43). Thus,

an intact HSPG structure capable of binding FH is essential for

regulating complement activation during the progression of anti-

GBM GN.
Treatment of anti-GBM GN

Anti-neutrophil cytoplasmic antibody (ANCA)-associated

glomerulonephritis (AAGN) and anti-GBM GN share similarities

in pathogenesis and therapeutic strategies. Several studies suggested

that AAGN may initially progress according to its typical disease

course, after which anti-GBM antibodies could appear along with

related clinical symptoms (44–46). The release of ANCA can

damage the kidneys, which may expose a3 (IV) NC1. This

exposure leads to the infiltration of CD11c+ macrophages, and

the exposed GBM epitope can trigger the production of anti-GBM

antibodies (46).

The rapid removal of circulating antibodies is essential for

effectively treating anti-GBM GN, along with immunosuppressive

therapy to reduce the production of autoantibodies. The

introduction of plasma exchange has significantly improved the

prognosis for patients with anti-GBM GN (47). According to the

2021 KDIGO Glomerular Diseases Guidelines, plasma exchange

should continue until anti-GBM antibody levels are no longer

detectable (48). In addition to using plasma exchange to eliminate

circulating antibodies, immunosuppressive treatments that further

inhibit antibody production are fundamental to managing anti-

GBM disease (48). The traditional treatment strategy typically

includes a combination of corticosteroids and cytotoxic drugs

like CTX.
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Complement pathway as a
therapeutic target for anti-GBM GN

In the treatment of anti-GBM illness, complement activation is

crucial, and targeted therapy that targets the complement system is

anticipated to emerge as a novel therapeutic approach. Eculizumab

is a humanized monoclonal antibody targeting C5, which can block

the cleavage of C5 and inhibit the formation of C5a and C5b-9. It

has been approved for the treatment of complement-related

diseases. Recent case reports have shown that eculizumab can also

be effective as a salvage therapy in patients with anti-GBM disease.

In two cases of anti-GBM disease, after treatment with

glucocorticoid pulses, CTX, and other treatments, renal function

continued to decline. However, after treatment with eculizumab,

their renal function improved, and the anti-GBM antibodies have

disappeared and have remained normal (49). In two cases of

Goodpasture ’s syndrome, eculizumab treatment blocked

complement-driven lung injury, leading to improved lung

function (50, 51). There are relatively few reported cases of

eculizumab treatment for anti-GBM GN. After eculizumab

treatment, the anti-GBM titers reach background levels within 16–

20 days (49). However, long-term use of eculizumab in renal disease

is not a panacea; there is a significant (550-fold) increase in the risk

of meningitis and risks of other pyogenic infections. While

eculizumab is generally considered safe, additional vaccination is

required to mitigate these infectious risks (52). Currently, no large-

scale clinical trials have evaluated complement inhibitors in anti-

GBM disease, and higher-level evidence is needed to establish their

safety and efficacy. In addition, some anti-GBM GN patients

experience disease recurrence after kidney transplantation due to

the reactivation of anti-GBM antibodies despite immunosuppressive

therapy (53). The potential impact of bevacizumab on reducing anti-

GBM levels either partially or completely to lower the recurrence

rate following kidney transplantation is a topic that warrants

investigation and consideration.
C5a receptor antagonist: avacopan

In the common pathway of complement activation, C5 is cleaved

by C5 convertase into C5a and C5b, with C5b subsequently initiating

the formation of the MAC. C5a has two receptors, C5aR1 (CD88) and

C5aR2 (C5L2), both of which are 7-transmembrane receptors that

bind C5a with high affinity. Although C5a interacts with both

receptors, the majority of it still mediates pro-inflammatory and

immunomodulatory effects on the organism. Avacopan (CCX168),

an antagonist of C5aR1, has demonstrated effectiveness in treating

AAV and has emerged as a new therapeutic option, serving as a novel

anti-complement medication to help manage inflammatory diseases

(54). The combination of avacopan with PE, CTX, and RTX has

demonstrated favorable clinical efficacy in patients with crescentic GN

who are double-positive for both ANCA and anti-GBM antibodies;

avacopan has shown particular effectiveness in promoting the recovery

of renal function (54, 55).
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Conclusion

In general, the presence of C3 alone in glomeruli indicates AP

activity; the presence of C4 and C3 without C1q indicates LP activity,

which may be related to AP-dependent amplification; and CP activity

can be detected by measuring C3, C4, C1q, and IgG in glomeruli (56).

Anti-GBM GN appears to be associated with all three complement

activation pathways, posing a challenge to clinical therapies aimed at

inhibiting complement activation. Complement inhibitors have been

approved for kidney diseases such as aHUS and AAV, and are

currently being tested for many other kidney diseases. In individuals

with deteriorating kidney function, these investigations have shown

that complement inhibition is both safe and effective. However, the full

potential and limitations of complement inhibition in treating kidney

diseases remain unknown. Anti-GBM GN is a very rare disease and

none of the currently available therapies are validated according to

evidence-based medicine (EBM) principles. However, for anti-GBM

patients presenting with severe renal injury, the use of complement

inhibitors represents a critical therapeutic intervention.
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