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The role of CTGF and MFG-E8 in
the prognosis assessment of
SCAP: a study combining
machine learning and
nomogram analysis
Tingting Lin1,2†, Huimin Wan2†, Jie Ming2, Yifei Liang2,
Linxin Ran2 and Jingjing Lu2*

1Department of Respiratory Medicine, Xiamen Humanity Hospital, Fujian Medical University,
Xiamen, China, 2Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
Background: Severe Community-Acquired Pneumonia (SCAP) is a serious global

health issue with high incidence and mortality rates. In recent years, the role of

biomarkers such as Connective Tissue Growth Factor (CTGF) and Milk Fat

Globule-Epidermal Growth Factor 8 (MFG-E8) in disease diagnosis and

prognosis has increasingly gained attention. However, their specific functions

in SCAP have still remained unclear. By conducting a prospective analysis, this

study has explored the relationship between these two proteins and the

diagnosis and mortality of SCAP patients. Additionally, founded on comparing

the applications of machine learning and nomograms as predictive models in

forecasting the 28-day mortality risk of SCAP patients, this paper has discussed

their performance in different medical scenarios to provide more accurate

treatment options and improve prognosis.

Methods: 198 patients diagnosed with SCAP, 80 patients with CAP and 80

healthy individuals were encompassed in the study. Demographic

characteristics, clinical features and biomarkers were extracted. The ELISA

method was employed to measure the levels of MFG-E8 and CTGF in the

three groups. The 28-day mortality of SCAP patients was tracked. Eleven

models, including XGBoost and CatBoost, were used as prediction models and

compared with a nomogram. And 14 scoring methods, like F1 Score and AUC

Score, were used to evaluate the prediction models.

Results: Compared to healthy controls, SCAP patients had higher serum levels of

CTGF and MFG-E8, suggesting that these biomarkers are associated with poor

prognosis. Compared to CAP patients, SCAP patients had lower levels of MFG-E8

and higher levels of CTGF. In the deceased group of SCAP patients, their CTGF

levels were higher and MFG-E8 levels were lower. Using the CatBoost model for

prediction, it performed the best, with key predictive features including

Oxygenation Index, cTnT, MFG-E8, Dyspnea, CTGF and PaCO2.
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Conclusion: This study has highlighted the critical role of clinical and

biochemical markers such as CTGF and MFG-E8 in assessing the severity and

prognosis of SCAP. The CatBoost model has shown the significant potential in

predicting mortality risk by virtue of its unique algorithmic advantages

and efficiency.
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Introduction

Community-acquired pneumonia (CAP) is a serious health

concern that can lead to acute respiratory distress syndrome

(ARDS) if improperly treated (1), with a mortality rate that

cannot be ignored (2–6). Each year, a substantial number of

adults are hospitalized due to CAP, with 10% to 20% needing

ICU admission (7, 8).Despite a decline in the 30-day mortality rate

for hospitalized CAP patients over the past decade (9), large-scale

studies have indicated that the mortality by SCAP remains

unacceptably high (10–12). Assessing the severity of the disease is

a critical step in treating SCAP (13–15), because it serves as the early

identification of high-risk patients aids in deciding the location and

intensity of treatment and in the rational allocation of medical

resources (16). Developing rapid diagnostic methods or identifying

new biomarkers is crucial for mitigating the severity and mortality

of SCAP.

Biomarkers, as precise and reliable biological indicators in

patient samples, are essential for diagnosing pneumonia,

determining its etiology, assessing risks, making triage decisions,

measuring severity and guiding antibiotic treatment strategies (17,

18). For instance, Ebrahimi et al. (19) suggested that FGF21 levels

reflect better pneumonia severity and 30-day mortality than

traditional markers, while Liu et al. (20) have shown that elevated

levels of PDGF-BB, IP-10, and RANTES can effectively distinguish

various types of acute pneumonia infections.

Connective Tissue Growth Factor (CTGF), a key cytokine in the

CCN family, plays a crucial role in tissue repair, fibrosis, angiogenesis,

tumor progression and cell proliferation. Its interaction with cell

surface receptors significantly affects cellular behaviors, including

proliferation, migration, and differentiation (21–23). Abnormal

expression of CTGF is associated with various diseases, such as

organ fibrosis, cancer progression, and specific genetic disorders.

Recent studies have stressed that miR-26a-5p can inhibit TLR

signaling by suppressing CTGF expression and reducing pro-

inflammatory factor expression in alveolar macrophages in mice,

which has meant CTGF can serve as a potential target for predicting

and treating SCAP (24). MFG-E8, a key protein found in mammalian

milk fat globule membranes, is known for its diverse biological

functions, such as immune modulation, apoptotic cell clearance
02
and tissue repair. Its structure, featuring two EGF-like repeats and

two Factor V/VIII C-terminal domains, is crucial for its function. The

association of MFG-E8 with various diseases, such as autoimmune

diseases, cancer and cardiovascular diseases, underscores its

significance (25–27). Aziz et al. (28) have emphasized MFG-E8 can

alleviate the severity of acute lung injury (ALI) in regulating

neutrophil migration. Mice lacking MFG-E8 exhibited worsened

lung injury post-LPS injection, attributed to increased neutrophil

infiltration and inflammation marker production. However,

administering recombinant MFG-E8 significantly mitigated this

migration. This insight suggests that levels and functionality of

MFG-E8 might matter in predicting the SCAP and offering new

perspectives on its prognostic potential.

The pathological features of SCAP are composed of severe

inflammatory responses and lung tissue damage, with changes in

CTGF and MFG-E8 potentially closely related to these

characteristics. However, there are no studies to prove the

relationship between SCAP and CTGF or MFG-E8. The study has

measured the levels of these biomarkers in the serum of SCAP

patients to explore their prognostic value and understand their

potential impact on patient outcomes. Establishing a clinical

prediction model for the mortality of SCAP patients is essential

for enhancing the accuracy of clinical decision-making, formulating

personalized treatment strategies, improving patient outcomes and

promoting research along with the rational allocation of

resources (5).

Recently, the technological advances and rapid development of

data science have made machine learning a core tool in medical

research and clinical practice, especially in predicting diseases and

managing patients. Machine learning models, by processing and

analyzing vast datasets—including clinical indicators, medical

imaging, and genetic information—can predict the onset,

progression, and prognosis of diseases (29–35). In conclusion, the

application of machine learning in medicine not only enhances the

precision and efficiency of treatment plans but also improves

patient outcomes and quality of life.

The application of nomograms in medicine has been

increasingly essential, especially in today’s digital age. Although

advanced technologies allow for faster, more precise calculations

with more complex methodologies and larger datasets to generate
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more accurate and generalizable prediction models, it’s difficult to

employ these models in interpretation due to their complexity, thus

hindering their use by clinicians in practice. In this context,

nomograms graphically represent the impact of each predictor on

the outcome, providing a more specific explanation of each

predictor’s effect on the outcome. Clinicians can intuitively

estimate the total effect of all predictors on a given patient and

then predict survival probabilities (36, 37).

Therefore, by comprehensively comparing the capabilities of

traditional nomograms and machine learning technologies, this

study has predicted the 28-day mortality risk of patients with

SCAP. Nomograms rely on predefined clinical parameters and

statistical correlations for risk assessment, typically based on

datasets that analyze the correlation between specific clinical

indicators and patient outcomes to predict future health outcomes

(37–39). In contrast, machine learning models use algorithm-driven

methods to identify complex patterns within datasets. Furthermore,

with continuous improvements in algorithms and computational

capabilities, machine learning techniques demonstrate tremendous

potential in handling datasets, real-time data processing, and

providing personalized medical recommendations (40–43). With

the aim of evaluating the effectiveness of machine learning and

nomogram models in practical clinical applications, we hope to

enhance the accuracy of treatment strategies and ultimately clinical

outcomes for patients.
Materials and methods

This experiment utilized 6- to 8-week-old male C57BL/6 mice

(20–25 g). The mice were housed under SPF conditions at the

Laboratory Animal Center of Tongji University, acclimated for 7

days, and provided with standard chow and water. The mice were

randomly divided into the control group and the SCAP group, with

12 mice per group. After anesthesia with pentobarbital sodium (50

mg/kg, intraperitoneally), mice in the LPS group were administered

5 mg/kg of LPS solution via intranasal instillation. LPS (from

Escherichia coli O111:B4, Cat# L4391) was purchased from

Sigma-Aldrich (St. Louis, MO, USA). The control group received

an equal volume of sterile PBS solution. Observation time points

were set at 12 hours, 24 hours, and 48 hours post-LPS

administration. At each time point, mice were euthanized via

excessive carbon dioxide inhalation, and peripheral blood,

bronchoalveolar lavage fluid, and lung tissues were collected.

Total RNA was extracted from the samples using TRIzol reagent

(Invitrogen, Waltham, MA, USA), and cDNA was synthesized with

a Transcriptor First Strand cDNA Synthesis Kit (Thermo Scientific,

Rockford, IL, USA). Real-time quantitative polymerase chain

reaction (RT-qPCR) was performed using PowerUp™ SYBR™

Green Master Mix (Thermo Scientific, Rockford, IL, USA). Gene

expression levels were normalized to b-actin as the housekeeping

gene and calculated using the 2^−DCt method. Relative gene

expression was assessed using the 2^−DDCt method. The

experimental data were analyzed using GraphPad Prism 9

software, expressed as mean ± standard deviation. Differences
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between groups were assessed using one-way analysis of variance

(ANOVA), with a significance level set at p < 0.05. The study passed

the ethical review for animal biomedical research conducted by the

Experimental Animal Center of Tongji University (TJBB03724102).

All researchers were from Shanghai East Hospital, affiliated with

Tongji University. 198 patients with SCAP, 80 patients diagnosed with

CAP and 80 healthy controls were encompassed in the study from July

5, 2022 to September 30, 2023. Besides, resampling techniques and

cross-validation methods were employed to address the dataset

imbalance. The inclusion criteria were based on the diagnosis

standards for SCAP outlined in the consensus guidelines for the

management of community-acquired pneumonia in adults by the

Infectious Diseases Society of America/American Thoracic Society

(4). The specific criteria were composed of major diagnostic criteria,

such as the requirement for tracheal intubation and mechanical

ventilation or septic shock requiring vasopressor therapy after

adequate fluid resuscitation, and minor diagnostic criteria,

including a respiratory rate > 30 breaths/min, oxygenation index

(PaO2/FiO2) ≤ 250 mmHg, multilobar infiltration, altered mental

status and/or disorientation, blood urea nitrogen ≥ 7.14 mmol/L,

systolic blood pressure < 90 mmHg, leukopenia (WBC) < 410^9/L,

thrombocytopenia (PLT) < 10010^9/L, and hypothermia < 36°C. A

diagnosis of SCAP can be made if one major criterion or three or more

minor criteria are met. The exclusion criteria of being under 18 years of

age have received antibiotics for more than 48 hours, presence of

immunodeficiency or immunosuppressive conditions such as HIV

infection or post-organ transplantation, concurrent acute

cardiovascular or cerebrovascular diseases and incomplete clinical

data. The diagnostic criteria for CAP included community onset and

pneumonia-related clinical manifestations, such as newly developed

cough, sputum production, fever, signs of pulmonary consolidation

and chest imaging, which can display newly emerged patchy infiltrates,

lobar or segmental consolidation, ground-glass opacities, or interstitial

changes, with the exclusion of other diseases like tuberculosis and lung

tumors. The healthy control group was defined as individuals with no

history of community-acquired pneumonia or other acute diseases,

who were selected founded on their health check results to ensure they

had no chronic diseases or symptoms of acute infections. Patients with

SCAP and CAP in the study were primarily recruited from the

hospital’s emergency department, general wards or ICU after

obtaining informed consent from the patients or their families. The

healthy control group, who had undergone strict screening to exclude

any health issues that could affect the study results, was recruited

through a health check center. To ensure comparability in baseline

characteristics between the SCAP, CAP groups and healthy controls,

the study employed the Propensity Score Matching (PSM) method. By

calculating the propensity scores of patients at the time of inclusion,

patients with similar baseline characteristics were paired with healthy

individuals in terms of baseline characteristics including age, sex,

medical history (such as diabetes and hypertension) and lifestyle.

After obtaining written informed consent, all participants abstained

from eating or drinking from midnight the day before blood collection

until the blood draw. This study was approved by the Ethics

Committee of Shanghai East Hospital(Research Review No. (216)

of 2022).
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Enzyme-linked immunosorbent assay

Fasting blood samples were collected from participants in the

morning, centrifuged at 3000 rpm, and the serum was stored in a

-80°C freezer. The levels of serum CTGF and MFG-E8 cytokines

were determined using the ELISA method.The ELISA kits were

purchased from SHANG HAI Animalunion Biotechnology Co., Ltd

(http://www.animaluni.com).
Statistical analysis

Data collection and preprocessing
Data collection

All 198 patients diagnosed with SCAP, 80 patients with CAP

and 80 healthy controls were included in the study. The levels of

CTGF and MFG-E8 in 198 SCAP patients, 80 CAP patients and 80

healthy individuals were measured using enzyme-linked

immunosorbent assay (ELISA), along with other clinical

information (age, gender, laboratory test results, etc.). The

mortality within 28 days of admission were tracked.

Data cleaning

Missing values were addressed, outliers were excluded and data

standardization was carried out. The Z-score method was utilized to

identify outliers by calculating the deviation of data points from the

mean, defining those with deviations and exceeding certain

threshold as outliers. Robust scaling was employed for

standardization, which scaled data based on the median and

interquartile range, offering enhanced robustness against outliers.

Feature engineering
Feature scaling

During the data transformation phase, numerical features were

standardized to scale them to a uniform range, such as having a

mean of 0 and a standard deviation of 1, with the aim of eliminating

the impact of different magnitudes and promoting the efficiency and

accuracy of subsequent analyses or model training.

Feature encoding

In this study, the dataset’s gender and baseline disease features

were binarized by following these specific steps:

Gender Feature Binarization: The gender feature was converted

to a binary feature, with males marked as 1, and females and

unknown genders marked as 0.

Baseline Disease Feature Binarization: Baseline disease data

were converted into a series of binary variables, with each disease

corresponding to one variable. Presence of the baseline disease was

marked as 1, and absence was marked as 0.

Radiographic Feature Binarization: Presence of features such as

multilobar infiltration, atelectasis, and pleural effusion were marked

as 1, and absence was marked as 0.

Clinical Symptom Feature Binarization: Presence of symptoms

such as fever, cough, sputum production, dyspnea, and altered

consciousness were marked as 1, and absence was marked as 0.
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Feature selection

To avoid overfitting the training data, we employed the LASSO

method for variable selection, an effective regularization technique. In

LASSO regression analysis, as the penalty parameter l increases, the

coefficients of various variables decrease accordingly until some

coefficients shrink to zero entirely. This process helps to simplify its

structure by eliminating unnecessary covariates from the model. In

practice, 3-fold cross-validation were employed to optimize the model,

selecting those clinical features retained when the binomial deviance was

minimized, to ensure the model’s validity and generalization ability.

Nomograms model construction
A clinical prediction model was constructed based on the selected

features and graphically represented using a nomogram (Alignment

Diagram). The nomogram is an intuitive visualization tool that uses

scale lines to show the relative impact of each feature on the prediction

outcome, which can be conducive to the understanding of the model’s

predictions for clinicians or patients. Each feature in the model

corresponds to a scale line on the nomogram, with the length and

position of these lines adjusted according to the feature’s weight. By

marking specific values on each scale line, users can quickly estimate

an overall prediction score by connecting these points. This score can

then be converted into the probability of the corresponding event

occurrence. The intuitiveness of the nomogram can allow users to

interpret complex statistical models and their predictions using a

simple chart, without computational devices (44, 45).
Building a machine learning model

In the current research, fifteen machine learning classification

algorithms, including Naive Bayes, Logistic Regression, Decision

Tree, Random Forest, Extra Trees, Bagging, Gradient Boosting,

XGBoost (XGB), XGB combined with Logistic Regression (XGB

+LR), CatBoost, CatBoost combined with Logistic Regression

(CatBoost+LR), have been utilized to construct models from the

given data. Each model underwent a systematic process of

parameter optimization and evaluation to assess its fitting

performance with the goal to select the most effective model for

risk prediction. This optimization process incorporated a technique

combining grid search with 3-fold cross-validation. This approach

was used to graphically represent the Area Under the Curve (AUC)

values and to observe changes in the model parameters.

Subsequently, the model parameters were selected based on

identifying those that align with the highest AUC score (46).

Notably, the XGB+LR and CatBoost+LR models functioned by

extracting leaf node indices as features. These indices were then

input into the LR model for further training and prediction,

following the training of the XGB and CatBoost models.
Model training and validation

In this study, a rigorous model training and validation process

were implemented to ensure the robustness and reliability of the
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classification models. The dataset was divided into a training set

(80%) and a test set (20%). The training set was used to fit various

models, including NaiveBayes, Logistic Regression, Decision Tree,

Random Forest, Extra Trees, Bagging, GBDT, XGBoost, XGBoost

+LR, CatBoost and CatBoost+LR. To optimize model parameters

and mitigate overfitting, 4-fold cross-validation within the training

subset were employed. This technique involved splitting the

training set into four smaller subsets, training the model on three

of these subsets, validating it on the remaining subset and iterating

through all four subsets. The performance metric AUC was

calculated and averaged over the four iterations to provide a

robust estimate of model performance. To address potential class

imbalance, the SMOTE (Synthetic Minority Over-sampling

Technique) was applied. The validation set, independent of the

training data, was used for fine-tuning model hyperparameters. The

final model was selected based on its performance during cross-

validation and validation set optimization, and then evaluated on

the test set (20%) to assess its generalization ability and readiness for

practical application. This systematic approach ensured the

selection of effective classifiers for our predictive task, thus

highlighting the practical utility of the models.
Assessment of models

This paper has used common evaluation metrics in statistics

and machine learning to provide different insights into the

performance of the model, namely Precision, Recall, Accuracy, F1

Score, AUC Score, Youden Index, AUC 95% Confidence Interval,

AUC Standard Error, Sensitivity, Specificity, Positive Predictive

Value, Negative Predictive Value, Positive Likelihood Ratio, and

Negative Likelihood Ratio.
Model explainability

SHAP (Shapley Additive exPlanations) values are a method

based on the Shapley values from game theory, which is used to

explain the predictions of machine learning models. They provide

an intuitive explanation of the model’s decisions by quantifying the

contribution of each feature to the model’s prediction. Each SHAP

value represents the contribution of a specific feature value relative

to the baseline or average prediction. This method is applicable to

various types of machine learning models to offer consistent

interpretation, allowing for clear understanding of each feature’s

contribution to the model’s prediction. In the context of

determining survival or mortality, SHAP values can help explain

how each feature influences the model’s prediction of an

individual’s survival probability (47).
Statistics and software

All statistical analyses and model training processes in this

study were conducted in Python (version 3.9) and R (version 3.6.1).

The ‘pandas’ and ‘numpy’ packages were utilized for data
Frontiers in Immunology 05
preprocessing, with the ‘pingouin’ package for t-tests and

correlation analyses, the ‘imbalanced-learn’ package to implement

the SMOTE algorithm and packages such as ‘sklearn’ and ‘xgboost’

for model implementation. The ‘shap’ package was used for model

interpretation, while ‘matplotlib’ and ‘seaborn’ were employed for

data visualization processing.
Results

Increased mRNA expression of CTGF and
MFG-E8 correlates with pathological
changes in SCAP

The mRNA expression levels of CTGF and MFG-E8 in

peripheral blood were significantly upregulated in the SCAP

group compared to the control group (p < 0.05). (Figure 1)

Histological analysis of lung tissue through hematoxylin and

eosin (H&E) staining revealed marked pathological changes in the

pneumonia group, including thickened alveolar walls, inflammatory

cell infiltration, edema, and partial structural destruction, whereas

the control group maintained normal alveolar architecture with

minimal inflammatory changes (Figure 2).
Demographic characteristics and
clinical information

All 198 SCAP patients, 80 CAP patients and 80 control cases were

included in this study for analysis. (Table 1) Among them, there were

122 male SCAP patients and 76 female SCAP patients, with 157

survivors and 41 fatalities. The average age of SCAP patients was

76.13 years. Among the CAP patients, there were 42 males and 38

females, with an average age of 78.02 years, while the control group

had an average age of 73.61 years, comprising 46 males and 34

females. In the detailed comparison between the SCAP, CAP and

control groups, the SCAP group exhibited elevated WBC counts with

an average value of 8.06 ± 3.8910^9, whereas the control group had a

lower average value of 6.25 ± 2.1810^9. In addition, the SCAP group

with significantly lower PaO2 levels indicated markedly reduced

oxygenation efficiency. Elevated levels of various interleukins (IL-

1b, IL-2, IL-4, etc.) in the SCAP group further emphasized a more

intense inflammatory response, potentially reflecting deeper or more

extensive inflammation. Furthermore, increased AST, ALT and

creatinine levels in the SCAP group suggested more pronounced

tissue damage and potential renal dysfunction, meaning a higher

degree of organ distress or injury in this group.
Comparison of serum CTGF and MFG-E8
Levels among healthy controls, SCAP
patients and CAP patients

In the serum of healthy controls and SCAP patients, MFG-E8

and CTGF levels were detected, both of which displayed significant

differences with p-values < 0.01 (Figures 3A, B). The concentration of
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CTGF in SCAP patients was 322.60 ± 148.64 pg/ml, while the average

level in healthy controls was 269.16 ± 91.27 pg/ml. Regarding MFG-

E8 levels, SCAP patients had an average level of 339.30 ± 32.58 pg/ml,

compared to an average of 309.72 ± 16.38 pg/ml in healthy

individuals. These findings may provide new biomarkers for future

diagnosis and treatment because they were significant for

understanding the impact of SCAP on biomarker levels in patients.

For the CAP group, the data showed an average CTGF

concentration of 274.19 ± 96.37 pg/ml and an average MFG-E8

concentration of 369.20 ± 36.55 pg/ml. On the other hand, in the

SCAP group, the average concentration of CTGF was 322.60 ±

148.64 pg/ml and MFG-E8 was 330.30 ± 32.58 pg/ml. The p-values

for CTGF andMFG-E8 in both the CAP and SCAP groups were less

than 0.001, suggesting that these two biomarkers may be related to
Frontiers in Immunology 06
the severity of pneumonia (Figures 3C, D). In the CAP and control

groups, the P value for CTGF is less than 0.05, while the P value for

MFG-E8 is less than 0.001 (Figures 3E, F).
Univariate analysis of case data between
survival and mortality groups and logistic
regression analysis of factors influencing
mortality in SCAP patients

This study conducted a detailed univariate statistical assessment

of 198 SCAP patients, including survivors (n=157) and non-survivors

(n=41). T-tests, Mann-Whitney tests and chi-square tests were used

to make statistical comparisons. Significant differences between the
FIGURE 2

HE-Stained image of lung tissue section.
FIGURE 1

The effect of SCAP on MFG-E8 and CTGF gene expression levels. * : P<0.05.
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two groups that were found in AGE, MFG-E8, CTGF, Percentage

Neutrophils, Lymphocytes, SAA, CRP, PCT, PaO2, SaO2, PaCO2,

cTnT, D-D, CTGF, AST, Oxygenation Index and Lac indicated their

potential relevance in predicting survival outcomes (Table 2).

Table 3 presents the results of the logistic regression analysis,

which was used to assess the factors influencing the risk of mortality

in patients. The analysis showed that indicators such as CTGF,

MFG-E8 and Cr displayed significant potential as biomarkers for

predicting the risk of mortality in SCAP patients and risk factors

affecting patient mortality.
Correlation analysis of various features
with SCAP mortality

The study evaluated the correlation of various features with

SCAPmortality using the Spearman correlation coefficient. Figure 4

illustrates the Pearson correlation coefficients to show the strength

of the relationship between various biomarkers and the risk of

mortality in SCAP patients. The length of each bar quantitatively

reflects the degree of correlation between each variable and patient

outcomes. Blue bars indicating a positive correlation suggest that as

the levels or presence of these factors increase, the risk of mortality

also increases. These factors included Cr, percentage of Neutrophils,

AGE, Lac, D-D, CTGF, and CRP. Conversely, red bars meaning an

inverse relationship show an increase in these factors, which is

associated with a lower risk of mortality. These factors encompass

the percentage of Lymphocytes, MFG-E8, PaO2, PaCO2,

Lymphocytes and Disturbance of consciousness.
Comparison of ROC analysis for MFG-E8
and CTGF in predicting mortality risk in
SCAP patients

The ROC curves (Figures 5A, B) illustrate the performance of

MFG-E8 and CTGF in predicting mortality risk in SCAP patients.

The AUC for MFG-E8 is 0.73, with a 95% confidence interval (CI) of

0.64 - 0.82 and the AUC for CTGF is 0.71, with a 95% CI of 0.62 - 0.8.

By comparing the two ROC curves, MFG-E8 shows slightly better

predictive capability than CTGF, but neither is sufficient on its own to

predict the 28-day mortality outcome in SCAP patients. In practical

applications, the ultimate utility of these biomarkers may require

their combination with other clinical indicators and information to

enhance predictive accuracy, thereby providing more information for

the treatment and management of SCAP patients.
Feature selection and nomogram
model establishment

A total of 52 variables are included in our feature selection

process. The results of the LASSO regression are depicted in

Figures 6A, B. Figure 6A illustrates the gradual reduction of
TABLE 1 Demographic and clinical indicators of SCAP patients, CAP
patients, and healthy controls.

Variables SCAP
(n=198)

CAP
(n=80)

Control
(n=80)

Male, n(%) 122(61.62%) 42(52.5%) 46 (56.50%)

Death, n(%) 31(20.71%) 0 0

Age(years) 76.13 ± 11.30 78.02 ± 9.73 73.16 ± 6.78

WBC(*10^9) 8.06 ± 3.89 9.38 ± 4.08 6.25 ± 2.18

Percentage_Neutrophils
(%)

76.46 ± 12.77 77.9 ± 9.7 62.71 ± 12.31

Neutrophil(*10^9/L) 6.46 ± 3.65 7.58 ± 3.98 4.32 ± 3.10

Percentage_Lymphocytes
(%)

15.22 ± 10.44 13.97 ± 7.02 26.79 ± 11.29

Lymphocytes(*10^9/L) 1.02 ± 0.72 1.15 ± 0.5 1.59 ± 0.69

SAA(mg/L) 169.8 ± 134.83 172.2 ± 125.7 37.20 ± 14.88

CRP(mg/L) 65.98 ± 70.89 72.51 ± 77 12.38 ± 20.71

PCT(ng/L) 0.71 ± 3.01 0.3 ± 0.56 0.15 ± 0.59

IL-1b(pg/ml) 5.34 ± 13.56 <2.5 <2.5

IL-2(pg/ml) 5.09 ± 13.22 <2.5 <2.5

IL-4(pg/ml) 4.75 ± 10.12 <2.5 <2.5

IL-5(pg/ml) <2.5 <2.5 <2.5

IL-6(pg/ml) 10.44 ± 304.74 27.71 ± 55.31 26.83 ± 12.68

IL-8(pg/ml) 61.12 ± 105.25 24.71 ± 75.34 43.51 ± 39.41

IL-10(pg/ml) 6.2 ± 12.74 3.23 ± 2.37 4.44 ± 8.63

IL-12P70(pg/ml) 4.75 ± 19.96 <2.5 <2.5

IL-17(pg/ml) 10.85 ± 21.37 <2.5 10.17 ± 9.12

IFNa(pg/ml) 5.77 ± 10.83 <2.5 <2.5

IFNg(pg/ml) 4.14 ± 4.65 <2.5 3.61 ± 4.84

TNGa(pg/ml) 7.11 ± 22.47 3.94 ± 3.24 <2.5

PaO2(mmHg) 87.99 ± 34.30 88.68 ± 21.56 103.72 ± 21.25

SaO2(%) 98.54 ± 61.13 97.14 ± 2.08 98.99 ± 31.36

PaCO2(mmHg) 39.15 ± 8.84 37.98 ± 6.57 40.68 ± 10.39

BE(mmol/l) -0.14 ± 3.23 1.34 ± 16.7 -0.71 ± 1.98

cTnT(ng/ml) 0.039 ± 0.14 0.017 ± 0.017 0.01 ± 0.10

D-D(mg/L) 4.08 ± 9.94 0.92 ± 1.09 0.88 ± 1.02

CTGF(pg/ml)
322.60
± 148.64

274.19
± 96.37

269.16 ± 91.27

MFG-E8(pg/ml) 330.30 ± 32.58
369.20
± 36.55

309.72 ± 16.38

AST(U/L) 45.83 ± 93.40 38.52 ± 22.44 28.05 ± 24.21

ALT(U/L) 36.14 ± 42.91 32.48 ± 27.90 31.95 ± 35.12

Lac(mmol/L) 2.52 ± 1.25 1.29 ± 0.54 1.57 ± 0.89

Cr(umol/L) 94.57 ± 76.30 81.35 ± 72.35 74.61 ± 20.80
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coefficients for each variable as the penalty coefficient increases

until reaching zero, while Figure 6B demonstrates the minimum

binomial deviation. Through Lasso analysis, seven statistically

significant variables, CTGF, cTnT, MFGE8, Diabetes,

Oxygenation Index, Percentage Neutrophils, and Lac (Table 4),

have been selected. These seven variables were then incorporated

into the construction of the predictive model. A nomogram for the

predictive model was established using R to predict whether SCAP

patients would survive or not, as shown in Figure 7. The top row of

the figure represents the scale for estimating the risk score for each

variable. The corresponding score for each variable value can be

read on the Points scale vertically, and then the total score is

calculated on the Total Points scale. Finally, the SCAPmortality risk
Frontiers in Immunology 08
can be determined based on the value corresponding to the total

score on the bottom row.
Model discrimination and evaluation
using nomogram

The dataset was divided into a training set of 158 individuals

and a validation set of 40 individuals. Calibration curves and ROC

curves were used to evaluate the accuracy and discrimination ability

of the predictive model. The closer the “calibration correction” line

is to the “ideal” line, the better the calibration effect of the model.

Figures 8A, B indicate this model has good calibration.
FIGURE 3

Comparison of CTGF and MFG-E8 levels among SCAP, CAP, and control groups.
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TABLE 2 Single factor comparison table of survival status between the survival group and death group of SCAP patients.

Variables Survival (n = 157) Death (n = 41) Statistic P

AGE, Mean ± SD 74.89 ± 11.64 80.88 ± 8.64 t=-3.66 <.001

MFG-E8(pg/ml), Mean ± SD 343.70 ± 31.26 322.46 ± 32.83 t=3.83 <.001

Oxygenation Index, Mean ± SD 344.70 ± 31.26 327.46 ± 32.83 t=3.11 0.002

Systolic blood pressure (mmHg), Mean ± SD 134.73 ± 19.82 136.17 ± 18.94 t=-0.42 0.675

WBC(*10^9/L), M (Q1, Q3) 7.27 (4.78, 9.83) 7.59 (6.30, 10.12) Z=-1.32 0.188

Percentage Neutrophils(%), M (Q1, Q3) 76.50 (67.20, 86.00) 83.60 (77.80, 89.80) Z=-3.33 <.001

Neutrophil(*10^9/L), M (Q1, Q3) 5.79 (3.39, 8.13) 6.38 (5.13, 8.68) Z=-1.94 0.052

Percentage Lymphocytes(%), M (Q1, Q3) 14.70 (8.00, 22.60) 8.70 (5.00, 12.30) Z=-4.12 <.001

Lymphocytes(*10^9/L), M (Q1, Q3) 0.91 (0.65, 1.38) 0.62 (0.45, 0.83) Z=-3.60 <.001

SAA(mg/L), M (Q1, Q3) 169.82 (29.75, 275.95) 236.98 (153.36, 288.00) Z=-2.29 0.022

CRP(mg/L), M (Q1, Q3) 36.46 (12.08, 78.65) 70.17 (37.97, 116.13) Z=-3.06 0.002

PCT(ng/L), M (Q1, Q3) 0.07 (0.04, 0.20) 0.19 (0.10, 0.56) Z=-4.25 <.001

IL-1b(pg/ml), M (Q1, Q3) 2.50 (2.50, 5.34) 2.50 (1.25, 3.72) Z=-0.86 0.392

IL-2(pg/ml), M (Q1, Q3) 2.50 (1.25, 5.09) 2.50 (1.25, 3.81) Z=-0.87 0.385

IL-4(pg/ml), M (Q1, Q3) 3.05 (2.50, 4.75) 2.57 (2.50, 4.75) Z=-0.36 0.721

IL-5(pg/ml), M (Q1, Q3) 2.35 (1.25, 2.50) 2.35 (1.25, 2.50) Z=-0.63 0.528

IL-6(pg/ml), M (Q1, Q3) 17.40 (5.48, 100.44) 44.84 (10.88, 100.44) Z=-1.82 0.069

IL-8(pg/ml), M (Q1, Q3) 41.61 (12.42, 61.12) 39.90 (23.10, 61.12) Z=-0.37 0.715

IL-10(pg/ml), M (Q1, Q3) 4.05 (2.50, 6.21) 5.63 (3.34, 6.21) Z=-1.72 0.086

IL-12P70(pg/ml), M (Q1, Q3) 2.50 (1.25, 3.08) 2.50 (1.25, 3.70) Z=-0.02 0.983

IL-17(pg/ml), M (Q1, Q3) 8.56 (2.50, 12.79) 10.85 (5.00, 15.67) Z=-1.22 0.222

IFNa(pg/ml), M (Q1, Q3) 2.75 (2.50, 5.77) 2.50 (2.50, 5.77) Z=-0.98 0.329

IFNg(pg/ml), M (Q1, Q3) 3.71 (2.50, 4.25) 4.14 (2.50, 4.22) Z=-0.54 0.592

TNGa(pg/ml), M (Q1, Q3) 3.06 (2.50, 5.91) 3.90 (2.50, 6.53) Z=-0.23 0.819

PaO2(mmHg), M (Q1, Q3) 84.77 (68.49, 109.80) 72.20 (59.50, 82.00) Z=-3.69 <.001

SaO2(%), M (Q1, Q3) 97.00 (94.40, 98.60) 94.70 (91.80, 96.70) Z=-3.34 <.001

PaCO2(mmHg), M (Q1, Q3) 38.86 (35.48, 43.40) 34.60 (31.80, 37.40) Z=-4.53 <.001

BE, M (Q1, Q3) -0.14 (-1.20, 2.10) 0.00 (-2.40, 1.00) Z=-1.10 0.270

Kl-6(U/Ml), M (Q1, Q3) 1041.27 ± 753.31 1024.74 ± 175.15 Z=-1.32 0.188

cTnT(Ng/Ml), M (Q1, Q3) 0.01 (0.01, 0.02) 0.03 (0.02, 0.05) Z=-5.20 <.001

D-D(mg/L), M (Q1, Q3) 1.00 (0.44, 1.72) 2.52 (1.14, 6.45) Z=-4.46 <.001

CTGF(pg/ml), M (Q1, Q3) 279.57 (227.75, 388.51) 303.86 (267.78, 471.58) Z=-2.28 0.023

AST(U/L), M (Q1, Q3) 31.00 (24.00, 43.00) 41.00 (31.10, 56.10) Z=-2.69 0.007

ALT(U/L), M (Q1, Q3) 25.00 (19.00, 38.00) 30.00 (24.00, 46.00) Z=-1.68 0.092

Lac(mmol/L), M (Q1, Q3) 2.30 (1.70, 2.90) 2.50 (2.10, 3.50) Z=-2.20 0.028

Cr(umol/L), M (Q1, Q3) 75.00 (60.00, 91.00) 87.70 (69.00, 127.00) Z=-2.67 0.008

Respiratory rate (times/minute), M (Q1, Q3) 20.00 (18.00, 21.00) 19.00 (18.00, 21.00) Z=-1.38 0.167

Urea nitrogen (mmol/L), M (Q1, Q3) 8.25 (4.78, 12.83) 9.00 (4.76, 12.11) Z=-0.24 0.809

Sex, n(%) c²=4.28 0.039

(Continued)
F
rontiers in Immunology
 09
 frontiersin.org

https://doi.org/10.3389/fimmu.2025.1446415
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2025.1446415
TABLE 2 Continued

Variables Survival (n = 157) Death (n = 41) Statistic P

Female 66 (42.04) 10 (24.39)

Man 91 (57.96) 31 (75.61)

Coronary Heart Disease, n(%) c²=2.60 0.107

0 132 (84.08) 30 (73.17)

1 25 (15.92) 11 (26.83)

Chronic Bronchitis, n(%) c²=0.58 0.447

0 151 (96.18) 41 (100.00)

1 6 (3.82) 0 (0.00)

COPD, n(%) c²=0.56 0.456

0 149 (94.90) 37 (90.24)

1 8 (5.10) 4 (9.76)

Atrial Fibrillation, n(%) c²=0.00 1.000

0 149 (94.90) 39 (95.12)

1 8 (5.10) 2 (4.88)

Diabetes, n(%) c²=0.39 0.534

0 99 (63.06) 28 (68.29)

1 58 (36.94) 13 (31.71)

Hypertension, n(%) c²=0.19 0.662

0 63 (40.13) 18 (43.90)

1 94 (59.87) 23 (56.10)

Fever, n(%) c²=2.47 0.116

0 32 (20.38) 4 (9.76)

1 125 (79.62) 37 (90.24)

Cough, n(%) c²=0.04 0.835

0 15 (9.55) 5 (12.20)

1 142 (90.45) 36 (87.80)

Dyspnea, n(%) c²=2.89 0.089

0 84 (53.50) 28 (68.29)

1 73 (46.50) 13 (31.71)

Disturbance of consciousness, n(%) c²=5.77 0.016

0 133 (84.71) 41 (100.00)

1 24 (15.29) 0 (0.00)

Multiple lobar infiltration, n(%) c²=1.76 0.185

0 41 (26.11) 15 (36.59)

1 116 (73.89) 26 (63.41)

Atelectasis of the lungs, n(%) c²=0.01 0.931

0 141 (89.81) 36 (87.80)

1 16 (10.19) 5 (12.20)

Pleural effusion, n(%) c²=0.17 0.679

(Continued)
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Additionally, 14 evaluation metrics—Precision, Recall, Accuracy,

F1 score, AUC score, AUC 95% confidence interval, AUC standard

error, Youden index, Sensitivity, Specificity, Positive predictive

value, Negative predictive value, Positive likelihood ratio, and

Negative likelihood ratio (Table 5), were employed to

comprehensively evaluate the model. The results have shown that

the AUC value of the training set for the predictive model is 0.76
Frontiers in Immunology 11
(Figure 8C), indicating good predictive ability. Next, the test set was

used to further examine the accuracy and discrimination ability of

the model. The AUC value corresponding to the ROC curve in the

test group is 0.74 (Figure 8D), which is similar to the results

obtained in the training set. This further demonstrates the high

accuracy and reliability of the predictive model we constructed for

predicting the mortality rate of SCAP patients.
TABLE 3 Logistic regression analysis table for mortality of SCAP patients.

Variables b S.E Z P OR (95%CI)

AGE 0.05 0.02 2.97 0.003 1.06 (1.02 ~ 1.09)

Percentage Neutrophils(%) 0.06 0.02 3.19 0.001 1.06 (1.02 ~ 1.10)

Percentage Lymphocytes(%) -0.11 0.03 -3.75 <.001 0.90 (0.85 ~ 0.95)

Lymphocytes(*10^9/L) -1.28 0.44 -2.90 0.004 0.28 (0.12 ~ 0.66)

SAA(mg/L) 0.00 0.00 1.47 0.141 1.00 (1.00 ~ 1.00)

CRP(mg/L) 0.01 0.00 2.12 0.034 1.01 (1.01 ~ 1.01)

PCT(ng/L) 0.01 0.06 0.09 0.926 1.01 (0.90 ~ 1.12)

PaO2(mmHg) -0.03 0.01 -3.45 <.001 0.97 (0.96 ~ 0.99)

SaO2(%) 0.00 0.00 1.07 0.284 1.00 (1.00 ~ 1.01)

PaCO2(mmHg) -0.11 0.03 -3.31 <.001 0.90 (0.84 ~ 0.96)

cTnT(Ng/Ml) 1.85 1.18 1.57 0.116 6.35 (0.63 ~ 63.59)

D-D(mg/L) 0.04 0.02 2.31 0.021 1.04 (1.01 ~ 1.08)

MFG-E8(pg/ml) -0.04 0.01 -4.41 <.001 0.96 (0.94 ~ 0.98)

CTGF(pg/ml) 0.01 0.00 3.14 0.002 1.01 (1.01 ~ 1.01)

AST(U/L) 0.01 0.01 1.06 0.289 1.01 (0.99 ~ 1.02)

Lac(mmol/L) 0.35 0.14 2.55 0.011 1.41 (1.08 ~ 1.84)

Cr(umol/L) 0.01 0.00 2.77 0.006 1.01 (1.01 ~ 1.01)

Oxygenation Index -0.02 0.01 -2.98 0.003 0.98 (0.97 ~ 0.99)

Sex

Female 1.00 (Reference)

Man 0.81 0.40 2.04 0.042 2.25 (1.03 ~ 4.90)

Disturbance of consciousness

0 1.00 (Reference)

1 -17.40 1304.53 -0.01 0.989 0.00 (0.00 ~ Inf)

Multiple lobar infiltration

0 1.00 (Reference)

1 2.20 1.03 2.13 0.033 9.06 (1.20 ~ 68.65)
TABLE 2 Continued

Variables Survival (n = 157) Death (n = 41) Statistic P

0 94 (59.87) 26 (63.41)

1 63 (40.13) 15 (36.59)
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Training and validation of machine
learning models

In the process of using machine learning methods to predict the

28-day mortality of SCAP patients, eleven models including Naive

Bayes, Logistic Regression, Decision Tree, Random Forest, Extra

Trees, Bagging, Gradient Boosting (GBDT), XGBoost (XGB),

XGBoost combined with Logistic Regression (XGB+LR), CatBoost,

and CatBoost combined with Logistic Regression (CatBoost+LR)

were used for prediction. The predictive performance of various

models on the test dataset was evaluated using the AUC metric. As

shown in Figure 9, both Naive Bayes and Logistic Regression with

high AUC values of 0.80 indicated good classification performance.

In contrast, the AUC value of the Decision Tree model was only 0.61,

suggesting its performance was relatively poor. The Random Forest

and Bagging models both with the AUC values of 0.66 displayed

moderate performance. The Extra Trees model that surpassed some

other models with an AUC value of 0.72 demonstrated good

performance. The AUC value of GBDT was 0.70, indicating
Frontiers in Immunology 12
reasonable performance. The AUC value of XGBoost model when

used alone was 0.62. Notwithstanding, when combined with LR, its

AUC value increased to 0.69. The CatBoost model performed the best

among all models presented, with AUC value as high as 0.84.

However, when CatBoost was combined with LR, the AUC value

slightly decreased to 0.83. Although there was a slight reduction, it

still exhibited strong classification ability. Figure 10 provides a

detailed comparison of the performance metrics of each model on

the test dataset, including Precision, Recall, Accuracy, F1 score, AUC

score, AUC 95% confidence interval, AUC standard error, Youden

index, Sensitivity, Specificity, Positive predictive value, Negative

predictive value, Positive likelihood ratio and Negative likelihood

ratio, totaling 14 evaluation metrics. To further compare the

performance of the CatBoost model with the pneumonia score

model (PSI, CURB-65, CRB-65, SOFA score,and APACHE II

score), the ROC curve was plotted. As shown in Figure 11, the

AUC value of PSI is 0.50, CURB-65 is 0.52, CRB-65 is 0.52, SOFA is

0.5 and APACHE II is 0.50. These results have indicated that the

performance of these traditional pneumonia scoring models is not as
FIGURE 4

Pearson coefficient plot.
FIGURE 5

ROC curves for predicting mortality risk in SCAP patients.
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effective as the CatBoost model, which shows higher predictive

accuracy with AUC value of 0.844.
Interpretation and evaluation of machine
learning models

SHAP values (SHapley Additive exPlanations) represent the

contribution of specific features to a given model’s prediction. The
Frontiers in Immunology 13
x-axis in the graph represents the SHAP values, where positive and

negative values signify the contribution of increasing or decreasing

feature values to the model’s prediction, respectively. Positive values

(to the right in the graph) imply that increasing feature values tend

to push the prediction towards the positive class, while negative

values (to the left in the graph) indicate a tendency towards negative

class prediction. Based on the SHAP algorithm, the feature

importance ranking explanation of the CatBoost model

(Figure 12) demonstrates that Oxygenation Index, cTnT, MFG-

E8, Dyspnea, CTGF, PaCO2, D-D, Percentage_Lymphocytes,

PaO2, and ALT are the most influential features in predicting the

results in the CatBoost model.
Discussion

In this study, the levels of two key biomarkers—CTGF and

MFG-E8—in patients with SCAP are significantly elevated

compared to healthy controls. Compared to the CAP group, the

SCAP group has lower levels of MFG-E8 and higher levels of CTGF.

Besides, among SCAP patients, those in the deceased group show

elevated levels of CTGF and lowered levels of MFG-E8 compared to

the surviving group. These findings have stressed the potential

application of these two biomarkers in the diagnosis and prognostic
FIGURE 6

Lasso regression analysis Lasso.
FIGURE 7

Column chart of predictive model for mortality risk in SCAP patients.
TABLE 4 Obtaining optimal clinical features of SCAP through
dimensionality reduction using LASSO algorithm.

Feature Lasso coefficient

CTGF 1.30293911

cTnT 0.82086296

MFG-E8 -0.73542844

Diabetes -0.12702843

Oxygenaation Index -0.08216541

Percentage Neutrophils 0.06493113

Lac 0.02201748
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FIGURE 8

Model performance evaluation in training and test sets.
TABLE 5 Table of performance evaluation metrics for nomogram model.

Scoring indicators Score

Precision 0.500

Recall 0.024

Accuracy 0.793

F1score 0.665

AUC score 0.764

AUC 95% confidence interval 0.687-0.836

AUC standard error 0.077

Youden index 0.018

Sensitivity 0.994

Specifity 0.024

Positive predictive value 0.500

Negative predictive value 0.796

Positive likelihood radio 1.018

Negative likelihood radio 0.261
F
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FIGURE 9

Comparison of ROC curves in machine learning models.
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evaluation of SCAP. The results provide clinicians with critical

biological information to help identify SCAP patients during

diagnosis and offer researchers new directions to explore the

specific roles of these biomarkers in the progression of SCAP.

Among SCAP patients, those in the deceased group have elevated

levels of CTGF compared to the surviving group, potentially reflecting

the role of CTGF in enhancing fibrosis processes and lung injury (24,

48, 49). Research indicates that CTGF is a pro-inflammatory factor

regulated negatively by miR-26a-5p, thereby influencing inflammation

and tissue repair mechanisms (48). The upregulation of CTGF in

pulmonary fibrosis suggests its association with worsening lung

conditions. Therefore, CTGF, by directly participating in lung tissue

repair and fibrosis, offers more accurate prediction of disease

progression compared to other biomarkers by presenting unique

advantages and therapeutic potential. MFG-E8, which differs from

other biomarkers in predicting SCAP due to its unique role in

regulating inflammatory responses and promoting tissue repair (28,

50–52), can reduce neutrophil infiltration and promote the clearance of

apoptotic cells, thus preventing excessive inflammatory damage and

enhancing lung healing processes. This dual action, particularly in

conditions such as ALI and sepsis where MFG-E8 has been shown to

reduce inflammation and organ damage, has further highlighted its

potential for more targeted and effective treatment strategies in SCAP,

even potentially improving patient outcomes (28, 50, 51, 53). These

reasons underscore the potential of CTGF and MFG-E8 in predicting

mortality in patients with SCAP. Compared to CAP, SCAP patients

have higher levels of CTGF. The differences in CTGF and MFG-E8

levels between SCAP and CAP patients reveal the pathophysiology of

these two conditions. SCAP patients with elevated levels of CTGF

indicate more severe inflammatory responses and active tissue

remodeling processes. CTGF, a multifunctional protein involved in

tissue repair and fibrosis, suggests that SCAP is associated with intense

inflammation, prompting increased CTGF production as the body

attempts to repair damaged tissues. Furthermore, the higher CTGF

may mean a tendency towards fibrosis, reflecting significant

remodeling of lung tissue that could lead to long-term complications.

SCAP patients with lower levels of MFG-E8 suggest a failure in the

resolution phase of inflammation, which is critical for tissue repair and

the clearance of apoptotic cells. This impairment inMFG-E8 levels may

lead to prolonged inflammation and subsequent tissue damage, thus

contributing to the overall severity of SCAP. Consequently, the inability
Frontiers in Immunology 15
to effectively resolve inflammation increases the risk of complications,

such as ARDS and lung fibrosis, which clearly stress the importance of

MFG-E8 in the pathophysiology of SCAP. Overall, the observed

variations in CTGF and MFG-E8 levels underscore distinct

pathophysiological mechanisms, with elevated CTGF suggesting a

robust inflammatory and fibrotic response, while reduced MFG-E8

points to impaired resolution of inflammation, emphasizing the need

for targeted interventions to improve patient outcomes.

In this study, a nomogram model and 11 machine learning

algorithms were used to predict the overall survival rate of SCAP

patients, with 14 scoring methods for evaluation. Besides, the

comparative analysis was made to determine the best algorithm

against the nomogram model, which was necessary to ensure the

selection of the optimal model for the specific management of SCAP

patients. Compared to the traditional nomogram model, the

CatBoost model in machine learning provided a more

personalized and reliable method for predicting the 28-day

mortality risk of SCAP patients. Key predictive features identified
FIGURE 10

Comparison table of machine learning model performance.
FIGURE 11

Comparison chart of ROC curves with different clinical scores.
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in the CatBoost model encompassed the Oxygenation Index,

indicating respiratory function; cTnT, reflecting cardiac stress;

MFG-E8, whose lower levels in deceased patients suggested a

protective role against inflammation; dyspnea, correlating with

disease severity; CTGF, associated with fibrosis and poor

prognosis and PaCO2, indicating respiratory failure. The

CatBoost model effectively utilized these features to enhance

predictive accuracy by identifying complex patterns in the data,

with SHAP analysis revealing how each feature influenced mortality

predictions. CTGF and MFG-E8,serving as potential biomarkers for

assessing SCAP severity and prognosis, can offer valuable

information for risk stratification and clinical decision-making.

By integrating them with predictive models aids in identifying

high-risk patients, more personalized treatment strategies and

improved patient outcomes will be obtained. In short, the

identified features are crucial for predicting mortality in SCAP

patients, and further research into these biomarkers could deepen

our understanding of their roles in respiratory conditions. By virtue

of the high complexity and generalization ability of machine

learning, these models can handle and analyze large volumes of

clinical data to identify the subtle and complex patterns that affect

patient prognosis. They can not only make predictions based on a

wide range of variables but also continuously optimize prediction

accuracy as new data is inputted, thereby providing clinicians with

powerful decision-support tools to optimize patient management

and improve the timeliness and specificity of clinical interventions.

On the other hand, while machine learning models have unique

advantages in handling big data and recognizing complex patterns,

they usually require specialized knowledge to build and interpret

and their black-box nature can make the decision-making process

difficult for non-experts to understand. Additionally, implementing

and running machine learning models typically relies on computer

or cloud infrastructure, which may not be practical in resource-

limited settings or situations requiring rapid decision-making.

Overall, the study underscores the importance of CTGF and

MFG-E8 as potential biomarkers for predicting outcomes in SCAP
Frontiers in Immunology 16
patients, impacting personalized treatment strategies in several ways.

Elevated CTGF and reduced MFG-E8 levels can facilitate early

diagnosis and risk stratification, allowing clinicians to provide

aggressive treatment for high-risk individuals and effectively

allocate resources. Additionally, targeting CTGF through anti-

fibrotic therapies may mitigate lung damage, while administering

recombinant MFG-E8 could enhance tissue repair and immune

regulation. The deployment of machine learning models,

particularly CatBoost, can refine patient outcome predictions and

adapt treatment plans in real-time based on evolving clinical data. To

translate these findings into clinical practice, future steps include

conducting multicenter validation studies, developing standardized

assays for biomarker measurement, designing clinical trials for

biomarker-driven therapies, integrating machine learning into

electronic health records for real-time decision support, and

working towards regulatory approval of CTGF and MFG-E8 in

clinical guidelines. By addressing these areas, the study’s findings

can significantly enhance personalized treatment approaches for

SCAP patients and facilitate their implementation in clinical settings.

However, the limitations of this study should be noted. Firstly, the

sample size is limited. All subjects are from a single center, which may

affect the generalizability of the results. Therefore, the future research

should involve broader and more diverse samples from multiple

centers to strengthen the validation of the current findings. Secondly,

although elevated levels of MFG-E8 and CTGF have been observed in

SCAP patients, the specific mechanisms behind these elevations are not

yet clear, which require further laboratory studies to explore. Thirdly,

this study has only measured serum levels of MFG-E8 and CTGF, but

without considering the distribution of these biomarkers in local

tissues. Future plans should include measuring MFG-E8 and CTGF

levels in bronchoalveolar lavage fluid to gain a more comprehensive

understanding. Fourthly, since it’s an epidemiological study, the

causality has not been established. Further in vivo and in vitro

experiments are needed to verify these results. Additionally, this

study did not consider the temporal changes in CTGF and MFG-E8

levels and their relationship with SCAP progression. But time-series
FIGURE 12

SHAP value analysis of feature importance.
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data analyses may provide more information about the roles of these

biomarkers in the disease process. Despite the impressive performance

of the CatBoost model in predicting 28-day mortality in SCAP patients

in this study, it is essential to recognize that the model’s high predictive

ability may be limited to specific patient populations and clinical

practice environments. It means the model’s predictive accuracy and

applicability may vary in different regions or healthcare systems, as

there are differences in medical resources, treatment methods, patient

demographics and disease prevalence trends across regions. Therefore,

the extensive validation of the CatBoost model’s effectiveness is not

only a crucial step in improving the model’s predictive performance,

but also a vital aspect of advancing personalized medicine and

precision healthcare.
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