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Background: Ischemic stroke (IS), a leading cause of disability and death

worldwide, lacks effective biomarkers for early diagnosis and therapeutic

intervention. This study aims to explore the potential miRNA–mRNA regulatory

network in IS using clinical samples and bioinformatics methods, providing

insights into its pathophysiology and identifying novel biomarkers.

Methods: We analyzed plasma samples from IS patients and controls collected at

Ningbo No. 2 Hospital between May 2022 and February 2023, alongside data from

the Gene Expression Omnibus (GEO) database. Bioinformatics analyses, including

differential expression analysis andmachine learning algorithms, were employed to

identify key miRNAs and their target mRNAs. The findings were validated using

four-dimensional data-independent acquisition (4D-DIA) quantitative proteomics.

Results: Our analysis revealed differentially expressed miRNAs and mRNAs in IS

patients compared to controls. We constructed a potential miRNA–mRNA

regulatory network and confirmed the differential expression of proteins

associated with this network by proteomic validation, suggesting that they play a

role in IS pathophysiology. The results of data analysis and clinical sample validation

emphasized Integrin alpha M (ITGAM) as a key gene associated with IS. In addition,

ROC curve analysis reflected the good performance of ITGAM as a potential

biomarker for the diagnosis of IS and for differentiating between early- and late-

onset stroke. The area under curve (AUC) of ITGAM in diagnosing IS was 0.750, and
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the AUC of ITGAM in distinguishing early-onset stroke from late-onset stroke was

0.759, with a sensitivity of 93.8%.

Conclusion: This study identifies a novel miRNA–mRNA regulatory network in IS,

offering potential biomarkers for diagnosis and targets for therapeutic

intervention. Our findings bridge the gap between clinical observations and

molecular mechanisms, paving the way for improved IS management.
KEYWORDS

miRNA–mRNA, ischemic stroke, bioinformatics, Gene Expression Omnibus, clinical
sample study
1 Introduction

Ischemic stroke (IS) is the leading cause of mortality and disability

worldwide (1); its incidence is rising due to the aging population (2, 3).

The cost of stroke is also substantial, and most of the costs are for the

care of the disability of patients after stroke (4, 5). Improving the

functional outcome of IS even modestly would significantly decrease

the disease and economic burden of IS (6). The only effective

treatment for IS is mechanical thrombectomy within 4.5 h of

symptom onset and intravenous thrombolysis within 24 h in

selected patients (7, 8). However, thrombolysis and thrombectomy

are only applicable to a limited number of IS patients due to their

limited treatment window (9). Additional agents are needed to

improve the outcomes of IS, especially for those patients not eligible

for thrombolysis or thrombectomy, or with no access to stroke unit

care (9). Research into miRNAs shows promise for stroke therapy,

with profiling of miRNA and mRNA revealing critical genes and

miRNAs linked to the condition (11, 12). These molecular biomarkers

not only aid in understanding the molecular mechanisms of the

condition but may also serve as potential diagnostic and prognostic

biomarkers. miRNA-181b regulates signaling pathways related to

neural repair by targeting PirB, adding a new dimension to the

recovery mechanisms for IS. The upregulation of miRNA-150-5p

and miR-181b-5p in the blood after cerebral hemorrhage suggests

their potential role as biomarkers in differentiating hemorrhagic from

ischemic strokes (13). Therefore, this study hopes to uncover potential

treatments for IS by further investigating the mechanisms of the

miRNA–mRNA regulatory network.

miRNA and mRNA have been validated as potential targets for

the treatment of IS; however, they have not yet been jointly used as

biomarkers in clinical practice to analyze their effectiveness, and there

is still a significant gap in clinical data in this area. Zhang et al. (14)

through ceRNA network analysis revealed potential key miRNAs and

target genes in coronavirus disease 2019 (COVID-19)-related chronic

obstructive pulmonary disease. Ming-Xi Zhu et al. (14) through

findings strongly posit the differentially expressed miRNAs as

potential biomarkers to improve stroke diagnosis and prognosis.
02
Kaiser et al. (15) have identified four microRNAs (miRNAs) that are

significantly dysregulated in patients with ischemic stroke (IS). These

miRNAs, namely, has-miR-4656, has-miR-432, has-miR-503, and

has-miR-74-3p, have shown potential as treatment targets for IS.

Understanding the roles and functions of miRNAs can provide

valuable insights into the development of therapeutic strategies for

IS. The research in this field is of great significance, with good clinical

benefits and high clinical value (15). However, many previous studies

have only focused on identifying diagnostic biomarkers for stroke

and have not been successfully applied in clinical practice. The

discovery by Xu et al. (16) emphasizes the role of lncRNAs as

multi-level regulatory factors in the complex network of post-stroke

mechanisms. The analysis of Zhang et al. (17) determined that

CDK5R1 RGS2 and NSF are potential diagnostic biomarkers for IS,

among others. This may be attributed to factors such as high difficulty

and time-consuming clinical translation, limited technical methods,

and conditions. At present, most studies have only focused on animal

experiments. However, due to significant differences in real pathology

and physiology between IS and stroke animal models, further

extensive research is needed to confirm whether the miRNA targets

currently being sought can be successfully applied in clinical practice

(18–20). There is a lack of multicenter research and multi-omics

combination research, resulting in poor consistency of research

methods and results worldwide (21).

Compared with previous studies, our research incorporates real

clinical samples and explores potential miRNA–mRNA regulatory

networks in IS through bioinformatics analysis of clinical data results

and GEO data. We used clinical specimens from exploration to

validation, and combined miRNAs from the database with

proteomics from our clinical specimens (22). By combining

transcriptomics and proteomics, we validated the targets using real

clinical studies, increasing the persuasiveness of our research in terms

of depth and breadth. This study constructed a new potential

miRNA–mRNA regulatory network, which was validated

multidimensional through bioinformatics analysis, machine

learning algorithms, and proteomics, providing a new perspective

for understanding the pathophysiology of IS. Moreover, we will
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conduct exploratory analysis on clinical samples from the acute phase

within 24 h of onset, which is a lack of biomarker acute phase data in

the past. This will help explore biomarkers and therapeutic targets in

the acute phase (19). We hope that this study can provide more

treatment options for ischemic stroke, and the discovered miRNA–

mRNA regulatory network and key genes can provide potential

targets for new drug development, promoting the development of

IS treatment drugs. At the same time, the expression level of ITGAM

may be used to evaluate the prognosis of patients, hoping to help

doctors formulate more comprehensive and reasonable rehabilitation

plans. In health checkups or high-risk populations, ITGAM can be

used as a screening indicator to detect potential stroke risks early and

provide preventive interventions. Through these applications, our

research results are expected to significantly improve the diagnosis

and treatment of IS, bringing good news to IS patients and promoting

progress in clinical practice.
Frontiers in Immunology 03
2 Materials and methods

2.1 Gathering of primary data

We were provided with one non-coding miRNA dataset

(GSE117064) and two mRNA microarray datasets (GSE16561 and

GSE58294) from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/). The GSE117064 dataset

includes serum miRNA samples from 173 IS patients and 1,612

non-IS patients using the GPL21263 3D-Gene Human miRNA

V21_1.0.0 array. This GSE16561 dataset includes blood RNA

samples from 39 IS patients and 24 controls using GPL6883

Illumina HumanRef-8 v3.0 expression bead chip arrays. The

GSE58294 dataset includes blood RNA samples from 69 IS

patients and 23 controls using the GPL570 [HG-U133_Plus_2]

Affymetrix Human Genome U133 Plus 2.0 Array (Figure 1).
FIGURE 1

Flow chart of integrated analysis. IS, ischemic strokes; DEMs, differentially expressed miRNAs; DEGs, differentially expressed genes; DEPs,
differentially expressed proteins; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology.
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2.2 Data preprocessing and differential
expression screening

Using the “GEOquery” package for the R platform, download

the miRNA and mRNA data, then import them into the R statistical

environment. The R programming language was used for data

preprocessing, which included missing data removal, platform

annotation files, clinical information, and expression substrate

extraction. GEO database platform annotation data were

retrieved, and microarray probe IDs were translated to gene

symbols. Differential expression analysis was performed by the

“limma” package, which compares normal samples with samples

from IS patients to obtain differentially expressed genes (DEGs) and

differentially expressed miRNAs (DEMs). Critical values for DEMs

recognition were adj. p-value<0.05 and |(log2FC)|≥ 1. The key

values for DEGs recognition were adj. p-value<0.05 and |(log2FC)|≥

0.584963.Volcano plots showing differentially expressed miRNAs

and mRNAs were generated using the R software “ggplot2”

V3.3.5 package.
2.3 Selection of miRNA features using
machine learning

We employed two machine learning algorithms, namely,

Random Forests and LASSO regression analysis, to identify

critical genes from differentially expressed miRNAs. Fitting a

generalized linear model with variable selection and complexity

adjustment was the process of performing LASSO regression

analysis. The most pertinent characteristics were expertly found

by LASSO regression analysis utilizing the “glmnet” software and

10-fold cross-validation of the penalty settings. In addition, we

estimated the prediction efficacy of miRNAs and evaluated their

significance using the Random Forest technique via the R package

“randomforest.” The Random Forest approach computes the

average error rate of candidate center genes to estimate the ideal

number of variables. Next, we computed the error rate for every tree

ranging from 1 to 500 and identified the ideal number of variables

by analyzing the lowest error rate. We built a random forest tree

model after figuring out the aforementioned parameters. In the end,

we calculated the feature importance score and importance ranking

of every putative center gene to choose the right one. The

intersecting genes of these two machine-learning algorithms are

hub genes for IS patients.
2.4 Construction of miRNA–mRNA
regulatory network

The target genes of the hub genes were predicted by the

miRWalk database (24) (http://mirwalk.umm.uni-heidelberg.de).

To produce prediction findings, the miRWalk database primarily

collects information from 13 current miRNA–mRNA regulatory
Frontiers in Immunology 04
linkage databases (such as TargetScan, miRDB, miRTarBase, and

TarPmiR). By using Venn diagrams to integrate the prediction

findings of hub gene target mRNAs with the overlapping genes of

DEGs from the GSE16561 and GSE58294 datasets, networks were

constructed by sieve-selecting DEGs and hub genes with regulatory

links. With Cytoscape 3.1.0, the miRNA–mRNA regulatory

networks were constructed and illustrated.
2.5 Functional enrichment analysis

We used the “clusterProfiler” package in the R platform to

analyze 21 target genes in the miRNA–mRNA regulatory network

to evaluate the biological activities of hub gene target mRNAs. We

did Gene Ontology (GO) classification (http://geneontology.org/)

and the Kyoto Encyclopaedia of Genes and Genomes (KEGG)

pathway (https://www.genome.jp/kegg/) studies on these

target genes.
2.6 Subjects recruitment and plasma
collection

Consecutive IS patients were recruited from the Emergency

Department (ED) of Ningbo No. 2 Hospital from May 2022 to

February 2023. The inclusion criteria were 1) acute IS patients,

diagnosed by neurologists combining the clinical and diffusion-

weighted imaging (DWI) lesion on MRI or a new lesion on a

delayed CT scan; 2) within 24 h of symptom onset; 3) age ≥50 years

old; and 4) informed consent. The exclusion criteria were 1)

patients who received thrombolysis or thrombectomy before

enrolment; 2) active malignant disease, hematological disease,

inflammatory or infectious diseases; 3) renal or liver failure; 4)

tumors; and 5) surgery within the past 3 months.

Controls were recruited from the volunteers from the Physical

Examination Center and out of patients of Ningbo No. 2 hospital

from May 2022 to February 2023. Subjects included in this study 1)

were aged ≥18 years old and 2) signed informed consent. We

excluded those with 1) ischemic stroke and intracerebral

hemorrhage; 2) active malignant disease, hematological disease,

and inflammatory or infectious diseases; 3) renal or liver failure;

4) tumors; and 5) surgery within the past 3 months.

Blood samples were collected from patients within 24 h after stroke

onset as soon as they arrived at ED and before any therapies. Blood

samples were also drawn from controls. Approximately 5 ml peripheral

blood sample was drawn in an ethylene diamine tetra-acetic acid

(EDTA) bottle from subjects. The blood samples were then centrifuged

at 3,500 rpm for 10 min at 4°C, and plasma was collected and stored at

−80°C until required. This study was performed in line with the

principles of the Declaration of Helsinki. Approval was granted by

the ethics committee of the Ningbo No. 2 Hospital (No: YJ-NBEY-KY-

2023-099-01). Informed consent was obtained from all individual

participants included in the study.
frontiersin.org

http://mirwalk.umm.uni-heidelberg.de
http://geneontology.org/
https://www.genome.jp/kegg/
https://doi.org/10.3389/fimmu.2025.1467865
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2025.1467865
2.7 Clinical information and clinical
outcome assessment

We obtained basic demographic data and clinical history including

vascular risk factors, stroke subtypes, reperfusion therapy, stroke onset

time, and blood sampling time. Vascular risk factors included

hypertension (systolic blood pressure >140 mmHg or diastolic blood

pressure >90 mmHg or on antihypertensive medication), diabetes

mellitus (fasting blood sugar >7.0 mmol/L or hemoglobin A1c >6.5%

or on glucose-lowering medication), hyperlipidemia, and smoking and

drinking status. Stroke etiology was determined by Trial of Org 10172

in Acute Stroke Treatment classification as (1) large artery

atherosclerosis (LAA), (2) cardioembolic infarction (CE), and (3)

small vessel occlusion (SVO). Patients with other determined

etiology and undetermined etiology were excluded.

An independent neurologist assessed the patient’s functional

status using the National Institutes of Health Stroke Scale (NIHSS)

on admission and discharge and modified Rankin’s score (mRS) at

discharge and 3 months.
2.8 Statistical analysis

Data were statistically analyzed using R 4.0.3 software.

Measurement data were tested for normality using the Shapiro

normality test. Normally distributed data were expressed as the mean

± standard deviation (SD), and comparisons between groups were

made using the independent samples t-test. Non-normally distributed

data were expressed as median (interquartile range), and between-

group comparisons were made using the Mann–Whitney U-test.

Count data were expressed as the number of instances (percentage),

and between-group comparisons were made using Fisher’s exact test

and chi-square test. Generated subject work characteristics [receiver

operating characteristics (ROC)] curves were plotted to assess the

biomarkers’ efficacy. Statistical differences between the normalized

expressions of the screened genes were assessed using comparative t-

tests. p-values of <0.05 were considered statistically significant.
3 Results

3.1 Identification of DEMs

For analysis, we took the miRNA data out of GSE117064. A

study was conducted on the expression levels of miRNAs in 1,612

non-IS sera and 173 IS patients. Using |log2FC|≥1 and adj. p-value

< 0.05 as criteria, we found 67 upregulated and 756 downregulated

miRNAs in the control group compared to the IS patient sample.

The volcano plot in Figure 2 displays the log2FC correlation and the

−log miRNA distribution (10) (p-value), indicating that

downregulated miRNAs are more significant in log 2FC than

upregulated miRNAs (Figure 2A).
Frontiers in Immunology 05
3.2 Hub gene identification by applying the
LASSO regression and Random Forest
algorithms

We employed the Random Forest and LASSO regression machine

learning algorithms to find putative hub genes. Using LASSO regression

analysis, we were able to identify 73 miRNAs as the most relevant

described genes, including hsa-let-7a-5p, hsa-let-7d-5p, hsa-miR-16-5p,

hsa-miR-17-5p, hsa-miR-21-5p, hsa-miR-154-5p, hsa-miR-551b-3p,

hsa-let-7f-1-3p, hsa-miR-29b-2-5p, and hsa-miR-186-3p (Figure 2B).

In the Random Forest model, we chose miRNAs with an importance

score >2 as feature variables (Figures 2C, D), and the Random Forest

approach demonstrated a consistent error rate (Figure 2E). Using Venn

diagram analysis, we were able to identify ninemiRNAs as essential hub

genes: hsamiR3646, hsamiR4669, hsamiR4721, hsamiR5043,

hsamiR8085, hsamiR30645p, hsamiR67365p, hsamiR68355, and

hsamiR67935p (Figure 3D).
3.3 Increased hub gene expression in the
serum of IS patients

In comparison to healthy controls, the GSE117064 dataset

revealed hub gene greater expression in IS patients, which was all

statistically significant (Figure 2F).
3.4 Diagnostic performance of the
characterized hub genes

By ROC curve analysis, we evaluated the diagnostic performance of

nine hub genes: hsamiR3646, hsamiR4669, hsamiR4721, hsamiR5043,

hsamiR8085, hsamiR30645p, hsamiR67365p, hsamiR68355, and

hsamiR67935p. The respective ROC curves yielded area under the

curve (AUC) values of 0.938, 0.871, 0.967, 0.941, 0.935, 0.857, 0.911,

0.882, and 0.917 (Figure 2G). The AUCs of the nine pivotal genes

were >0.7, which demonstrated their potential as diagnostic markers.
3.5 Construction of miRNA–mRNA
regulatory network

Using the “limma” package, DEGs were extracted from the

datasets GSE16561 and GSE58294 and displayed using volcano

plots (Figures 3A, B). Using the miRWalk platform, we were able to

identify 6,317 miRNA–mRNA regulatory pairings in total. A total

of 21 genes overlapped with DEGs in the miRNA–mRNA

regulatory pairings (Figure 3C). Nine hub genes controlled these

overlapped genes. Next, a regulatory network was created and

shown connecting the nine hub genes and the 21 DEGs
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(Figure 3D). Compared with IS patient samples, CCR7 expression

was upregulated in the control group and SKAP2, CPD, FKBP5,

VNN3, GPR97, SH3GLB1, PCNX, HECW2, ITGAM, CEACAM6,

CLEC4E, ZCCHC6, F5, HSDL2, NUP214, ABCA1, SIRPB1, IRAK3,

TNFSF13B, and NXCL16 expression downregulation.
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3.6 Functional enrichment analysis

A total of 21 target genes underwent enrichment analysis to get

more insight into their putative biological roles and signaling

cascades. The results showed that the target genes in the GO
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FIGURE 2

(A) Volcano diagram showing differences in gene expression of miRNAs. Orange dots indicate upregulated genes, green dots indicate
downregulated genes, and gray dots indicate genes with no significant changes. (B) Demonstrates the cross-validation error of the LASSO model
with different regularization parameters. The horizontal coordinate is the logarithmic value of the regularization parameter, and the vertical
coordinate is the cross-validation error. (C) Performance evaluation results of the random forest model. The horizontal coordinate indicates the
number of trees in the random forest, and the vertical coordinate indicates the error rate of the model. (D) Venn diagram showing the overlap of
feature genes selected in the LASSO and random forest models. (E) Scatterplot demonstrating the ordering of the top 30 genes in the importance
score in the random forest model. (F) Box line plot demonstrating the comparison of the expression levels of the characterized genes in the control
and IS groups. (G) ROC curve demonstrating the performance of the characterized genes in the classification model.
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enrichment analysis were mainly involved in cellular metabolism

(e.g., cellular nitrogen compound metabolism, cellular protein cell

protein metabolism, and cellular lipid metabolism) and coagulation

mechanisms (blood coagulation, platelet activation, and platelet

degranulation) (Figure 3E). In addition, KEGG enrichment showed
Frontiers in Immunology 07
that 21 target genes were concentrated in proliferation, intercellular

communication, and coagulation-related pathways, such as oocyte

meiosis, cGMP-PKG signaling pathway, cAMP signaling pathway,

thyroid hormone synthesis, Wnt signaling pathway, and other

pathways (Figure 3F).
A

C D

B

E F

FIGURE 3

(A, B) Volcano plots of DEGs distribution in GSE16561 (A) and GSE58294 (B). Orange dots indicate upregulated genes, green dots indicate
downregulated genes, and gray dots indicate genes with no significant changes. (C) Venn diagram showing overlapping genes of GSE16561 and
GSE58294 differential genes with predicted mRNAs. (D) miRNA–mRNA Regulatory networks. (E, F) Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis of 21 target genes in miRNA–mRNA regulatory networks. (E) GO. (F) KEGG.
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FIGURE 4

(A) Heatmap of the plasma proteomic profiling of 30 IS patients and 14 healthy controls. Red areas represent upregulation, and blue areas represent
downregulation. (B) Abundance of the two plasma proteins in the IS group and the control group. (C) Abundance of the two plasma proteins in the
ES group and LS group. ES, early-onset stroke within 4.5 h. LS, late-onset stroke within 4.5–24 h. (D) Association with ITGAM, F5 with function
outcome and infarct volume in IS patients. (E) The diagnostic value of ITGAM and F5 for differentiating IS from controls. (F) The diagnostic value of
ITGAM in differentiating patients with early-onset stroke from those with late-onset stroke.
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3.7 Proteomic profile in IS patients

The study sample size for comparison in the discovery phase,

when targeted AUCs of the biomarkers >0.9, was at least 14 per

group. Finally, we enrolled 30 IS and 14 health controls. A total of

30 patients with IS attended the ED between June 2022 and

February 2023. MRI with DWI data or CT with lesions were

available for 28 patients. Infarct volumes were determined by one

experienced neurologist who was unaware of the patient’s clinical

and laboratory results. The infarct volume was calculated using the

ABC/2 method (A and B represent the largest diameter of the

infarct and its largest perpendicular diameter, respectively, whereas

C represents the thickness of the slices with a visible infarct lesion).

Pooled plasma samples of the subjects were analyzed using four-

dimensional data-independent acquisition (4D-DIA) quantitative

proteomics analysis. Applying the criteria |log2FC|≥ 0.263 and an

adj. p-value < 0.05, there were 296 upregulated and 21 downregulated

plasma proteins in IS patients compared with controls, as shown in

the hierarchical clustering heat map (Figure 4A).

F5 and ITGAM were found to overlap in the human plasma

proteomic result and the identified 21 targeted genes. ITGAM is

known to be involved in the apoptotic signaling pathway and cell–

cell adhesion, and F5 is primarily associated with coagulation

function. The plasma abundance levels of F5 and ITGAM were

significantly higher in the IS patients compared with controls

(Figures 4B, C, Tables 1–3).

ITGAM exhibited a positive correlation trend with stroke severity

(NIHSS score at admission), 3-month functional outcomes (mRS

score at 3 months), and infarct volume in IS patients. In contrast, F5

did not show a significant relationship between stroke severity and 3-

month functional outcomes. However, it displayed a negative

correlation trend with infarct volume in IS patients (Figure 4D).

We further divided the IS group into two subgroups: early-onset

IS, which includes cases where the stroke onset to sampling time

was within 4.5 h, and late-onset IS, which includes cases where the

stroke onset to sampling time was between 4.5 and 24 h.

Interestingly, the abundance of F5 showed no significant

difference between early and late-onset IS patients, while ITGAM

was significantly higher in early early-onset IS group. We further

assessed the diagnostic value of the protein biomarkers. The AUC

were 0.750 (0.601–0.899) for ITGAM and 0.695 (0.515–0.875) for

F5, respectively, for diagnosing patients with IS from controls

(Figure 4E, Table 4). The AUC of ITGAM were >0.7 with a

specificity of 0.857, which demonstrated its potential as a

diagnostic marker. We further investigated the diagnostic value of

ITGAM to distinguish early- from late-onset stroke patients. The

AUC value for ITGAM was 0.759 (0.577–0.941), with a sensitivity

as high as 93.8% (Figure 4F, Table 4).
TABLE 2 Abundance of the two plasma proteins in the IS group and
control group.

FC p Control (n=14) IS (n=30) p

ITGAM_log 1.48 0.005 −2.24 ± 0.53 −1.67 ± 0.62 0.005

F5_log 1.22 0.029 4.07 ± 0.48 4.36 ± 0.34 0.029
TABLE 3 Abundance of the two plasma proteins in the ES group and
LS group.

ES (n=14) LS (n=16) p

ITGAM_log −1.38 ± 0.59 −1.93 ± 0.55 0.014

F5_log 4.3 ± 0.27 4.41 ± 0.4 0.372
TABLE 4 The diagnostic value of ITGAM and F5 for IS vs. control and ITGAM for early-onset stroke vs. late-onset stroke.

AUC p AUC [95%CI] Cut point Sensitivity Specificity Accuracy

ITGAM_log 0.750 0.007 [0.601,0.899] −1.75 0.567 0.857 0.659

F5_log 0.695 0.039 [0.515,0.875] 4.05 0.833 0.571 0.750

ITGAM_log 0.759 0.015 [0.577,0.941] −1.27 0.938 0.643 0.8
TABLE 1 Baseline characteristics of patients with IS and healthy control.

Variables
IS

(n=30)
Control
(n=14)

p

Age,mean (SD), years 70.6 ± 7.68 64.86 ± 6.75 0.021

Gender 0.620

Female, n (%) 7 (23.33%) 5 (35.71%)

Male, n (%) 23 (76.67%) 9 (64.29%)

Smoking, n (%) 4 (17.39%) 0 (0%) 1.000

Diabetes mellitus, n (%) 9 (30%) 4 (28.57%) 1.000

Hypertension, n (%) 16 (53.33%) 5 (35.71%) 0.276

Hyperlipidemia, n (%) 3 (10%) 1 (7.14%) 1.000

Stroke onset to sampling time (h) 2.72 (1.52,4.07) NA NA

Stroke etiology

Large-artery atherosclerosis, n (%) 12 (40%) NA NA

Cardio-embolism, n (%) 12 (40%) NA NA

Small-vessel occlusion, n (%) 6 (20%) NA NA

Thrombolysis <4.5 h, n (%) 11 (36.67%) NA NA

Thrombectomy <24 h, n (%) 12 (40%) NA NA

Stroke volume (mm3) 35.7 (64.9) NA NA

NIHSS at admission 10 (14) NA NA

NIHSS at discharge 3 (4) NA NA

mRS at discharge 3 (1) NA NA

mRS at 3 months 3 (3) NA NA
Data are shown as mean (SD), and median (IQR) for continuous variables, and as percentages
for categorical variables.
IS, ischemic stroke; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin
Scale; HAMD-24, Hamilton Rating Scale for Depression-24.
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4 Discussion

In this study, by identifying 21 key targets of miRNA, we

conducted GO and KEGG enrichment analyses. The enriched results

revealed that the genes targeted by IS-related miRNAs are primarily

involved in regulating immune and inflammatory pathways, such as

the cAMP and Wnt signaling pathways. In the process of leukocyte

adhesion, the cAMP signaling pathway influences the interaction

between leukocytes and vascular endothelial cells by modulating the

expression of adhesion molecules on the cell surface, which is critical

for leukocyte migration and the onset of inflammatory responses (23).

Experimental research has also found that atorvastatin can regulate the

pro-inflammatory/anti-inflammatory phenotype switch in murine

brain microglia through the Wnt/b-catenin pathway, thereby

protecting neonatal rats with ischemic brain injury (24).

Upon data analysis and clinical sample validation, we

discovered the heightened expression of Integrin alpha M

(ITGAM), targeted by has-miR-3646 in IS samples, especially

within 4.5 h of onset. Correlating with clinical features, the

expression levels of ITGAM are positively associated with the

severity of the stroke, poorer functional outcome, and the extent

of infarction, drawing our attention to the potential of has-miR-

3646-ITGAM as a therapeutic target for IS.

ITGAM is a membrane surface glycoprotein and a member of the

integrin family. Integrins are a class of cell surface receptors that

regulate interactions between cells and between cells and the

extracellular matrix (ECM) (25). ITGAM, primarily expressed on

leukocytes, especially monocytes and neutrophils, mediates various

immune and inflammatory responses, including cell adhesion,

migration, and phagocytosis (26). It is well known that brain cell

injury and death are key pathological features of IS. In the early

stages, the activation of microglia can increase the permeability of the

blood–brain barrier (BBB), facilitating the adhesion and migration of

immune cells (27). Moreover, the various cytokines produced by

microglia can increase the expression of adhesion molecules on

vascular endothelial cells, such as selectins and integrins, promoting

the adhesion of immune cells, particularly neutrophils and

monocytes, to the vascular endothelium (28). These adherent

immune cells migrate across the endothelium into the brain tissue,

participating in the inflammatory response (29). As part of the

integrin family, ITGAM may be implicated in post-stroke

inflammatory responses, including promoting leukocyte adhesion

and migration, thereby exacerbating brain tissue damage (30).

This study has several limitations that should be acknowledged.

First, the proteomic sample size was relatively modest, which may

constrain the generalizability of the research findings. A larger cohort

of patients would be necessary to validate the potential biomarkers and

therapeutic targets identified in this study. Second, the miRNA

database employed was not composed exclusively of acute ischemic

stroke patients, and serum samples were utilized, which may affect the

specificity of the miRNA–mRNA regulatory network identified for

this particular condition. Third, the results of this study require further

validation through prospective clinical trials before they can be applied

in a clinical setting. The potential biomarkers and therapeutic targets

identified here show promise, but their clinical utility and effectiveness
Frontiers in Immunology 10
need to be rigorously tested in future studies. In summary, these

results suggest that ITGAM is associated with brain cell apoptosis,

correlated to stroke severity and unfavorable functional outcomes.

ITGAM has the potential to be utilized in clinical practice to

specifically confirm AIS and sensitively exclude late-onset stroke

patients, selecting suitable AIS patients for early reperfusion therapies.
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