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Rational therapeutic targeting of
myeloid cells in glioblastoma:
challenges and perspectives
Faruk Akay and Maya Saleh*

Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Sante Biotechnologie,
Laval, QC, Canada
Glioblastoma (GB) is the most aggressive tumor of the central nervous system

(CNS), accounting for almost 80% of all primary brain tumors. Despite standard-

of-care consisting of surgical resection, when possible, adjuvant radiotherapy

(RT) and chemotherapy with Temozolomide (TMZ), GB remains highly fatal, with

an estimated recurrence rate of over 90% and a median overall survival (OS) of

around 15months from diagnosis. Several factors contribute to such poor patient

outcome, including a unique myeloid-rich tumor microenvironment (TME) that

confers immunosuppression and therapeutic resistance. Multi-omics, single-cell

transcriptomics and multi-modal spatial analyses of GB are unraveling the

diversity of brain myeloid cells, including activated microglia, border-

associated macrophages (BAM), and monocyte-derived glioma-associated

macrophages (GAM), instructed by ontogeny, spatial distribution, cell-cell

interactions and response to metabolic cues in the TME. In this review, we

elaborate on the heterogeneity and plasticity of myeloid cells in GB and discuss

the promise and challenges for rational therapeutic targeting of GAMs in GB.
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1 Glioblastoma classification and current standard-
of-care

Brain cancer ranks 12th among the deadliest cancers worldwide (1). According to the

5th edition of the WHO classification of CNS tumors, 30% of gliomas are low-grade gliomas

(LGG), whereas the rest (70%) are diffuse and infiltrative GB (grade IV). Molecularly, GB

are isocitrate dehydrogenase (IDH)1 wild-type (WT) but harbor genetic and epigenetic

alterations mainly in Epidermal Growth Factor Receptor (EGFR), Platelet-Derived Growth

Factor Receptor a (PDGFRA), Cyclin Dependent Kinase Inhibitor 2A (CDKN2A),

Neurofibromatosis type 1 (NF1), Phosphatase and Tensin Homolog (PTEN), Tumor

Protein p53 (TP53) and the dual gain of chromosome 7 and loss of chromosome 10 (2)

(Figure 1). In ~50% of the cases, the promoter of the DNA repair gene O-6-methylguanine-

DNA methyltransferase (MGMT) is hypomethylated, which contributes to
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chemoresistance. The current standard-of-care for patients with

newly diagnosed GB follows the STUPP protocol, consisting of a

multimodal approach of maximal safe resection surgery, followed

by radiation and adjuvant oral chemotherapy with TMZ (3). To

prevent seizures or brain edema, patients with GB are additionally

prescribed antiepileptic medications, deep vein thrombosis

prophylaxis and steroids (4). However, despite standard-of-care,

the OS of patients with GB is estimated at 0.71% (5), and such bleak

outcome is thought to stem from rapid regrowth of invasive cells

post-treatment.
2 GB plasticity governed by TME
metabolic and immune signals

GB progression is driven by genetic evolution and glioma stem

cell (GSC) plasticity in response to TME signals (6). Through

single-cell RNA sequencing (scRNA-seq), and analysis of bulk

transcriptomic data of GB tumors from the Cancer Genome Atlas

(TCGA), Neftel et al. identified 4 GB cellular states: The first three

share features with cell lineages of the normal fetal brain and are

accordingly referred as neural progenitor-like (NPC-like),

oligodendrocyte-progenitor-like (OPC-like), astrocyte-like (AC-

like), whereas the fourth, referred to as the mesenchymal-like

(MES-like) subtype, does not have a direct parallel with normal

progenitors. These states are driven by distinct genetic aberrations,

e.g., in EGFR, PDGFRA, andNF1 that lead to NPC-like, AC-like and

MES-like, respectively (Figure 1). On the other hand, deletion of

chromosome arm 5q negatively correlated with the MES-like state,

presumably due to loss of several MES state regulators encoded by

this region, such as Mothers against decapentaplegic homolog 5

(also known as SMAD5), Transforming growth factor beta 1

(TGFB1), Colony stimulating factor 2 (CSF2), IL3/4/13, and C-X-
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C motif chemokine ligand 14 (CXCL14) (6, 7). Consistent with the

results from Neftel et al. a spatial multiomics analysis by Moffet

et al. revealed that despite ITH two main tumor cell states emerge

across GB patient cohorts: glial-like tumors associated with

microglia and MES-like tumors dominated by MDMs (8).

Several factors, including metabolic and immune signals, have

been implicated in GSC plasticity. Among these, hypoxia figures as

a major tissue organizer (9) impacting the phenotypes as well as

dialogue between GSC and myeloid cells. Ravi et al. used spatially

resolved muti-omics and showed that the MES-like state segregated

with regions of “reactive immune hypoxia”, pointing to a link

between environmental stress and GSC adaptations (10). Among

the factors driving the MES state are inflammatory signals

converging on the activation of the master transcription factors

Signal transducer and activator of transcription 3 (STAT3),

Activator Protein 1 (AP-1) and Nuclear factor kappa B (NF-kB).
Hara et al. demonstrated that the GAM-derived IL-6 family

cytokine, oncostatin M (OSM), promoted the MES-like state of

GB via OSM receptor (OSMR) and STAT3 signaling in GSC (11).

Chen et al. identified FOS-like antigen 1 (FOSL1), a component of

AP-1 as an additional factor involved in the in proneural to

mesenchymal transition. FOSL1 promoted a MES-like state

through UBC9-dependent SUMOylation of Cylindromatosis Y-

l i k e l o s s d eu b i qu i t i n a s e (CYLD) and K63 - l i n k ed

polyubiquitination and activation of NF-kB (12). Concordantly,

Wang et al. demonstrated a direct role of AP-1 in driving the MES

state phenotypic switch in recurrent GB (13). Besides AP-1, post-

treatment recurrent GB cells with a MES-like phenotype adapt a

“VC-Resist” (vessel co-opting and resistant) state dependent on

Fibroblast Growth Factor Receptor 1 (FGFR1), Yes-Associated

Protein 1 (YAP1), the HIPPO pathway and senescence induction

which allow them to infiltrate in the surrounding brain and “hide”

in peri-vascular niches (14).
FIGURE 1

Glioma-TME interactions drive tumoral heterogeneity and therapeutic resistance in patients with GB. Inter-and intra-tumoral heterogeneity (ITH) in
GB is governed by genetic and epigenetic drivers, as well as by tumor microenvironment (TME) signals that shape glioma stem cell (GSC) programs
into NPC-, OPC-, AC- or MES-like states according to stresses in different tumor niches i.e., peri-vascular, hypoxic and peri-necrotic zones. NPC,
neural progenitor cells; OPC, oligodendrocyte progenitor cells; AC, astrocyte cells; MES, mesenchymal. HIF1a, hypoxia inducible factor 1 subunit
alpha; VEGF, vascular endothelial growth factor; Ch, chromosome; AMP, amplification; DEL, deletion.
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Besides GSC regulation, hypoxia also sculpts the TME. Notably,

a spatial immune profiling of human GB showed distinct immune

landscapes in the tumor peri-vascular (PVZ) versus peri-necrotic

(PNZ) zones, which correlated with patient survival (15). TME

components are increasingly appreciated as important effectors of

clinical outcomes. Hoogstrate and colleagues applied bulk

transcriptomics on paired primary-recurrent GB tumors from

patients on standard-of-care (n = 322 test, n = 245 validation),

together with scRNA-seq and immunohistochemistry validation,

and showed that GB progression occurred through TME

remodeling rather than molecular alterations in GB evolution,

which might explain the limited success of targeted therapies in

GB (16). Their results revealed recurrence-associated decrease in

endothelial cells countered by decreased tumor ‘purity’ with

increased neuron/oligodendrocyte/tumor co-occurrence, enhanced

GAMs and pericytes and increased extracellular matrix remodeling

(16). Among the GAMs, Luo et al . identified matrix

metalloproteinase (MMP)14+ myeloid cells as critical promoter of

glioma angiogenesis and associated with improved OS in response

to TMZ in combination with anti-angiogenic bevacizumab (anti-

VEGF) treatment (17).Therefore, to refine target discovery, current

research is focused on mapping TME cellular diversity at single cell

resolution both in patient cohorts and in relevant in vivo and ex vivo

models e.g., using syngeneic orthotopic glioma models (18–20), new

reporter mice (e.g., Tmem119GFP and HexbCreERT2 for microglia)

(21, 22), human organotypic brain slice culture (23) and advanced

microscopy (24, 25).
3 The diversity and functions of
myeloid cells in GB

3.1 Myeloid cell landscape in GB

A better understanding of the morphology, diversity and

function of GAMs is needed to improve their rationale targeting.

Sankowski et al. were among the first to characterize the states of

microglia in adult human patients who have undergone brain

surgery to resect epileptic foci (n = 10), gliomas (n = 4) or brain

metastases (n = 1) (26). They implemented scRNA-seq and time-of-

flight mass cytometry (CYTOF) to identify regional and age-

associated heterogeneity in microglia phenotypes including a)

higher abundance of activated microglia in the white matter

compared to the gray matter; b) common features expressed by

all subsets of microglia (e.g., CX3CR1, TMEM119, CSF1R, P2RY12,

SELPLG, MARCKS) versus discriminating features that identify

specialized functions e.g. in antigen presentation (HLA-DRA,

CD74), chemotaxis/inflammation (CCL2, TNF, IL1B), or hypoxia-

response/angiogenesis (HIF1A, VEGFA); and c) downregulation of

microglia homeostatic genes countered by upregulation of

metabolic (APOE, LPL), inflammatory (SPP1) and interferon-

induced (IFI27, IFITM3) genes in aging and in GB tumors (26).

Batchu et al. profiled the immune landscapes of IDH1 WT GB

versus IDH1 mutant astrocytoma (27). They identified 7 GAM

subtypes present in both, including interferon-primed (IFN-),
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immunoregulatory (reg-), cytokine-enriched (inflam-), lipid-

associated (LA-), pro-angiogenic (angio-), tissue resident-like

(RTM-), and proliferating (prolif-) GAM subsets. Ligand-receptor

maps showed that all 7 GAM subpopulations strongly interacted

with T cells in IDH1WT GB while only two subsets (inflam-GAMs

and LA-GAMs) did in IDH1 mutant tumors. GAM-T cell crosstalk

correlated with signatures of T cell exhaustion (PD-1, LAG-3, TIM-

3, CTLA-4, TIGIT) and of inhibited T cell migration, highlighting

different immunological ecosystems in these two advanced glioma

types and a more immunosuppressive environment in IDH1 WT

GB. Among the pathways engaged in all 7 GAM subpopulations in

GB were those involving SPP1, MIF, GALECTIN, COMPLEMENT

and PTN (Pleiotrophin), unraveling these pathways as potential

immunosuppressive and pro-tumoral effectors (27). These

phenotypes were confirmed in glioma mouse models, particularly

a glioma-associated shift to phagocytic and DC-like states. These

are evidenced by upregulation of CD11c, genes associated with

migration (Cxcl13, Cx3Cr1, Csf1r), actin cytoskeleton regulation

(Fscn1, Coro1a), cholesterol homeostasis (Abca1, Abcg1) and

endocytosis (Apoe, Lrp1) (28). In vivo two-photon microscopy on

open cranial window of immunocompetent Cx3cr1GFP/WT;

Ccr2RFP/WT reporter mice revealed that resident microglia (that

strongly expressed GFP) accumulate in clusters at the tumor

periphery and are stationary while newly infiltrated MDM are

highly mobile (29). Using the GL261 model and scRNA-seq of

myeloid cells (CD11b+), Ochocka and colleagues found that in

healthy brains, microglia represented the vast majority of myeloid

cells (90%) while BAMs constituted only ~6% (19). In tumor-

bearing mice, microglia (Tmem119+) remained dominant,

constituting ~ 65% of all myeloid cells, but were displaced from

the tumor core by infiltrating MDMs (Gal-3+) (19). These results

were corroborated by Banerjee and colleagues who reported the

spatiotemporal distribution of microglia and MDMs at early (14–15

days post-injection [dpi]), intermediate (24–25 dpi), and terminal

(28–36 dpi) phases of glioma using Cx3cr1CreER/+: R26tdT/+ mice

and two syngeneic mouse glioma models (GL261 and CT-2A).

Their results showed that microglia accumulated inside the tumor

at the early phase of tumorigenesis but were driven out of the tumor

at later times by MDMs, demonstrating competition between these

two macrophage sub-populations (30) (Figure 2). This was further

observed by De Leo et al. using another murine glioma model,

namely SB28, where MDMs constituted >75% of all F4/80+ brain/

glioma macrophages and in which neutralization of MDMs with

anti-CD49d antibodies led to a surge in intra-tumoral microglia

frequencies (31). MDM are not prevalent in tumors of patients with

newly diagnosed GB, accounting for <20% of all macrophages, but

constitute ~50% of all GAMs in recurrent GB (31), pointing to

distinct TMEs in recurrence. Antunes and colleagues extended

GAM profiling to identify differences between primary and

recurrent tumors from human and mouse cohorts (18). Their

data identified SALL1, TMEM119, P2RY12 as markers of

microglia-derived GAMs that dominated the TME of primary

tumors and TGFBI, CLEC12A and FXYD5 as markers of MDMs

that outnumbered microglia in recurrence and were enriched at

pimonidazole (PIMO)-positive hypoxic tumor regions (Figure 2).
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Both microglia and MDMs presented significantly higher pro-

angiogenic activity compared to normal brain microglia from

control mice, as revealed using culture on chicken chorioallantoic

membrane. In addition, they were incapable of inducing allogeneic

proliferation of CD4+ or CD8+ T lymphocytes ex vivo, potentially

due to an immunosuppressed state. Yeo et al. further detailed the

immune changes occurring with GB progression particularly in an

EGFR-driven GB mouse model (32). Their results showed that early

GB tumors were mainly composed of pro-inflammatory microglia

with expression of complement (C1qb, C1qa, C1qc) and lipoprotein

catabolic enzymes (Apoe, Ctsd) genes, in contrast to late GB tumors

that were populated by immunosuppressive pro-tumoral

macrophages. It is important to note that not all GAMs are

deleterious. Using scRNA-seq in two orthotopic glioma models

(GL261 and CT-2A) and in a genetically engineered mouse glioma

model (EGFRvIII+/TP53-/PTEN-), Kim and colleagues identified

CD169+ (SIGLEC1) MDMs, induced by IFN-g, as a beneficial GAM
subset contributing to antitumor immunity (33). They showed that

blockade of CD169 on bone marrow-derived macrophages

(BMDMs ) i n v i t r o b l un t e d t h e i r ph a go c y t i c a nd

immunostimulatory capacities (33).

The TME of GB is lymphocyte poor, consistent with the

reported resistance of GB patients to immune checkpoint

blockade (34–36). In contrast, brain metastases (BrM) originating

from various non-CNS cancers, such as melanoma, lung or breast

cancer exhibit higher proportions of recruited T and B lymphocytes
Frontiers in Immunology 04
(37, 38). A recent analysis of >800 GB patients tumors identified 3

TME subtypes (TME low, med, or high) (39). Notably, TME high

MES class tumors are enriched in T cell activation and exhaustion

markers, regulatory T cells, and expression of immune checkpoints

and associated with a trend towards improved survival in clinical

trials testing neoadjuvant/adjuvant anti-PD-1 treatment or

oncolytic virus PSVRIPO therapy (39). Interrogation of the

Glioma Longitudinal AnalySiS (GLASS) cohort further revealed

TME transitions with GB progression (39). Collectively, the fine

mapping of the GB TME has revealed the heterogeneity of GAM

phenotypes according to the glioma type, stage and treatment and

have unraveled subsets of potential clinical impact. We posit that a

3D holistic view of the entire tumor (40) will localize the identified

GAM subsets in space, define the molecular basis of their

heterogeneity and ultimately lead to new approaches to overcome

therapeutic failures in GB (41–44).
3.2 Metabolic regulation of myeloid cells in
the GB TME

Spatial profiling of human GB showed distinct immune

landscapes in the tumor peri-vascular (PVZ) versus peri-necrotic

(PNZ) zones, which correlated with patient survival (15),

highlighting the impact of metabolic gradients in shaping anti-

tumor immunity. Disrupting the metabolic symbiosis between the
FIGURE 2

Spatiotemporal distribution and diversity of glioma-associated macrophages in GB. The tumor immune microenvironment of GB is dominated by
fetal-derived microglia (MG) and monocyte-derived macrophages (MDM) that form the pool of glioma-associated macrophages (GAMs). Single cell
and spatially-resolved omics in mouse models and patients samples together with advanced microscopy analyses revealed that MG-GAM
predominate in early gliomagenesis, in glial-like tumors (NPC, OPC, AS) and in newly diagnosed (ND) GB but are excluded from the tumor core by
the influx of MDM that predominate in advanced tumors, especially of the MES-like subtype, and in recurrent (REC) GB.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1472710
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Akay and Saleh 10.3389/fimmu.2025.1472710
tumor and its TME is thus a promising area for therapeutic

intervention. In GB, metabolic adaptations can partly explain the

impressive plasticity of GAMs. Current research in this area is

focused on characterizing metabolic effectors that impact GAM

diversity and functions in immunosuppression, tumor progression

and clinical prognosis (45, 46). A notable example is the enzyme

arginase 1 (Arg 1) expressed in GAMs that hydrolyzes L-arginine

into urea and L-ornithine. Arg 1 mediates immune evasion by

depleting L-arginine and depriving effector T cells and natural killer

(NK) cells that need this nutrient for their proliferation (47). In GB,

Arg 1 inhibition using pegylated arginine deiminase (ADI-PEG20)

improved radiotherapy efficacy in immunocompetent orthotopic

mouse models and promoted GAM differentiation into a pro-

i nfl amma t o r y a n t i - t umo r a l p h e n o t y p e ( 4 8 ) . T h e

immunomodulatory role of Arg 1 is thought to be mediated by

nitric oxide (NO), which limits mitochondrial metabolism by

inhibiting the activity of acotinase 2 (A2) and pyruvate

dehydrogenase (PDH), driving macrophages into a glycolytic state

(49). De Leo et al. showed that ER stress-induced activation of

protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)

promoted enhanced glycolysis in MDMs through upregulation of

the glucose transporter GLUT1. They showed that MDM-

immunosuppressive function was partly mediated by IL-10, which

was induced by lactylation downstream of lactate intracellular

accumulation (31). To survive in the GB hypoxic and acidic

TME, GAMs also engage the arginine-ornithine-polyamine axis

to produce the highly basic polyamine that buffers their intracellular

pH. Blockade of polyamine biosynthesis proved efficient in GAM

depletion and reprogramming leading to improved OS in glioma-

bearing mice (50). In parallel, GAMs upregulate the expression of

Na/H1 exchange protein (NHE1) to export excess protons to the

extracellular space. Hasan et al. demonstrated that selective deletion

of NHE1 in Cx3cr1+ myeloid cells led to an immunogenic TME

particularly in response to TMZ (51). GAMs surrounding the peri-

necrotic hypoxic regions of the tumor express the creatine enzyme

arginine-glycine amidinotransferase and produce creatine from

arginine. Using isotopic tracing, Rashidi et al. showed that

secreted creatine is taken up by tumor cells expressing the

creatine transporter SLC6A8 and that pharmacological inhibition

of this transporter slowed tumor growth (52). Tryptophan

metabolism to kynurenine provides an additional axis governing

the immunosuppressive GB TME. Kynurenine produced by tumor

cells activates the aryl hydrocarbon receptor (AHR) in GAMs. AHR

induces CCR2 expression, which furthers GAM recruitment, and

upregulates CD39 that promotes adenosine-dependent T cell

dysfunction (53). Tryptophan metabolism also results in the

accumulation of low concentrations (<100 nM) of quinolate

(QA), nduces the activation of the N-methyl-D-aspartate

(NMDA) receptor and the Foxo1/PPARg pathway that induces

the differentiation of highly immunosuppressive macrophages (54).

Pires‐Afonso et al. uncovered aconitate decarboxylase ACOD1

(Irg1) as an additional metabolic effector involved in this process.

Compared to control mice, Acod1-deficient mice exhibited GAMs

with increased immune reactivity and had reduced tumor load (55).

Collectively, these studies allow better understanding of how GAM
Frontiers in Immunology 05
spatial distribution according to metabolite gradients affects their

phenotypic and functional heterogeneity. Metabolic effectors thus

provide new therapeutic strategies and perspectives in the treatment

of GB.
3.3 Myeloid cells-glioma cells crosstalk in
GB

Several examples illustrate the tight dialogue between GAMs

and GB phenotypes. On one hand, glioma programs e.g. regulated

epigenetically by SETD2, SOX10, CLOCK and KDM6 instruct

GAM landscapes. Liu et al. showed that deletion or nonsense

mutations in the histone methyltransferase gene SETD2 were

associated with increased infiltration of GAMs mediated by TGFb
signaling (56). Wu et al. demonstrated that loss of the chromatin

regulator SOX10, particularly in the receptor tyrosine kinase I

(RTK-I) glioma tumor subtype, resulted in NPC- to MES-like

transition, associated with GAM recruitment (57), and Xuan et al.

linked glioma CLOCK expression to microglia intra-tumoral

infiltration through the Olfactomedin-like 3 (OLFML3)/HIF1a/
Legumain (LGMN)/P-selectin glycoprotein ligand-1 (PSGL-1)

axis (58).

On the other hand, myeloid-derived signals shape glioma states.

For instance, Rao et al. described a differential requirement of CSF-

1R signaling in PDGFB-induced NPC-like versus in HRAS-driven

gliomas (59) and the IL-1b pathway was shown to promote PDGFB-

driven GB, through induction of monocyte chemoattractant protein

(MCP)1-mediated recruitment of MDMs (60). Zhang et al.

demonstrated that TREM1 expression on CD163+ GAMs is

central in GB TME remodeling (61). This was corroborated by

Dong et al. who reported that hypoxia-inducible factor (HIF)1a-
dependent induction of TREM1 on GAMs promoted MES-like state

transition via TGFb secretion (62). Goswami et al. showed that

lysine-specific demethylase 6B (KDM6B) promoted the expression

of key immunosuppressive factors in GAMs, including signal-

regulatory protein a (Sirpa), suppressor of cytokine signaling 3

(Socs3), and v-Maf avian musculoaponeurotic fibrosarcoma

oncogene homolog B (Mafb) (63), and that myeloid-specific

ablation of KDM6B reprogrammed GAMs into anti-tumoral

effectors, improving the efficacy of anti-PD1 treatment in glioma-

bearing mice (34). Altogether, these studies illustrate the complex

mechanisms underlying GSC-myeloid cell reciprocal adaptations to

intrinsic and extrinsic stresses in the tumor, which drive clonal

selection, ITH and therapeutic resistance.
4 Myeloid-based clinical trials in
patients with glioblastoma

A census of clinicaltrials.gov in July 2024 with the keywords

“glioblastoma” and “immune” retrieves 324 studies testing different

immunomodulatory strategies in patients with glioblastoma. Of

these, we summarize 54 trials involving myeloid-based approaches

(Table 1). These can be grouped under six main strategies namely,
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1) immune checkpoint inhibitors (ICI), primarily anti-PD-1 and

anti-PD-L1; 2) CSF-1R inhibitors, 3) myeloid depletion/exclusion,

4) immunostimulatory approaches, namely (i) CD40 agonistic

antibodies, (ii) controlled human IL-12 gene therapy and (iii)

Toll-like receptor (TLR) agonists, 5) macrophage-based cell

therapy, and 6) metabolic checkpoint inhibitors (Table 1,

Figure 3). Of the 54 listed studies, 18 have reported results but

only three have completed phase III clinical trials in patients with

GB, namely CheckMate 143 (34), CheckMate 498 (36), and

CheckMate 548 (35), which evaluated the anti-PD-1 antibody

nivolumab as a single agent, or in combination with RT or with

RT plus TMZ, respectively, as detailed below.
4.1 Immune checkpoint inhibitors

Besides their effects on lymphocytes, both PD-1 and PD-L1

have been demonstrated to modulate macrophage survival,

proliferation and activation. PD-L1 regulates macrophage

activation and proliferation (64) and PD-1 expression by

macrophages inhibits their anti-tumoral phagocytic activity (65–

67). High-dimensional analysis of the intra-tumoral immune

remodeling elicited by anti-PD-1/CTLA-4, revealed important

contributions of the myeloid compartment in therapeutic

resistance (68) through GAM reprogramming (69, 70). Despite

ICI approval in over 14 cancer indications, and their efficacy in

durable responses in several advanced solid tumors (71), the three

phase III clinical trials in GB had disappointing results. CheckMate

143 compared nivolumab to bevacizumab in recurrent GB at first

recurrence and found comparable median OS between the two

treatments (34). CheckMate 498 tested nivolumab in combination

with RT in newly diagnosed GB with unmethylated MGMT

promoter. The study did not meet the primary endpoint of

improved OS and found that nivolumab + RT demonstrated

shorter OS than TMZ + RT (36). CheckMate 548 reported

similarly disappointing results of the evaluation of nivolumab in

combination with TMZ and RT in newly diagnosed GB with

methylated MGMT promoter (35). The U.S. Food and Drug

Administration (FDA) has granted approval of the anti-PD-1

pembrolizumab (Keytruda®) for certain adult and pediatric

patients with advanced solid tumors that have high microsatellite

instability (MSI-H), DNA mismatch repair deficiency (dMMR), or

high tumor mutational burden (TMB-H) in a tumor agnostic

manner. This approval was based on results of phase 2 trials i.e.,

KEYNOTE-158 (NCT02628067), KEYNOTE-164 (NCT02460198),

and KEYNOTE-051 (NCT02332668) that showed the efficacy of

pembrolizumab in this indication in 504 patients across over 30

cancer types. A phase I trial (NCT02359565) is currently evaluating

the safety and preliminary efficacy of pembrolizumab in children

and young adult patients with recurrent, progressive, or refractory

high-grade gliomas, diffuse intrinsic pontine gliomas, hypermutated

brain tumors, ependymoma or medulloblastoma. Ongoing trials

evaluating ICIs in GB are testing safety and efficacy of nivolumab in

combination with the anti-CTLA-4 antibody ipilimumab,

administered either intravenously (i.v.) (NCT02311920) or intra-
Frontiers in Immunology 06
tumorally (i.t.) (NCT02017717), or in combination with the anti-

LAG3 antibodies urelumab (NCT02658981) or relatlimab

(NCT06325683). Other clinical trials are testing anti-PD-L1

antibodies, i.e., a) durvalumab in combination with the anti-

CTLA-4 an t i body t r eme l imumab in r e cu r r en t GB

(NCT02794883), b) atezolizumab in combination with RT

(NCT05423210), RT plus TMZ (NCT03174197) or with the anti-

TIGIT antibody tiragolumab (NCT06328036) and c) avelumab in

combination with standard-of-care (NCT03047473). The latter

reported their findings in (72). In this phase II monocentric

study, 30 patients with newly diagnosed GB were treated with

avelumab at 10 mg/kg (i.v.) concurrent with TMZ. No new safety

signals were induced by the combination, however addition of

avelumab to standard-of-care did not show apparent benefit in

improving OS. Besides ICI combinations, immune checkpoint

blockade may also increase the efficacy of other targeted therapies

including other immunotherapy modalities. Several ongoing studies

are testing such ICI combinations e.g. of atezolizumab with the

tyrosine kinase inhibitor (TKI) cabozantinib in recurrent GB

(NCT05039281), the anti-PD-1 ezabenlimab with a HER2-CAR-

NK (NK-92/5 .28 . z ) in recurrent HER2-pos i t i ve GB

(NCT03383978), avelumab with a T cell vaccine against VEGFR2

(VXM01) (NCT03750071) or pembrolizumab with tumor treating

fields (TTF) therapy (NCT03405792) or with the oncolytic virus

lerapolturev (formerly PVSRIPO) (NCT04479241).
4.2 CSF-1R inhibitors

CSF-1R blockade is an attractive therapeutic option aimed at

inhibiting the recruitment and pro-tumoral reprogramming of

GAMs (73). In preclinical models of GB, CSF-1R inhibition had

opposite effects on tumor growth depending on the tumor driver

oncogene. In a PDGFB-driven glioma model, CSF-1R blockade

inhibited tumor growth and improved mouse survival by re-

programming GAMs rather than causing their depletion (59, 74).

In contrast, in a RAS-driven model, CSF-1R depletion accelerated

tumor growth (75). Two CSF-1R inhibitors have been evaluated in

patients with GB in early phase trials, namely BLZ945 (in

combination with anti-PD-1 - NCT02829723) and Pexidartinib

(PLX-3397), either as a monotherapy (NCT01349036) (76) or in

combination with RT plus TMZ (NCT01790503) (Figure 3). The

results of the phase II study testing PLX3397 as a monotherapy in

recurrent GB showed that it crossed the BBB and attenuated

CD14dim/CD16+ monocytes in plasma but did not show efficacy

in the 37-patient study cohort (76). Similarly, no improvement was

attained by combining this inhibitor with RT plus TMZ

(NCT01790503). In a phase I-II study assessing BLZ945 safety

and preliminary efficacy as a monotherapy or in combination with

the anti-PD-1 antibody spartalizumab (PDR001) in 146 patients

with advanced/metastatic solid tumors including in 29 patients with

GB, limited efficacy was reported particularly in non-MES GB

patients (77), as determined by a correlation between PDGFRA

gene expression and best percent change in tumor size. This was

associated with decreased non-classical and intermediate
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TABLE 1 Selected clinical trials evaluating macrophage-based strategies in GB.

Strategy Sponsor Other drug Condition Phase Status NCT number

Completed (with results) NCT02017717

Completed (with results) NCT02617589

Completed (with results) NCT02667587

Not yet recruiting NCT06325683

Completed NCT02658981

Completed NCT02311920

Unknown status NCT03233152

Active, not recruiting NCT03383978

Active, not recruiting
(with results)

NCT03405792

Active, not recruiting NCT04479241

Recruiting NCT05700955

Recruiting NCT02359565

Completed (with results) NCT02794883

Completed NCT03047473

Active, not recruiting NCT03750071
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Immune checkpoint inhibitors

Nivolumab
(anti-PD-1)

Bristol-Myers Squibb N/A Recurrent GB Phase III

Nivolumab
(anti-PD-1)

Bristol-Myers Squibb RT
Newly diagnosed
unmethylated MGMT GB
(CheckMate 498)

Phase III

Nivolumab
(anti-PD-1)

Bristol-Myers Squibb RT/TMZ
Newly diagnosed MGMT-
methylated GB

Phase III

Nivolumab
(anti-PD-1)

National Cancer
Institute (NCI)

Relatlimab
(anti-LAG-3)

Recurrent GB Phase II

Nivolumab
(anti-PD-1)

Sidney Kimmel
Comprehensive Cancer
Center at Johns Hopkins

Urelumab
(anti-LAG-3)

Recurrent GB Phase I

Nivolumab
(anti-PD-1)

National Cancer
Institute (NCI)

Ipilimumab (anti-CTLA4)/TMZ Newly Diagnosed GB Phase I

Nivolumab
(anti-PD-1)

Bart Neyns, Universitair
Ziekenhuis Brussel

Intra-tumoral Ipilimumab
(anti-CTLA4)

Following the Resection of
Recurrent GB

Phase I

Ezabenlimab
(anti-PD-1)

Johann Wolfgang Goethe
University Hospital

NK-92/5.28.z (anti-HER2-CAR-NK)
Recurrent HER2-
positive GB

Phase I

Pembrolizumab
(anti-PD-1)

University of Florida TTF, TMZ GB Phase II

Pembrolizumab
(anti-PD-1)

Istari Oncology, Inc. Lerapolturev (PVSRIPO) GB Phase II

Pembrolizumab
(anti-PD-1)

University of Louisville TMZ GB Phase I

Pembrolizumab
(anti-PD-1)

National Cancer
Institute (NCI)

N/A
Younger patients with r/r
high-grade gliomas

Phase I

Durvalumab
(anti-PD-L1)

Northwestern University Tremelimumab (anti-CTLA4) Recurrent GB Phase II

Avelumab
(anti-PD-L1)

Clinique
Neuro-Outaouais

RT/TMZ GB Phase II

Avelumab
(anti-PD-L1)

Vaximm GmbH
VXM01 (T cell vaccine
against VEGFR2)

Recurrent GB Phase I-II
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TABLE 1 Continued

Strategy Sponsor Other drug Condition Phase Status NCT number

Recruiting NCT05039281

Recruiting NCT05423210

Active, not recruiting NCT03174197

Not yet recruiting NCT06328036

Terminated (with results) NCT01349036

Completed (with results) NCT01790503

Terminated (with results) NCT02829723

Active, not recruiting NCT02669173

Completed (with results) NCT01977677

Active, not recruiting
(with results)

NCT03746080

Terminated (with results) NCT00669669

Terminated NCT01339039

Recruiting NCT04547777

Active, not recruiting NCT03389802

Completed NCT04006119
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Immune checkpoint inhibitors

Atezolizumab
(anti-PD-L1)

M.D. Anderson
Cancer Center

Cabozantinib (TKI) Recurrent GB Phase I-II

Atezolizumab
(anti-PD-L1)

Stony Brook University RT GB Early Phase 1

Atezolizumab
(anti-PD-L1)

M.D. Anderson
Cancer Center

RT/TMZ GB Phase I-II

Atezolizumab
(anti-PD-L1)

National Cancer
Institute (NCI)

Tiragolumab
(anti-TIGIT)

Recurrent GB Phase II

CSF-1R inhibitors

Pexidartinib (PLX-3397) Daiichi Sankyo N/A Recurrent GB Phase II

Pexidartinib (PLX-3397) Daiichi Sankyo RT/TMZ Newly Diagnosed GB Phase I-II

BLZ945 Novartis
spartalizumab
(anti-PD-1)

Advanced Solid Tumors (r/
r GB)

Phase I-II

Depletion/exclusion of myeloid cells

Capecitabine
Case Comprehensive
Cancer Center

Bevacizumab (anti-VEGF) Recurrent GB Phase I

Plerixafor (AMD3100)
(CXCR4 antagonist)

Lawrence D Recht RT/TMZ
Newly diagnosed high
grade gliomas

Phase II

Plerixafor (AMD3100)
(CXCR4 antagonist)

Lawrence D Recht RT/TMZ GB Phase II

Plerixafor (AMD3100)
(CXCR4 antagonist)

Fred Hutchinson Cancer
Center

Autolgous HSCT/TMZ + O6-
benzylguanine (MGMT inhibitor)

Malignant Gliomas Phase I-II

Plerixafor (AMD3100)
(CXCR4 antagonist)

Patrick Y. Wen Bevacizumab (anti-VEGF)
Recurrent high-
grade gliomas

Phase I

Immunostimulatory - CD40 agonists, IL-12 gene therapy

2141-V11
(anti-CD40 agonist)

Darell Bigner D2C7-IT (EGFR- immunotoxin) Recurrent malignant glioma Phase I

APX005M (sotigalimab)
(anti-CD40 agonist)

Pediatric Brain
Tumor Consortium

N/A CNS tumors (GB) Phase I

Ad-RTS-hIL-12 (Veledimex-
regulatable IL-12 gene therapy)

Alaunos Therapeutics
Veledimex (activator of RTS),
Cemiplimab-Rwlc (anti-PD-1)

GB Phase II
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TABLE 1 Continued

Strategy Sponsor Other drug Condition Phase Status NCT number

Completed NCT03636477

Completed NCT02026271

Terminated (with results) NCT00052715

Completed (with results) NCT00262730

Completed (with results) NCT00262730

Completed (with results) NCT02078648

Completed NCT01920191

Active, not recruiting NCT01204684

Active, not recruiting NCT03665545

Completed NCT02149225

Recruiting NCT05283109

Active, not recruiting NCT03223103

Recruiting NCT04201873
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Immunostimulatory - CD40 agonists, IL-12 gene therapy

Ad-RTS-hIL-12 (Veledimex-
regulatable IL-12 gene therapy)

Alaunos Therapeutics
Veledimex (activator of RTS),
Nivolumab (anti-PD-1)

GB Phase I

Ad-RTS-hIL-12 (Veledimex-
regulatable IL-12 gene therapy)

Alaunos Therapeutics N/A Recurrent GB Phase I

Immunostimulatory - TLR agonists (Vaccines)

Hiltonol (Poly-ICLC - TLR3 agonist)
Sidney Kimmel
Comprehensive Cancer
Center at Johns Hopkins

N/A Brain and CNS tumors Phase II

Hiltonol (Poly-ICLC - TLR3 agonist)
Sidney Kimmel
Comprehensive Cancer
Center at Johns Hopkins

RT/TMZ Newly diagnosed GB Phase II

Hiltonol (Poly-ICLC - TLR3 agonist) NYU Langone Health RT/TMZ Recurrent GB Phase II

Hiltonol (Poly-ICLC - TLR3 agonist)/
Imiquimod (TLR7 agonist)

Stemline
Therapeutics, Inc.

SL-701 (peptide vaccine against IL-
13Ra2, EphA2, and survivin)/
Bevacizumab (anti-VEGF)/GM-CSF

Recurrent GB Phase I-II

Hiltonol (Poly-ICLC - TLR3 agonist)
University
Hospital, Geneva

IMA950 (Tumor-associated peptide
vaccine)/TMZ

Newly diagnosed HLA-
A2 GB

Phase I-II

Hiltonol (Poly-ICLC - TLR3 agonist)/
Resiquimod (TLR7/8 agonist)

Jonsson Comprehensive
Cancer Center

Autologous tumor lysate-pulsed
DC vaccine

Brain tumors Phase II

Hiltonol (Poly-ICLC - TLR3 agonist)
University
Hospital, Geneva

IMA950 (Tumor-associated peptide
vaccine)/Pembrolizumab (anti-PD-1)

Relapsing glioblastoma
irrespective of MGMT and
IDH gene status

Phase I-II

Hiltonol (Poly-ICLC - TLR3 agonist)
Immatics
Biotechnologies GmbH

APVAC1 or APVAC2 (unmutated and
neoantigens peptive vaccine)/RT/TMZ,
GM-CSF

Newly diagnosed GB Phase I

Hiltonol (Poly-ICLC - TLR3 agonist)
Mustafa Khasraw,
MBChB, MD,
FRCP, FRACP

P30-EPS (P30-linked EphA2/CMV
pp65/survivin peptide vaccine)

Newly diagnosed,
unmethylated, and
untreated GB

Phase Ib

Hiltonol (Poly-ICLC - TLR3 agonist)
Albert Einstein College
of Medicine

Personalized peptide vaccine/TTF Glioblastoma Phase Ia-Ib

Hiltonol (Poly-ICLC - TLR3 agonist)
Jonsson Comprehensive
Cancer Center

ALT-DC (autologous tumor lysate-
pulsed DC vaccine)/Pembrolizumab
(anti-PD-1)

Recurrent Glioblastoma Phase I
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TABLE 1 Continued

Strategy Sponsor Other drug Condition Phase Status NCT number

ly diagnosed GB Phase I Terminated NCT02510950

ly diagnosed
ethylated GB

Phase I Terminated NCT03422094

ly diagnosed GB Unknown Recruiting NCT05557240

ethylated MGMT GB Phase I-IIa Recruiting NCT03866109

2 overexpressing
tumors

Phase I Active, not recruiting NCT04660929

t advanced cancers
ding brain tumors

Phase I-II Completed (with results) NCT02327078

rrent GB Phase II Active, not recruiting NCT03532295

Phase I Active, not recruiting NCT04047706

Phase I-II Completed (with results) NCT02052648

Phase I Terminated (with results) NCT02764151
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Immunostimulatory - TLR agonists (Vaccines)

Hiltonol (Poly-ICLC - TLR3 agonist)
Washington University
School of Medicine

Neoepitope-based personalized
vaccine/TMZ

New

Hiltonol (Poly-ICLC - TLR3 agonist)
Washington University
School of Medicine

NeoVax/Nivolumab (anti-PD-1)/
Ipilumumab (anti-CTLA4)

New
unm

Hiltonol (Poly-ICLC - TLR3 agonist)
Shanghai 10th
People’s Hospital

NeoPep vaccine 1 and 2 New

Macrophage-based cell therapy

Temefron (Autologous CD34+-
enriched HSPCs genetically modified
with human Interferon-a2)

Genenta Science N/A Unm

Anti-HER2 CAR macrophages
(CT-0508)

Carisma Therapeutics Inc N/A
HER
solid

Metabolic checkpoint inhibitors

Epacadostat
(IDO1 Inhibitor)

Incyte Corporation
nivolumab
(anti-PD-1)

Selec
inclu

Epacadostat
(IDO1 Inhibitor)

Washington University
School of Medicine

RT/retifanlimab (anti-PD-1)/
Bevacizumab (anti-VEGF)

Recu

BMS-986205
(IDO1 Inhibitor)

Northwestern University Nivolumab (anti-PD-1) GB

Indoximod
(IDO1 Inhibitor)

NewLink
Genetics Corporation

RT/TMZ GB

PF-06840003
(IDO1 Inhibitor)

Pfizer N/A GB

In bold are clinical trials whose status is terminated/completed (with results).
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monocytes in peripheral blood mononuclear cells (PBMCs) after

treatment at multiple doses of BLZ945 and a downregulation of a

macrophage geneset in the TME in tumor biopsy samples.

Together, these results suggest that different GB subtypes might

present differential responsiveness to CSF-1R inhibition.
4.3 Myeloid cell depletion/exclusion

Preclinical studies have shown that low dose chemotherapy

depletes myeloid-derived suppressor cells (MDSC) (78–80). An

early phase 0/I trial evaluated the effect of neoadjuvant treatment

with low-dose capecitabine as a strategy to deplete MDSC in

patients with recurrent GB, followed by capecitabine in
Frontiers in Immunology 11
combination with bevacizumab (NCT02669173). In 11 patients

evaluated, the treatment was tolerated and led to a reduction in

circulating MDSC countered by enhanced intra-tumoral infiltration

of cytotoxic lymphocytes (81). An alternative approach is to restrict

monocyte recruitment and to abrogate MDM-mediated tumor

revascularization post RT (82, 83). Two clinical trials in patients

with GB evaluated blocking CXCR4-stromal cell-derived factor-1

(SDF-1/CXCL12 interaction using the CXCR4 antagonist plerixafor

(AMD3100) (NCT03746080, NCT01977677) (84). Plerixafor was

also tested in combination with bevacizumab (NCT01339039) or

with hematopoietic stem cell transplantation to improve

chemotherapy tolerance (NCT00669669) (85). Promising results

from these trials have been reported (84, 85) that warrant further

testing of CXCR4 blockade in larger trials.
FIGURE 3

Glioma-associated macrophages therapeutic targets. Myeloid-based strategies evaluated in clinical trials in patients with GB are depicted.
Antagonists of chemokine receptors involved in myeloid cell recruitment, and of immune checkpoints and metabolic effectors that contribute to the
pro-tumoral functions of GAMs are shown in red. Immunostimulatory approaches, including CD40 and TLR agonists, and myeloid-based cell
therapies, such as chimeric antigen receptor (CAR)-expressing macrophages (CAR-M) or myeloid cells engineered to express IFNa2 (Temefron), are
illustrated in green. Myeloid checkpoints, demonstrated preclinically to contribute to tumorigenesis and immunosuppression, but await clinical
testing in GB, are shown under the red arc. GAM transcriptional regulators and secreted factors important in tumor growth and TME remodeling are
also illustrated.
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4.4 Immunostimulatory approaches

4.4.1 Anti-CD40 agonistic antibodies
CD40, a member of the tumor necrosis factor (TNF) receptor

family, is expressed on antigen-presenting cells (APC), including

microglia and macrophages (86) and is involved in their activation

towards an anti-tumoral profile. Agonistic anti-CD40 antibodies

mimic the actions of CD40 ligand (CD40L) in enhancing antigen

processing and presentation by APC leading to T cell stimulation,

and in inducing the production of downstreammacrophage effectors,

e.g., reactive oxygen and nitrogen species, pro-inflammatory

cytokines, and the CD4+ T cell chemokine CCL5 required for

immune checkpoint blockade efficacy (87). Several preclinical

studies have demonstrated the value of anti-CD40 agonist

treatment in reprogramming GAMs and boosting anti-tumor

immunity, e.g. in combination with CSF-1R blockade (88), IL-6

inhibition (89) or with the microtubule-disrupting agent

lisavanbulin (BAL101553) in treating ICI-resistant glioma (90).

Currently, there are two ongoing phase I clinical trials evaluating

anti-CD40 agonist antibodies in GB, namely, APX005M

(sotigalimab) (NCT03389802) and 2141-V11 in combination with

D2C7-IT, a dual-specific immunotoxin targeting wild-type EGFR

and mutant EGFR variant III (EGFRvIII) (NCT04547777) (Figure 3).

The latter is based on encouraging pre-clinical results in orthotopic

gliomamouse models revealing that D2C7-IT plus anti-CD40 agonist

treatment elicited an anti-tumoral phenotype of macrophages and

microglia and drove an effective CD8+ T cell response (91).

4.4.2 Controlled human IL-12 gene therapy
IL-12, an innate cytokine produced by activated APC, is a central

inducer of interferon (IFN) g and governs the activation of both innate

and adaptive lymphocytes. To counter reported toxicity induced by

systemic IL-12, Veledimex (VDX)-controlled intra-tumoral induction

of IL-12 from an adenoviral vector, using the RheoSwitch Therapeutic

System® (RTS®), has been tested in GB in phase I and II studies, both

as a monotherapy and in combination with anti-PD-1 (NCT02026271;

NCT03636477; NCT04006119). The results from the phase I studies

showed that IL-12 induced CD8+ T cells intratumoral infiltration,

induction of immune checkpoint signaling, and amelioration in

survival (92). The results of the phase II trial are pending.

4.4.3 TLR ligands
TLR ligands have long been used to stimulate macrophages and

overcome their immunosuppressive function in tumors. For instance,

Bacillus Calmette- Guérin (BCG) that stimulates TLR2 is used in the

clinic to treat patients with bladder cancer (93). Engagement of

endosomal TLRs, i.e. TLR3, 7, 8 and 9, induces not only a pro-

inflammatory response but also a type I IFN anti-tumoral immune

response. At least 14 clinical trials are testing the TLR3 agonist poly-

ICLC complexed with carboxy-methyl-cellulose (Hiltonol) in

patients with GB, mainly in combination with synthetic peptide-,

tumor lysate-, or cell-based anti-cancer vaccines (94, 95) (Table 1).

The TLR7 agonist imiquimod, approved by the FDA for squamous
Frontiers in Immunology 12
and basal cell carcinoma via topical application, and the TLR7/8

agonist resiquimod are also being tested in GB, but less so than

Hiltonol (Table 1, Figure 3). Preclinical studies are refining the

modality of TLR agonist administration, encapsulating them in

nanoparticle formulations for intratumoral and intravenous

administration. For instance, Turco et al. have recently reported

that encapsulated R848, a TLR7/8 agonist, administered i.v., led to

experimental glioma eradication independently of T cells via

macrophage reprogramming (96). Another approach to deliver

agonists for TLRs (or other pattern recognition receptors (PRR)) is

through bacteriotherapy. Zhang et al. demonstrated that an

attenuated Salmonella-based bacterium-hydrogel nano-capsules

elicited glioma cell pyroptosis and anti-tumor immunity (97). A

TLR9 ligand formulated in a virus-like particle have demonstrated

promising results in patients with metastatic melanoma in

overcoming resistance to anti-PD-1 (98), but has not yet been

evaluated in CNS tumors.
4.5 Macrophage-based cell therapy

Taken the massive GAM infiltration in the GB TME, arming

monocytes and macrophages with therapeutic agents, e.g., cytokines

such as IFNa, or an engineered chimeric antigen receptor (CAR), is a

promising therapeutic approach. An ongoing phase I-IIa clinical trial

(NCT03866109) is currently recruiting patients with unmethylated

MGMTp GB to evaluate the safety and preliminary efficacy of

Temefron, an autologous CD34+-enriched HSPCs genetically

modified to express human IFNa2 under the Tie2 promoter. This

is based on the high tumor-homing property of Tie2+ monocytes and

promising preclinical data by De Palma et al., showing improved

anti-tumor immunity and reduced tumor angiogenesis using this

approach (99). Contrary to limited intra-tumoral accumulation of

CAR-T cells, the significant infiltration of GAMs in the TME also

supports the rationale for CAR-macrophages (CAR-M) development.

An active trial in HER2-overexpressing solid tumors will be testing

anti-HER2 CAR-M (CT-0508) alone or in combination with

pembrolizumab (NCT04660929) (Figure 3).
4.6 Metabolic checkpoint inhibitors

As discussed above, GAMs rewire their metabolism to survive the

harsh metabolic tumor environment that is hypoxic, acidic and

nutrient-depleted. Through metabolic adaptations, GAMs further

TME immunosuppression e.g., by depriving effector T cells of

tryptophan via the activity of Indoleamine 2,3-Dioxygenase 1

(IDO1). IDO1 blockade has been evaluated in several clinical trials

in patients with solid tumors with contrasting results. Four IDO1

inhibitors have been evaluated in GB in early phase studies, namely

epacadostat, BMS-986205, indoximod and PF-06840003 (Table 1,

Figure 3). Epacadostat (100) and BMS-986205 were tested in

combination with nivolumab (NCT02327078; NCT04047706).
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Epacadostat was also evaluated in combination with retifanlimab

(anti-PD-1), RT plus bevacizumab (NCT03532295). Indoximod was

tested in combination with TMZ (NCT02052648) and PF-06840003

as a single agent (NCT02764151). However, the disappointing results

(101) from a randomized phase III clinical trial (ECHO301)

evaluating epacadostat in combination with pembrolizumab in

patients with metastatic melanoma of (NCT02752074) has

dampened enthusiasm for IDO1 inhibitor development (102). Such

failure could stem from compensatory mechanisms by the additional

tryptophan metabolism enzymes IDO2 and tryptophan 2,3-

dioxygenase (TDO).
4.7 Suspended macrophage-based
approaches

Blockade of the phagocytosis inhibitor CD47 with the antibody

magrolimab has demonstrated futility with an increased risk of

death in patients with acute myeloid leukemia (AML) (phase III

trial ENHANCE III - NCT05079230). The FDA has requested a full

clinical hold on all magrolimab studies in AML and myelodysplastic

syndromes (MDS), and Gilead has since February 2024 paused all

ELEVATE studies testing magrolimab in solid tumors. A phase I

study testing this agent in children and adults with recurrent or

progressive malignant brain tumors (NCT05169944) has also been

suspended. CD47 is overexpressed on cancer cells and provides a

“don’t eat me” signal by binding to signal regulatory protein a
(SIRPa) on macrophages leading to inhibition of phagocytosis.

Antibodies targeting CD47 release this inhibitory signal and bind to

the Fc receptor on macrophages providing a concurrent “eat me

signal” needed for the macrophage killing activity. Since CD47 is

ubiquitously expressed on normal human cells, the reported safety

issues with magrolimab might be related to on-target toxicity.

Alternative approaches are currently testing anti-CD47 agents

with mutated Fc (ALX148) or SIRPa decoys (e.g., TTI-622) fused

to IgG4 Fc with a weaker killing activity. Bi-specific antibodies that

dually recognize a tumor-associated antigen (e.g., CD19, CD20, PD-

L1, EGFR) and CD47 can enhance specificity and limit toxicity, and

are being evaluated in hematologic and solid tumors, in preclinical

(103–105) and clinical (NCT03804996; NCT04806035) studies but

testing in brain malignancies is not yet reported.
5 Outlooks: rational macrophage-
based therapeutic strategies

To date targetingmacrophages with non-discriminatorymethods

e.g. with CSF-1R inhibition has failed to demonstrate clinical benefit.

Similarly, inhibition of the CC-chemokine ligand 2 (CCL2) did not

demonstrate anti-tumoral effects, e.g., in a phase II clinical trial of

Carlumab (CNTO 888) in patients with metastatic castration-

resistant prostate cancer (106). Dual blockade of CCR2/CCR5 in

solid tumors has also not been reported to improve outcome. The
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CCR2/CCR5 antagonist BMS-81316 is currently being tested in

the neoadjuvant setting in combination with nivolumab and/or

GVAX in locally advanced pancreatic ductal adenocarcinomas

(NCT03767582), or with anti-IL-8 in non-small cell lung cancer

(NSCLC) or hepatocellular carcinoma (HCC) (NCT04123379).

Testing of this approach in patients with CNS tumors has not been

reported. We posit that these approaches block both deleterious pro-

tumoral and beneficial anti-tumoral subsets. As discussed above, the

last years have witnessed a flurry of studies designed to map the

myeloid landscape of GB at single cell resolution and in space and

have unraveled the diversity of GAM phenotypes and functions. For

instance, not all GAMs with an ‘inflammatory’ phenotype provide

protective anti-tumoral responses. Notably, GAMs with active

inflammasome-elicited IL-1b signaling contribute to tumorigenesis

in preclinical models (107). This is supported by incidental results

from the CANTOS phase III trial (NCT01327846) testing the anti-IL-

1b antibody canakinumab on cardiovascular risk reduction in

>10,000 patients with a history of myocardial infarction, that

showed a marked decrease in lung cancer incidence and associated

mortality (108). These findings further illustrate the potential of

inflammation preventive approaches in cancer management. Efforts

in mapping the GAM landscape are uncovering potential immune

and metabolic therapeutic entry points that can be tested in future

clinical trials in GB. Potential therapeutic targets are “myeloid

checkpoints” i.e., receptors demonstrated in preclinical studies to

drive the pro-tumoral and immunosuppressive activity of GAMs.

These include SIRPa, TREM2, TREM1, Leukocyte immunoglobulin-

like receptor subfamily B proteins (LILRB)1/2/4, Sialic acid-binding

immunoglobulin-type lectin (SIGLEC)7/9/10, scavenger receptors

such as Macrophage mannose receptor 1 (MRC1), also known as

CD206), Macrophage receptor with collagenous structure (MARCO),

Stabilin 1, also termed Clever 1, and P-selectin glycoprotein ligand-1

(PSGL-1) to name a few [reviewed in (109)] (Figure 3). Testing

rational myeloid targeting in different settings, particularly in

combination with other immunotherapies and in the neoadjuvant

setting, is hoped to provide a better clinical output for patients

with GB.
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