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in the era of climate change:
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Singapore, Singapore, 2GenomeAsia 100K Consortium, Singapore, Singapore, 3Asian School of the
Environment, Nanyang Technological University, Singapore, Singapore
Dengue, a viral infection transmitted by Aedesmosquitoes, is an emerging global

health threat exacerbated by climate change. Rising temperatures and altered

precipitation patterns create favourable conditions for vector proliferation and

extended transmission periods, increasing the risk of dengue in endemic regions

and facilitating its spread to non-endemic areas. Understanding the interplay

between critical genetic factors and dengue susceptibility is crucial for

developing effective public health strategies. The Human Leukocyte Antigen

(HLA) genes encode proteins essential for an effective immune response against

pathogens, and their genetic variations influence susceptibility to severe dengue.

In this study, we conducted a comprehensive meta-analysis of HLA alleles

associated with dengue infection and dengue severity. We analysed 19 case-

control studies on dengue infections in populations worldwide to infer HLA

associations with various pathological forms of dengue and to examine

differences across different populations. Our findings indicate that HLA-A*02

increases susceptibility to dengue fever (DF), whileHLA-A*03 increases the risk of

Dengue Haemorrhagic Fever (DHF), with these increased susceptibilities

primarily observed in Southeast Asian populations. Additionally, HLA-A*24 is

associated with DHF and all symptomatic dengue infections (DEN),

contributing to dengue risk in both Southeast Asia and the Caribbean.

Conversely, HLA-A*33 and HLA-B*44 show a protective effect against DHF but

show significant regional heterogeneity, highlighting divergent, population-

specific susceptibility profiles. This study underscores the importance of

population-specific genetic risk assessments for dengue infection and

emphasizes the need for targeted medical interventions and improved

predictive models to mitigate dengue’s impact, especially as climate change

accelerates disease spread.
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1 Introduction

1.1 Dengue – dengue viruses and
pathogenesis

Dengue is a viral infection emerging as a significant threat to global

health, caused by the dengue virus (DENV). DENV is primarily

transmitted through a human-to-mosquito-to-human cycle by

specific mosquito vectors known as Aedes aegypti and Aedes

albopictus. In the year 2023, the number of reported dengue cases

reached a historical high of 6.5 million (1); as of 30 April 2024, the total

number of cases had reached a staggering 7.6 million (2) for the year

2024. It is estimated that 400 million yearly infections occur, and

currently, half of the world’s population is at the risk of contracting

dengue (1, 3). Previously endemic to the tropics and subtropics of Asia,

the Americas, theWestern Pacific, and Africa; it has now been reported

to be rapidly expanding into previously non-endemic regions, such as

temperate and even high-altitude regions due to climate change (4, 5).

This growing burden of dengue infections highlights the importance of

a more comprehensive understanding of the virus, its role in disease

progression, and its interaction with the human immune system.

Dengue is an acute febrile illness caused by four types of single-

strandedDENVs from the Flavivirus genus that elicit distinct serological

responses with the antibodies in human blood (6). The four DENV

serotypes share about 65% of their genome, with subvariants within

each serotype (7). The DENV genome comprises 10 genes coding for 3

structural and 7 non-structural proteins. The three structural proteins

are capsid (C), membrane (M), and envelope (E), while the seven non-
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structural proteins are NS1, NS2A, NSB, NS3, NS4A, NS4B and NS5 (8,

9). The C protein forms the nucleocapsid of the virus, and theM protein

plays a crucial role in viral maturation (10, 11). The E protein is essential

for viral entry into the host cell by receptor binding and subsequent

fusion (11). The non-structural proteins NS1, NS2A, NS4A, and NS4B

are involved in the RNA replication process, with NS1 and NS5 also

serving as antigens to initiate immune responses in the host cell (9, 12–

14). The NS3 protein has helicase and protease functions, while NS4A is

involved in autophagy (9, 14).

The replication cycle of the DENV begins with viral binding to the

host cell receptors through clathrin-dependent receptor-mediated

endocytosis (15). Inside the host cells, the virus undergoes endosomal

processing facilitated by Rab5 and Rab7 proteins. Subsequently, the

viral genome is released into the cytoplasm and translated into the

endoplasmic reticulum (ER). The newly synthesised components are

assembled into immature viral particles in the ER undergo maturation

in the Trans-Golgi Network via furin-mediated cleavage and are

eventually released from the cell through exocytosis (16).

Four serotypes of DENV have been reported to date (DENV1-4),

and each serotype can cause dengue fever (DF), dengue haemorrhagic

fever (DHF) (Grades 1-2), and dengue shock syndrome (DSS) (DHF

Grades 3 and 4). DENV1-4 are the primary dengue-causing serotypes

circulating in humans, with different regions reporting varying profiles

of circulating serotypes (Figure 1). Common symptoms of DHF

include high fever, muscle and joint pain, severe headache, vomiting,

bleeding from gums, and skin rashes. Without immediate medical

treatment, DHF (Grades 1-2) might develop into DSS, the severe form

of DHF, characterized by shortness of breath, rapid pulse rate, low
FIGURE 1

Worldwide pattern of dengue endemicity according to WHO and CDC, and the prevalence of dengue serotypes across different regions.
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blood pressure and severe abdominal pain. 60-80% of individuals with

a primary DENV infection are asymptomatic; however, the risk of

severe disease increases significantly during a second infection,

especially among those with longer intervals since the primary

DENV infection (17). DENV-2 and DENV-4 are more commonly

identified in secondary dengue infections, while DENV-1 and DENV-3

often cause primary infections (7, 18).

There is no consensus on the pathogenesis of DENV infection in

the scientific community. The three major factors related to the severity

of DENV infection include secondary infection, host genetics, and viral

virulence (19–23), with the majority view that secondary infection is

the main risk factor for DHF. Primary DENV infection involves the

stimulation of interferon gamma (IFNg) (24). During a secondary

infection, non-neutralizing antibodies (25, 26) from the primary

infection can bind to the serotype of the second infection. Instead of

neutralizing the virus, these antibodies facilitate its entry into host cells,

leading to increased viral replication and a more severe immune

response. The phenomenon is commonly known as Antibody-

Dependent Enhancement (ADE) (27, 28). This heightened immune

response can cause increased vascular permeability, plasma leakage,

and other severe symptoms characteristic of DHF. The detection of

DENV by RIG-I (retinoic acid-inducible gene I) and MDA5

(melanoma differentiation-associated protein 5) triggers the

phosphorylation of IRF3 (interferon regulatory factors 3) and IRF7

(interferon regulatory factors 7), leading to the production of type I and

III interferons (IFNs), the activation of the JAK-STAT pathways, and

the upregulation of interferon-stimulated genes (ISGs) (29). During

severe infection, immature DENV particles are recognized by TLR2

(Toll-like Receptor 2) and DC-SIGN (Dendritic Cell-Specific

Intercellular adhesion molecule-3-Grabbing Non-integrin) on

monocytes and immature dendritic cells, resulting in the release of

inflammatory mediators like IL-1b (interleukin 1b) and TNF-a
Frontiers in Immunology 03
(tumour necrosis factor a), which increase endothelial cell

permeability or dysfunction, contributing towards severe

complications (30, 31). Moreover, excess secretion of anti-DENV

antibodies can exacerbate ADE (Figure 2), further increasing

autoantibody production and its potential glycosylation, a signature

seen in severe DHF and DSS (32, 33).

Endothelial dysfunction could lead to complications such as

hypotension, ascites, pleural effusions, shock, and organ dysfunction

(34). NS1 protein and inflammatory mediators from monocytes,

macrophages, dendritic cells, and mast cells contribute to this

dysfunction (34, 35). Elevated cytokines and chemokines, such as IL-

1b, IL-6, TNF-a, and MMP-9, directly cause endothelial dysfunction,

while others like IL-10 may reduce it (36). Lipid mediators, including

PAF, leukotrienes, prostaglandins, and sPLA2 enzymes, also play a role

in vascular permeability (36). PAF and prostaglandin metabolites are

elevated in severe cases and cause endothelial dysfunction (34, 36, 37).

Mast cell products such as histamine, tryptase, chymase, VEGF, and

serotonin are linked to disease severity and vascular leakage (38–40).

Recent studies from Nicaragua and India showed that both primary

and secondary DENV infections can range from subclinical to severe

implications (41, 42).

DSS also involves severe cases of hepatomegaly and bleeding,

especially in gum, nose, and stool. A typical signature of DSS,

hepatomegaly and other complications regarding the liver, high levels

of aspartate transaminase (AST) levels are inferred to have played an

influential role (43). Secondary hemophagocytic lymphohistiocytosis

(HLH), characterized bymacrophage activation and cytokine storms, is

a significant cause of severe liver dysfunction and high mortality in

dengue patients (44, 45). Dengue can cause various bleeding

manifestations, including petechiae, gum bleeding, and hematemesis

(36). Bleeding results from thrombocytopenia, dysfunctional platelets,

coagulation pathway abnormalities, and prolonged shock (36, 46).
FIGURE 2

Adaptive immunity mechanisms which could determine the protective and predisposing outcomes against dengue.
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Over 50% of hospitalized dengue patients experience severe

thrombocytopenia, which correlates with disease severity (36).

Platelets can be directly infected by DENV, leading to activation

through multiple pathways, including serotonin release from mast

cells and direct activation by the virus (40, 47).
1.2 Human leukocyte antigen and its role in
launching immune response against DENV

Since DENV is a foreign body infecting host cells, the genes

influencing host defence mechanisms against such foreign infecting

agents could play a crucial role in influencing effective response against

DENV. One such large complex of genes are the HLA genes. HLA

genes are known to be the most polymorphic regions in the human

genome and are the part of Major Histocompatibility Complex (MHC)

region located on the short arm of chromosome 6. Class I and class II

HLA genes encode antigen-recognising sites crucial for adaptive

immune responses, recognising between self and non-self. HLA class

I proteins present foreign peptides to T-cell receptors on CD8+ T cells

(cytotoxic T cells) to launch immune responses. HLA class II proteins

are expressed on active immune cells like antigen-presenting cells

(APCs) and B cells, where they detect antigens and present them to

CD4+ T cells (helper T cells) to initiate immune responses. During

Antibody-Dependent Enhancement (ADE) where Fcg receptors (FcgR)
facilitate the increased entry of DENV into immune cells, it could lead

to the upregulation of HLA class I molecules, suppressing the activity of

NK cells (48). Such reduced activity could potentially contribute to

disease pathogenesis. HLA class I alleles further influence the

magnitude of CD8+ T cell responses against DENV (49–51).

Therefore, the host’s HLA allele profile is paramount in determining

the immunogenic response to DENV infection. This leads to varied

immunopathological outcomes, including susceptibility or protection

against DENV infection or more severe outcomes (Figure 2) (52, 53).

Given the crucial role of HLA genes in determining the

pathophysiology of DENV infection, numerous case-control studies

have investigated how HLA polymorphisms influence susceptibility to

and protection against severe outcomes of DENV infection. By late

1970s, the idea that HLA proteins could determine the susceptibility

towards viral infections started gaining ground (54). HLA responses

against DENV can also show serotype specificity. A study on the Sri

Lankan population has demonstrated that DENV-2-specific responses,

likely due to the population’s previous history of DENV-2 infection,

signifying that epidemiological history could influence serotype-specific

immune responses (51). However,HLA allele associations with DENV

infection outcomes could be complicated by factors such asHLA alleles

typing resolution, the population studied, predominant DENV

serotypes, HLA allele composition, and how the different stages/

categories of dengue are defined in the study design. Therefore,

usage of standardised pathophysiological classifications for dengue,

clear definition of populations studied, and large enough case & control

sizes are imperative to derive statistically significant inferences.

The earliest case-control study suggesting the influence of HLA

alleles in determining susceptibility or protection against DENV

infection was performed on Thai children in 1981, identifying several
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HLA class I antigens as potential crucial regulators in the development

of severe forms of dengue (55). Throughout the years, several case-

control studies, primarily across Southeast Asia, Central and South

America, have further cemented the crucial role of differentHLA class I

alleles in determining dengue susceptibility (55–73).
1.3 Dengue - an emerging threat in a
warming world: understanding DENV and
host HLA interactions

Dengue cases have been rising exponentially over the past five

decades with the Americas (Caribbean and Latin American),

Southeast Asia, and South Asia, bearing the highest burden of

dengue cases (Figure 3A). From 2022 to 2023, dengue cases more

than doubled in 16 Caribbean and 9 Latin American countries, with

St Kitts and Nevis and Argentina reporting increases of 28500% and

17364.4%, respectively. Similarly, cases in Bangladesh in South Asia

and Thailand in Southeast Asia showed increases of 414.6% and

241.1% (Figure 3B), respectively. In Europe, the locally transmitted

cases increased significantly in 2023, with Spain, Italy, and France

reporting 3, 82, and 45 cases, respectively (2).

The global increase in dengue cases can be attributed to several

factors, including viral evolution (74, 75), human settlement

patterns (76), socioeconomic drivers (77), human mobility (78),

age (79) and climate change (80). A complex interplay of these

factors determines the epidemiological fate of dengue for any given

population or geographic setting. Specifically, DENV vectors

belonging to Aedes sp have rapidly expanded into new habitats,

driven by warmer and more humid conditions due to climate

change (81–85). Such climatic conditions could result in a shorter

extrinsic incubation period (EIP), the period required for a

mosquito to become dengue-transmittable after having an

infectious meal, increasing dengue risk (86). Furthermore, rising

temperatures have been found to increase the biting incidence of

dengue vectors, while extended periods of warmer conditions

lengthen the suitable period for dengue transmission, heightening

the risk of severe epidemics (87).

It is projected that within the next six decades, close to two-thirds

of the world’s population will be vulnerable to dengue infection (82).

Without adequate preparations, the potential surge of dengue cases

could overwhelm medical infrastructures, particularly considering

emerging infectious diseases like COVID-19. This growing threat

underscores the importance of understanding genetic factors that

influence dengue susceptibility and severity.

In the context of the rising dengue cases due to climate change

and other anthropogenic factors, we review and perform a

meta-analysis of the known associations of HLA alleles with

dengue. As key regulators of adaptive immunity, HLA molecules

present viral peptides to T cells, influencing immune activation and

viral clearance. Variability in HLA alleles has been linked to

differences in dengue susceptibility, severity, and immune

response efficiency (88–90). Understanding these associations is

crucial to gaining deeper insights into how our adaptive immune

system functions and influences DENV infection outcomes.
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FIGURE 3

Worldwide dengue case patterns (A) Total reported cases for the year 2023 (B) Percentage increase in dengue cases from the year 2022-202.
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2 Methods

2.1 Dengue epidemiological data

Global DENV infection cases and endemicity data were compiled

and collected from WHO’s 2024 reports (1, 2) and ECDC (91), latest

until 24 June 2024. Missing data from DENV infection cases was

collected from the official reported figures mentioned governmental

health ministry and infectious disease surveillance website for each

respective country (92). We had a total of 75 countries reporting

endemic dengue cases until the start of 2024.
2.2 Association of HLA alleles with dengue
worldwide

To look for candidate papers for HLA-Dengue association meta-

analysis, we searched two databases, PUBMED and Semantic Scholar.

In order to make the best use of the two datasets, custom search

strategies were used for each, mentioned below:
Frontiers in Immunology 06
• PUBMED.

• We entered the following query in the search option to

optimise the retrieval of appropriate studies – (Dengue)

AND (HLA) AND ((association) OR (associated)). The

submitted query returned 101 potential study candidates.

• Semantic Scholar.

• We utilised the elicit (93) tool to streamline the searching

process from Semantic Scholar. For a query of “What are

the HLA alleles associated with Dengue infection outcomes

in humans?”, it was ensured that the words “Dengue”,

“HLA”, “association” or “associated” will should be

present within the abstract. This search strategy returned

a total of 264 study candidates from an initial 32,604 when

searched directly on Semantic Scholar.
With the studies obtained from the above search strategies, we

followed the Preferred Reporting Items for Systematic Reviews and

Meta-Analyses (PRISMA) guidelines (94) to screen and finalise

studies which would be included in the meta-analysis (Figure 4).

During the selection of the studies to be included for the meta-
FIGURE 4

PRISMA flow diagram for the selection of studies for dengue-associated HLA meta-analysis.
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analyses, the investigators decided on the final set of candidates

without any conflicting viewpoints or opinions.

A total of 19 studies have been included in the meta-analysis

(Table 1), DENV infection phenotypes such as DF, DHF and DSS

were comprehensively extracted. Symptomatic DENV infection

cases defined as DEN and the sum of DF and DHF was

considered as DEN in our meta-analysis. Cochrane RevMan Web

(99) was used for calculation of effect sizes of the studies, confidence

intervals (CIs), heterogeneity across studies (I2 statistics) and

generation of forest plots. Fixed-effects model was used to

calculate the pooled effect sizes and corresponding 95% CIs.

Statistical significance was set at Mantel-Haenszel P < 0.05. Forest

plots were plotted based on dengue phenotypes (DF, DHF and

DEN) and further stratified by populations.
3 Results

Following the PRISMA guideline (94) (Figure 4), a total 19 case-

control studies were included in our meta-analysis (Table 1). After

selecting the candidate studies, we performed a meta-analysis of the

most commonly associated alleles across dengue fever (DF), dengue

haemorrhagic fever (DHF) or all symptomatic dengue outcomes

taken together (DEN). We also conducted a meta-analysis based on

the origin of populations to observe susceptibility tendencies at a

population-specific scale for each HLA allele against DEN.
Frontiers in Immunology 07
3.1 HLA-A*02

The HLA-A*02 allele shows a significant amount of

heterogeneity (P = 1.0E-03) across the five tested studies when

DF is compared with healthy controls. Despite such heterogeneity,

HLA-A*02 [P = 2.0E-03, OR = 1.37 (1.13–1.67)] is inferred to have a

predisposing effect towards DF development (Figure 5).

When comparing DHF with healthy controls, the data from seven

selected studies also show significant heterogeneity [P = 1.0E-02]. The

combined odds ratio forHLA-A*02 for DHF against healthy controls is

insignificant [P = 0.07, OR = 1.18 (0.99–1.40)], with a tendency

towards being more predisposing to DHF (Figure 5).

When comparing DEN with healthy controls based on 13 studies,

the combined odds ratio [P = 2.0E-02, OR = 1.16 (1.02–1.32)] suggests

a predisposing influence of HLA-A*02 despite the significant

heterogeneity in the observation [P = 1.0E-04] (Figure 5).

To infer the regional tendencies of the HLA-A*02 allele

influencing the susceptibility to any forms of DEN, we calculated

the odds ratio after grouping the studies based on their region of

origin (Figure 6). Based on a single study conducted in Jamaica (72),

the allele showed a tendency towards being a risk allele with the

Caribbean region with the statistics remaining insignificant [P =

0.06, OR = 2.02 (0.97–4.22)]. Meanwhile, in Latin America, no

significant trend was observed [P = 0.93, OR = 1.01 (0.81–1.25)].

In South Asia, the two studies based on Sri Lankan (71) and Indian

(61) cohorts reported an insignificant association with dengue with
TABLE 1 List of previously reported case-control HLA association study with respect to dengue included in the meta-analysis.

No Country Study (Author Name, reference) Year Population Cases Control

1 Brazil Cardozo DM., et al. (59) 2014 Southern Brazilian 95 173

2 Brazil Polizel JR., et al. (68) 2004 White Brazilian 64 667

3 Cuba Sierra B., et al. (69) 2007 Cuban 120 189

4 Cuba Paradoa Pérez ML., et al. (95) 1987 Cuban 82 276

5 India Alagarasu K., et al. (60) 2013 Marathi 114 224

6 India Alagarasu K., et al. (61) 2013 Marathi 114 224

7 Jamaica Brown MG., et al. (72) 2011 Jamaica 50 177

8 Malaysia Appanna R., et al. (67) 2010 Malay, Chinese, Indian 92 95

9 Mexico Falcón-Lezama JA., et al. (70) 2009 Mestizo 39 34

10 Mexico LaFleur C., et al. (63) 2002 Mestizo 81 99

11 Philippines Mercado ES., et al. (56) 2015 Filipino Children 190 300

12 Sri Lanka Weiskopf D., et al. (96) 2016 Sri Lankan 440 150

13 Sri Lanka Malavige GN., et al. (71) 2011 Sri Lankan 110 119

14 Thailand Vejbaesya S., et al. (64) 2015 Thai 440 227

15 Thailand Stephens HA., et al. (97) 2002 Thai 263 140

16 Thailand Chiewsilp P., et al. (55) 1981 Thai 87 138

17 Venezuela Mercedes T. F (98), 2009 Mixed descent Venezuelan 71 127

18 Vietnam N. T. Lan., et al. (62) 2008 Kinh 629 450

19 Vietnam Loke H., et al. (66) 2001 Vietnamese 309 251
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respect to HLA-A*02. The combined odds ratio remained insignificant

[P = 0.19, OR = 0.78 (0.53–1.14)], with a tendency towards being

protective (Figure 6). In Southeast Asia, despite significant

heterogeneity across studies [P = 2.0E-03] driven primarily by the

Vietnamese study done in 2001 (66) and the study on Filipino children

in 2015 (56), a clear trend of risk emerged. Based on the six selected

studies across Thailand, Vietnam, Malaysia, and Philippines, HLA-

A*02 is inferred to be a statistically significant risk allele for DEN [P =

2.0E-03, OR = 1.31 (1.10–1.57)] (Figure 6).

When combined across different regions and accounting for

significant heterogeneity (P = 8.0E-04), the risk predisposition

characteristic of HLA-A*02 stands [P = 4.0E-02, OR = 1.14 (1.01–

1.30)] (Figure 6). It is very likely that this inference is driven primarily
Frontiers in Immunology 08
by the Southeast Asian studies, given their higher weight in the analysis

conducted. Moreover, regardless of significant associations with either

being a risk or protective against DENwithin each region, the tendency

of odds ratio differs significantly between each regional group (P =

2.0E-02). This difference among different region groups suggests a

population-specific variability of the susceptibility profile ofHLA-A*02.
3.2 HLA-A*03

HLA-A*03 do not show any significant effect on DF

susceptibility when compared to healthy controls across four

studies [P = 0.72, OR = 0.95 (0.70–1.28)] (Figure 7). When DHF
FIGURE 5

Meta-analysis of HLA-A*02 for dengue fever (DF), dengue haemorrhagic fever (DHF) and DEN (CI, Confidence interval; M-H, Mantel-Haenszel fixed
effect test for Odds Ratio).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1473475
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ghosh et al. 10.3389/fimmu.2025.1473475
is compared with healthy samples, significant heterogeneity

between the four included studies was observed (P = 1.0E-03).

Despite this heterogeneity, the combined odds ratio [P = 1.0E-04,

OR = 1.83 (1.34–2.50)] suggests a predisposing effect of HLA-A*03

towards DHF, primarily driven by the Thai study conducted in

2005 (64).

When DEN was compared with healthy controls, no significant

associations towards risk or protection were observed [P = 0.81, OR

= 1.03 (0.82–1.28)]. Overall, HLA-A*03 shows a statistically

insignificant [P = 0.07, OR = 1.15 (0.99–1.34)] tendency to be a

risk allele. Within the three tested outcomes, DF, DHF, and DEN, a

significant difference between each group was observed [P = 4.0E-

03] (Figure 7).

Within the Caribbean [P = 0.07, OR = 2.22 (0.95–5.23)] and

Latin American [P = 0.21, OR = 1.12 (0.81–1.56)] populations,

statistically insignificant influence of HLA-A*03 on DEN

susceptibility was observed (Figure 8). In South Asia [P = 0.80,

OR = 0.92 (0.50–1.71)] and Southeast Asia [P = 0.34, OR = 0.84
Frontiers in Immunology 09
(0.58–1.21)], no significant influence of HLA-A*03 on DEN was

inferred (Figure 8). Overall, when all regions are compared, HLA-

A*03, does not show any significant effect on DEN susceptibility [P

= 0.81, OR = 1.03 (0.82–1.28)].
3.3 HLA-A*24

HLA-A*24 (Figure 9) shows no statistically significant

protective or predisposing effect for DF [P = 0.85, OR = 1.04

(0.83–1.30)]. When we compare DHF with healthy controls across

eight studies, the significant combined odds ratio [P = 3.0E-04, OR

= 1.38 (1.16–1.64)] suggests a predisposing influence of HLA-A*24

towards DHF.

When we compare DEN with the healthy control across 12

studies (Figure 9), the predisposing influence of HLA-A*24 [P <

1.0E-05, OR = 1.40 (1.23–1.60)] stands despite significant

heterogeneity [P = 1.0E-03] across different studies.
FIGURE 6

Meta-analysis of HLA-A*02 across different populations for DEN (CI, Confidence interval; M-H, Mantel-Haenszel fixed effect test for Odds Ratio).
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In terms of combined influence of HLA-A*24 across the three

different subtypes of dengue infection, the statistics [P < 1.0E-05,

OR = 1.32 (1.20–1.45)] (Figure 9) suggest an overall predisposing

influence towards dengue.

In terms of population specific tendencies (Figure 10), HLA-

A*24 shows significant predisposition towards DEN in the

Caribbean population [P = 1.0E-03, OR = 14.29 (2.90–70.35)]. It

is noted that the wide confidence interval for the study is due to its

small sample size and should be interpreted with caution. In the

three Latin American studies (59, 68, 69), HLA-A*24 does not show

statistically significant associations with being a risk or a protective

factor for DEN [P = 0.57, OR = 1.10 (0.78–1.55)]. Having said that,

the tendency of the allele could be considered towards being

predisposed to DEN.

Among South Asians, HLA-A*24 shows a similar trend to that

of Latin Americans, with no statistically significant associations

towards being a risk or protective factor for DEN [P = 0.33, OR =

1.19 (0.84–1.69)], while having a tendency towards being a risk

allele for DEN (Figure 10). However, in Southeast Asia, HLA-A*24
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is inferred to be a risk allele for DEN based on the combined odds

ratio [P = 3.0E-04, OR = 1.33 (1.14–1.56)] (Figure 10).

When all the regional populations are considered together,

HLA-A*24 is inferred to be a predisposing allele for DEN [P <

1.0E-05, OR = 1.30 (1.14–1.49)] (Figure 10). This inference is

significantly driven by the outcomes from the studies on

Southeast Asian populations, which contributed to a higher

number of sample counts.
3.4 HLA-A*33

For HLA-A*33 (Figure 11), when comparing DF with healthy

controls based on four studies, no significant influence of HLA-

A*33 on DF was inferred [P = 0.71, OR = 0.94 (0.68–1.30)].

Whereas, when we compared DHF with healthy controls, HLA-

A*33 shows significant protective influence against DHF [P = 6.0E-

04, OR = 0.63 (0.48–0.82)], despite a significant degree of

heterogeneity [P = 5.0E-02].
FIGURE 7

Meta-analysis of HLA-A*03 for dengue fever (DF), dengue haemorrhagic fever (DHF) and DEN (CI, Confidence interval; M-H, Mantel-Haenszel fixed
effect test for Odds Ratio).
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Despite significant heterogeneity observed across studies [P = 3.0E-

04], HLA-A*33 was found to confer a protective effect against DEN [P

= 3.0E-02, OR = 0.80 (0.66–0.98)] (Figure 11). When observed across

all the three different tested scenarios for dengue (DF, DHF, DEN),

HLA-A*33 was inferred to have a protective effect [P = 4.0E-04, OR =

0.77 (0.67–0.89)] (Figure 11). Such an inference could have been driven

by HLA-A*33’s stronger protective influence against DHF.

When compared across worldwide populations (Figure 12),

HLA-A*33 is observed to be a risk factor for DEN in the

Caribbean population [P = 3.0E-03, OR = 4.51 (1.65–12.33)], a

trend completely disparate from the general trend observed for

HLA-A*33 in the previous set of inference. Furthermore, the small

sample size could have played a significant role in the wide

confidence interval observed for the Caribbeans. Interestingly, in

Latin America, a study on the Brazilian population (68) showed a

similar predisposing tendency for HLA-A*33 as the Caribbeans

(72), whereas another study on Cubans (69) demonstrated a

protective tendency. Overall, HLA-A*33 does not demonstrate

any significant protective or predisposing effect with respect to

DEN to the Caribbeans [P = 0.76, OR = 0.92 (0.52–1.61)].

Similar to Latin America, HLA-A*33 does not show an

association with a protective or predisposing effect towards DEN
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in South Asians [P = 0.53, OR = 1.13 (0.77–1.65)] (Figure 12). In

contrast, in Southeast Asia, HLA-A*33 is inferred to confer

protection against DEN [P < 1.0E-4, OR = 0.57 (0.43–0.75)]

(Figure 12). When examined individually across the four

Southeast Asian studies included in the analysis, the protective

trend remains consistent throughout (56, 66, 67, 97).

Considering the four regional population groups together,

HLA-A*33 is inferred to be a protective allele against DEN [P =

3.0E-02, OR = 0.80 (0.66–0.98)] (Figure 12). This inference is

primarily driven by the associations inferred from the analysis of

the Southeast Asian populations, having a higher sample size. The

statistically significant difference in the combined odds ratio across

the different regions further highlights the population-specific

difference in the influence of HLA-A*33 on DEN.
3.5 HLA-B*44

HLA-B*44 (Figure 13) showed no significant protective or

predisposing association with DF when compared to healthy

controls [P = 0.28, OR = 0.88 (0.70–1.11)]. Nonetheless, the

observed tendency was towards being protective against DF.
FIGURE 8

Meta-analysis of HLA-A*03 across different populations for DEN (CI, Confidence interval; M-H, Mantel-Haenszel fixed effect test for Odds Ratio).
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When we compare DHF with healthy controls, HLA-B*44 was found

to have a protective effect against DHF [P = 1.0E-03, OR = 0.60 (0.44–

0.82)]. However, this observation does not stand true when

comparing DEN with healthy controls [P = 0.77, OR = 0.97 (0.81–

1.17)], as no significant protective or predisposing effect is observed.

The overall tendency of HLA-B*44 allele suggests a protective

effect against dengue [P = 2.0E-02, OR = 0.86 (0.75–0.98)]

(Figure 13). The significant difference between each subgroup

highlights HLA-B*44’s increased protective influence on DHF

likely have influenced the overall role for the allele with respect

to dengue.

Comparing regional population tendencies (Figure 14), in the

Caribbean, no protective or predisposing influence of HLA-B*44
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was observed [P = 0.38, OR = 1.56 (0.58–4.22)], although the

observed trend was towards being predisposing. In Latin America,

despite showing significant heterogeneity [P = 3.0E-02], HLA-B*44

is inferred to have predisposing influence towards DEN [P = 4.0E-

02, OR = 1.37 (1.02–1.85)].

In South Asia, HLA-B*44 shows a tendency towards being

predisposing; however, no significant association was observed [P

= 0.75, OR = 1.07 (0.69–1.67)] (Figure 14). In contrast, from the two

Thai-based study in Southeast Asia, we can infer a protective effect

of HLA-B*44 against DEN [P = 4.0E-03, OR = 0.65 (0.49–

0.87] (Figure 14).

HLA-B*44 shows no significant association with DEN when all

four regions are taken together (Figure 14). However, significant
FIGURE 9

Meta-analysis of HLA-A*24 for dengue fever (DF), dengue haemorrhagic fever (DHF) and DEN (CI = Confidence interval; M-H = Mantel-Haenszel
fixed effect test for Odds Ratio).
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heterozygosity [P = 4.0E-03] is observed across each region,

highlighting the population-specific influence of HLA-B*44

towards DEN.
4 Discussion

Given the observed historical trends, dengue could continue its

rapid expansion across the globe, potentially increasing the number of

people at risk of infection. Countries in Southeast Asia, South Asia,

Caribbean, and Latin America share the primary burden of severe

epidemics with longer dengue transmission seasons. For instance,

Argentina’s severe dengue epidemic of 2023 (Figures 3A, B), was

characterised by a significantly more humid and hotter summer,

leading to more favourable climatic conditions for Aedes aegypti to

survive (100). Brazil reported 1.5 million cases more in 2023 compared

to 2022 (1), driven by fragmentation and degradation of the Amazon

for infrastructure development (101, 102) and climate change (103).

These factors contribute to the spread of dengue to the most remote
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regions within Brazil, leaving many previously unexposed populations

vulnerable to dengue.

South Asia and Southeast Asia continue to have a significant

burden of dengue. Bangladesh recorded its worst dengue epidemic

in 2023 with more than 300,000 cases, characterised by 414.4%

annual increase (Figures 3A, B). Such a severe epidemic was

attributed to climate change-related factors in the deltaic and

primarily riverine country, leading to the spread of dengue far

beyond the urban centres to the remotest rural areas (4). In fact,

South Asia and Southeast Asia are one of the most endemic regions

in the world, especially India, Sri Lanka, Myanmar, Thailand, and

Indonesia (2). A significant and relatively well understood

exception in Southeast Asia is Singapore, which reported a 69%

drop in dengue cases from 2022 to 2023 (Figure 3B) due to effective

governmental controls despite increased conduciveness for dengue

due to climate change (104).

It has been estimated that dengue cases could rise by 13% for

each 1°C increase in temperature (105). Studies have also taken into

consideration of GDP and economic growth as predictive variables
FIGURE 10

Meta-analysis of HLA-A*24 across different populations for DEN (CI, Confidence interval; M-H, Mantel-Haenszel fixed effect test for Odds Ratio).
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and suggested future economic growth could counterbalance

dengue case increase, while population growth could be the

driving factor in case of any increase in the number of cases

(106). Nevertheless, climate change could raise dengue risk

further in future, having serious implications for human health

(3, 81, 106, 107). To mitigate this risk, understanding HLA’s role

across different populations and dengue outcomes is crucial.

From the meta-analysis, we infer that HLA-A*02 is associated

with predisposition towards DF and DEN, while also showing a

tendency to be a risk factor for DHF. We demonstrate a significant

difference between the tendencies of HLA-A*02 associations

towards DEN across different regional populations (Figure 6).

The predisposition towards dengue infection is primarily driven

by the Southeast Asian populations, which signifies that HLA-A*02

could be considered as a risk allele for Southeast Asia in particular

(Figure 6). Our inferences about HLA-A*02 provide a significant

improvement compared to previous meta-analyses by delving into
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different pathological outcomes and population-specific patterns of

associations (89, 90). In Southeast Asia, HLA-A*02 is a common

HLA allele across numerous populations throughout the region

(108), thereby could be considered as a warning signal for preparing

effective medical and policy measures to prevent future

dengue outbreaks.

We highlight that HLA-A*03 is a risk allele for DHF (Figure 7).

However, this observation is primarily driven by a Thai population-

based study showing a strong predisposition for DHF compared to

other studies in the same group (64). However, such inference may

not be enough to conclude the mentioned association at the scale of

Southeast Asia (Figure 8). More studies within Southeast Asia and

Thailand are needed to confirm this association.

HLA-A*24 is inferred to be a predisposing allele towards DHF

and DEN (Figure 9), similar to a previous meta-analysis with

smaller statistical power (89). However, we uncover the

population-specific association in much higher resolution,
FIGURE 11

Meta-analysis of HLA-A*33 for dengue fever (DF), dengue haemorrhagic fever (DHF) and DEN (CI, Confidence interval; M-H, Mantel-Haenszel fixed
effect test for Odds Ratio).
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indicating that HLA-A*24 could be a risk allele for Southeast Asia,

while showing similar tendencies in South America and South Asia

(Figure 10). In Southeast Asia, HLA-A*24 is relatively common,

with the highest frequency within indigenous populations of

Malaysia, Myanmar, and Northeastern Thailand, which could

make them susceptible to the disease (108). Although showing

similar tendencies, the number of South Asian and Latin American

studies remain limited, which may not reveal the true tendencies

for association.

HLA-B*44 was inferred to have an overall protective association

with significant heterogeneity across different studies (Figure 13).

However, it revealed contrast in association tendencies when the

studies were stratified based on regional populations. In Latin

America, driven primarily by Daniela et al., 2014 (59), HLA-B*44

showed predisposition towards dengue, with South Asia and

Caribbean following the same tendency (Figure 14). In contrast,

HLA-B*44 is found to be associated with protection against DEN in

Southeast Asians, driven by a homogenous tendency within the

Southeast Asian studies reporting the allele (Figure 14). Within

Latin America, this HLA allele is most common within mestizos in
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Cuba, Argentina, Ecuador, and Brazil, especially in the Amazonia

region (108). Interestingly, HLA-B*44 is most common primarily in

the Iberian Peninsula, which could point specifically to the colonial

origin of this risk to those regions.

The general tendencies of HLA allele associations could be

attributed to the possible results of host-pathogen co-evolution

(109). This could be especially true for HLA, where there is much

support for the idea of pathogen diversity influencing the high

polymorphism of the HLA gene regions. A previous study inferred

lower binding efficiency forHLA class I A02 and A24 supertypes for

all four dengue serotypes, which could explain their observed

predisposing tendency towards DEN (110). Similarly, B44

supertypes demonstrated significantly higher binding efficiency,

which could explain its protective association within Southeast

Asians, however it fails to explain the contrasting observation

within Latin Americans (110). Interestingly, dengue and other

flavivirus species showed unique binding characteristics with

respect to HLA (110).

The overwhelming majority of HLA class I alleles influencing

dengue risk highlights their crucial role in dengue pathogenesis. It has
FIGURE 12

Meta-analysis of HLA-A*33 across different populations for DEN (CI, Confidence interval; M-H, Mantel-Haenszel fixed effect test for Odds Ratio).
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been postulated that HLA class I restricted CD8+ T cell lymphocytes

determined the immune response and risk towards more DHF. Two

ways could mediate such influence by secretion of anti-viral cytokines

and cytolysis of infected cells (66). Moreover, secreted inflammatory

cytokines can affect vascular cell permeability (111), which could

severely damage the cell integrity when DENV epitopes mimic host

proteins leading to the loss of self-tolerance of the T cells (112). Such

scenarios could lead to serious vascular damage and leaking, leading to

DHF complications. Moreover, HLA class I alleles were also found to

be upregulated when infected with DENV in vivo, which led to the

suppression of natural killer cell response, suggesting a crucial role in

dengue pathogenesis for HLA class I alleles (48).

Despite having valuable inferences from previously published case-

control studies, we could be missing out on further potentially vital

insights on how HLA allele variations influence dengue. The main

factors contributing to this potential missing out of vital insights is the
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lack of case-control studies from the majority of dengue endemic

regions or usage of small sample sizes in association studies, hampering

association powers. Until now, vast region of tropical Africa having

dengue endemic regions remains unrepresented. Whereas in South

Asia, which has witnessed several dengue epidemics in recent years,

there have been limited HLA association studies with statistically

significant sample size. To our knowledge, studies from a single

cohort each from vast countries like India (60, 61) and Sri Lanka

(71) are the only studies reportingHLA association with dengue. Given

the diverse genetic landscapes across such under-represented regions,

we may find further crucial insights into how human HLA diversity

influences dengue risk, which could shape regional medical strategies

and deeper understanding of disease pathogenesis. Sufficient sample

size for significant association power, proper consideration of

demographic profiles of populations which play crucial role in

determining dengue risk and pathogenesis, like age (79) and gender
FIGURE 13

Meta-analysis of HLA-B*44 for dengue fever (DF), dengue haemorrhagic fever (DHF) and DEN (CI, Confidence interval; M-H, Mantel-Haenszel fixed
effect test for Odds Ratio).
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(113, 114) (especially considering immune modulation by sex

hormones) should be considered and investigated in detail to

understand the full spectrum of HLA mediated immune reaction

towards dengue. We further suggest applying population genetics

approach on a finer scale to determine HLA-associated dengue risk

characterisation. For instance, in a population with multiple ancestries,

will the frequency of dengue-associated HLA alleles vary based on the

proportion of any particular ancestral component in the genomic

makeup of the samples? This could be more pronounced in the

recently admixed populations in the Americas, such as mestizos with

Native American, European, and African ancestries. Such inferences

may help to shape mitigation strategies based on such risk.

Overall, due to current climate change, the populations at risk in

the future are bound to increase by many folds. Without effective

preparedness, dengue is bound to have serious negative repercussions

on public health, influencing the global and national economy and

straining medical infrastructures. Conducting a meta-analysis on HLA

allele-associated dengue risk, considering the impacts of climate change

and evolutionary influences, can yield numerous long-term benefits.

Studying the crucial immune gene HLA’s associated with different

forms of dengue potentially aid in understanding host genetic factors
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and mechanism influencing the pathogenesis of dengue, leading to

improved predictive models and more effective personalised medical

approaches. This comprehensive knowledge could guide public health

policies, allowing for targeted interventions and informed

policymaking, leading to improved regional and national

preparedness. For instance, since our study highlighted the

population-specific association of HLA alleles with dengue, the

inferences could be utilised to determine the level of risk within a

specific population based on the frequency of suchHLA allele, aiding in

targeted intervention of health policies.

Climate-informed genetic risk assessments, which integrate future

climatic projections under various scenarios of climate change,

urbanization, and population growth, along with other demographic,

environmental, and societal factors, could play a vital role. By

considering these elements alongside the genetic makeup of the

studied population, these assessments can help understand

population-level predispositions to diseases. Such assessments

support effective adaptation strategies and resource allocation,

bolstering policy advocacy and community resilience. Understanding

the relationship between HLA binding and the evolutionary

conservation of viral proteins can provide insights into host-
FIGURE 14

Meta-analysis of HLA-B*44 across different populations for DEN (CI, Confidence interval; M-H, Mantel-Haenszel fixed effect test for Odds Ratio).
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pathogen interactions, informing the design of more effective therapies

and vaccines (4, 7). This guidance could be crucial since no specific

treatments for dengue currently exist. Overall, these benefits

significantly enhance dengue prevention and control efforts in the

context of changing climate and inform medical policies.
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69. Sierra B, Alegre R, Pérez AB, Garcı ́a G, Sturn-Ramirez K, Obasanjo O, et al.
HLA-A, -B, -C, and -DRB1 allele frequencies in Cuban individuals with
antecedents of dengue 2 disease: Advantages of the Cuban population for HLA
studies of dengue virus infection. Hum Immunol. (2007) 68:531–40. doi: 10.1016/
j.humimm.2007.03.001

70. Falcón-Lezama JA, Ramos C, Zuñiga J, Juárez-Palma L, Rangel-Flores H,
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