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Objective: To evaluate and quantitatively describe age-dependent homeostasis

for a broad range of total T-cells and specific T-lymphocyte subpopulations in

healthy human subjects.

Methods: A systematic literature review was performed to identify and collect

relevant quantitative information on T-lymphocyte counts in human blood and

various organs. Both individual subject and grouped (aggregated) data on T-

lymphocyte observations in absolute and relative values were digitized and

curated; cell phenotypes, gating strategies for flow cytometry analyses, organs

from which observations were obtained, subjects’ number and age were

also systematically inventoried. Age-dependent homeostasis of each

T-lymphocyte subpopulation was evaluated via a weighted average calculation

within pre-specified age intervals, using a piece-wise equal-effect meta-

analysis methodology.

Results: In total, 124 studies comprising 11722 unique observations from healthy

subjects encompassing 20 different T-lymphocyte subpopulations – total CD45

+ and CD3+ lymphocytes, as well as specific CD4+ and CD8+ naïve, recent

thymic emigrants, activated, effector and various subpopulations of memory T-

lymphocytes (total-memory, central-memory, effector-memory, resident-

memory) – were systematically collected and included in the final database for

a comprehensive analysis. Blood counts of most T-lymphocyte subpopulations

demonstrate a decline with age, with a pronounced decrease within the first 10

years of life. Conversely, memory T-lymphocytes display a tendency to increase

in older age groups, particularly after ~50 years of age. Notably, an increase in T-

lymphocyte numbers is observed in neonates and infants (0 – 1 year of age)

towards less differentiated T-lymphocyte subpopulations, while an increase into

more differentiated subpopulations emerges later (1 – 5 years of age).

Conclusion: A comprehensive systematic review and meta-analysis of T-

lymphocyte age-dependent homeostasis in healthy humans was performed, to

evaluate immune T-cell profiles as a function of age and to characterize

generalized estimates of T-lymphocyte counts across age groups. Our study
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introduces a quantitative description of the fundamental parameters

characterizing the maintenance and evolution of T-cell subsets with age,

based on a comprehensive integration of available organ-specific and

systems-level flow cytometry datasets. Overall, it provides the most up-to-

date view of physiological T-cell dynamics and its variance and may be used as

a consistent reference for gaining further mechanistic understanding of the

human immune status in health and disease.
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1 Introduction

The immune system, which spans across multiple organs, cells,

molecules and pathways, is intended to protect the human

organism from various pathogens. An essential part of a

functional immune system is cell-mediated immunity, which

relies on the work of antigen-specific T-lymphocytes. Different

populations of T-lymphocytes may act, either directly to eliminate

the infectious agent or tumor cell (e.g. cytotoxic CD8+ T-

lymphocytes) or indirectly to assist other immune cells in their

work (e.g. helper CD4+ T-lymphocytes) (1).

T-lymphocyte development originates in the thymus and is

characterized by an orchestrated staging of maturation processes

which lead to T-lymphocyte egress to the peripheral lymphoid

system. Peripheral differentiation and expansion of T-lymphocytes

include processes such as antigen encountering and self-renewal

mechanisms. T-lymphocytes may enter blood circulation as recent-

thymic emigrants (RTE), which represent phenotypically and

functionally a distinct subpopulation from naïve T-lymphocytes.

Human RTE cells can be distinguished from their naïve

counterparts by CD31 and PTK7 expressions and reduced

immunocompetency (2–4). RTE T-lymphocytes complete their

maturation in secondary lymphoid organs and differentiate into

mature naïve cells which have not yet encountered an antigen.

Naïve T-lymphocytes recirculate continually across blood, lymph

and secondary lymphoid organs; they express high levels of the

adhesion molecule CD62L and the chemokine receptor CCR7,

which regulate lymph homing of cells (5, 6). The encounter of a

specific antigen by naïve cells leads to the clonal expansion of

activated cells, with a subsequent expression of various cell surface

activation and proliferation markers such as CD38, HLA-DR, CD69

and Ki-67 (5). Upon activation, T-lymphocytes acquire the ability to

eliminate pathogens or tumor cells and perform their immunological

functions. Subsequent processes of T-lymphocyte differentiation to

effector and memory cells involve several competing theories; the

developmental theory, which favors a progressive differentiation of

naïve cells into memory and ultimately effector cells, appears to be

more consistent with a host of experimental data (Figure 1) (7).
02
Antigen-specific memory T-lymphocytes make for a persistent

pool of cells; they respond more rapidly and robustly than naïve

cells upon antigen re-exposure. Such persistence is enabled by long-

living memory cells as well as self-renewal mechanisms (8). There

are several subpopulations of memory cells, such as central-

memory (CM), effector-memory (EM) and resident-memory

(RM) T-lymphocytes. CM T-lymphocytes reside mostly in

secondary lymphoid organs and express CD62L and CCR7

surface markers, similarly to naïve cells. EM cells represent a

circulating subpopulation of T-lymphocytes and can be found in

a variety of tissues. They are characterized by the absence of CCR7

and CD62L expression (1, 5). RM cells shape the peripheral

immune defense and may arise from either naïve or other

memory subpopulations (9). The expression of various markers,

such as CD69, CD103, CCR4, a4b1-integrin and others indicates

homing of cells in specific organs (10, 11). A separate subpopulation

of long-lived stem cell–like memory T-lymphocytes with enhanced

self-renewal and multipotency can also be distinguished and

characterized via CD95 marker expression (12). Effector helper

and cytotoxic T-lymphocytes represent short-lived cells which are

directly responsible for carrying out the surveillance functions of an

immune response. Effector cells can emigrate to an infection site;

they exhibit an opposite phenotype to naïve T-lymphocytes (1).

Distinctions among naïve, effector and various memory T-

lymphocyte subpopulations are guided not only by CD62L and

CCR7 lymph-homing markers, but also by the expression of CD45

isoform variants RO and RA as well as the expression of CD95 (Fas/

APO-1), co-stimulatory molecules CD27 and CD28, IL-2Rb
(CD122) and IL-7Ra (CD127) (1, 5). Also, functional

discrimination of CD4+ helper and CD8+ cytotoxic T-cells, as

well as regulatory T cells have been reported (13–15).

A clear understanding of the relationships between various T-

lymphocyte subpopulations as well as the evaluation of their age-

dependent homeostasis is necessary, in order to design and

optimize novel anti-infectious and T-cell based therapies. The

isolation and quantification of various T-lymphocyte

subpopulations has become possible due to flow cytometry

analyses, following accurate gating strategies and settings (6). The
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ability to discriminate various subsets of cells based on extracellular

and intracellular markers is of importance when assessing dynamic

changes in lymphocyte numbers throughout life, as a hallmark of

immune aging. Aging processes are at play across all parts of the

immune system and comprise several mechanisms, such as thymic

involution, shift in hematopoietic stem cells from lymphoid to

myeloid potential, increase in the pool of protective memory cells,

accumulation of senescent cells, and more (16). Lymphocyte

numbers represent markers of immunological health status; thus,

absolute counts and percentages of T-lymphocyte subpopulations

are measured and compared against reference values in healthy

individuals and within specific age categories (17–21). However,

these age intervals are usually wide and may not always capture

specific differences in immune system maturing and aging

processes, particularly in late adulthood. Moreover, for diagnostic

purposes, total numbers of lymphocytes and CD4+ or CD8+ T-

lymphocytes are routinely measured in blood and not in other

organs; also, further specific subpopulations of lymphocytes are not

considered. Changes in lymphocyte counts in peripheral blood do

not always reflect the full picture of an immune response or a

subject’s immunological status, since only ∼2% of total lymphocytes

are present in blood (22–24). While there are several approaches to

calculate reference values of lymphocyte counts in healthy subjects

and to model age-related changes, reference values obtained for

specific subpopulations and in different organs present challenges

due to limitations in subject numbers enrolled in studies and in

study cost (25–31). Gathering the available quantitative information

from multiple sources may empower the evaluation of a large

repertoire of age-related changes in various T-lymphocyte

subpopulations throughout the whole body and make the results

more robust.
Frontiers in Immunology 03
The primary objective of the present study was to evaluate age-

dependent homeostasis of specific T-lymphocyte subpopulations in

healthy humans, based on the most comprehensive integration of

quantitative data available to date. The corresponding analysis we

present here sought to characterize age-related changes in various

T-lymphocyte subpopulations, from neonates to centenarians, and

to obtain reference values (in absolute terms and percentages) in

blood and other organs within narrowest age intervals. Our meta-

analysis of T-lymphocyte age-dependent homeostasis addresses

issues relevant to the quantitative description of immune aging in

various organs; it captures differences in numbers for a wide range

of T-lymphocyte types under homeostasis.

The paper is organized as follows: Section 2 describes the data

collection strategy, the workflow of data handling, and detailed

aspects of our meta-analysis methodology. Section 3 presents the

integrative database, overall, along with an exploration of age-

dependent healthy human condition homeostasis and our results

of weighted average calculations. Sections 4 to 5 provide,

respectively, a discussion and conclusions.
2 Materials and methods

2.1 Study eligibility and data collection

A systematic literature search was performed to identify all

relevant data sources featuring clinical data on T-lymphocyte

numbers. The PubMed database and Google Scholar were explored

using the following keywords: “CD4”, “CD62L”, “CD45RO”,

“CD45RA”, “naïve”, “central-memory”, “effector-memory”,

“effector”, “human”, “healthy”, “flow cytometry”. Additional
FIGURE 1

Schematic of T-lymphocyte differentiation.
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PubMed searches as well as references from the initially identified

research papers and review articles were investigated further, to

uncover all relevant quantitative information, particularly on

specific T-lymphocyte subpopulations in lymph nodes. The exact

queries used can be found in Supplementary Table 1. All identified

records were assessed on the basis of publication title and abstracts

focused on the presence of human data and control arm with healthy

subjects in the study. Only publicly available text in English language

was inspected. If an abstract was considered valid for inclusion into

the analysis, the original publication was investigated to inspect

observations on T-lymphocyte subpopulations of interest and

subjects’ age records. All selected data sources were assessed for

potential cross-publication overlap, prior to digitizing. Results from

the selected data sources were digitized and integrated into the

database. The latest database update was performed on July

11th, 2024.
2.2 Outcome measures

The following features were digitized and added to a Microsoft

Excel database: population or subject characteristics such as age and

health condition; T-lymphocyte measurement characteristics such

as reported cell phenotypes, gating strategy used for flow cytometry

analysis, units and direct measurements; and central tendency and

variability measures approaches used for grouped data.

Observations from subjects with a health condition that would

potentially affect the immune system (i.e., the presence of

Cytomegalovirus (CMV), Epstein–Barr virus or other infections)

were not digitized or were excluded, at the exploratory analysis

stage. Twenty (20) distinct T-lymphocyte subpopulations were built

into the database, according to the reported cell phenotypes and

gating strategies. The outcomes consist of total and specific T-

lymphocyte subpopulations. Total subpopulations included total

lymphocytes and CD3+ lymphocytes (T-lymphocytes), while

specific subpopulations were represented by CD4+ and CD8+ T-

lymphocytes: recent-thymic emigrants, naïve, activated, total-

memory, central-memory, effector-memory and resident-memory

cells. A schematic of T-lymphocyte subpopulation transitions is

presented in Figure 1. The selected gating strategy for each T-

lymphocyte subpopulation is presented in Supplementary Table 2.

Aside from the exact numbers of T-lymphocyte subpopulations, we

also digitized data on published CD4+/CD8+ ratios – an important

indicator of immune system function.

Overall, we extracted individual and grouped observations on

21 parameters of immune homeostasis (20 T-lymphocyte

subpopulations and CD4+/CD8+ ratio), which are presented in

absolute and relative values.
2.3 Statistical analyses

Weighted averages as generalized estimates were calculated for

each outcome using an equal-effect meta-analysis approach for pre-

specified age intervals:
Frontiers in Immunology 04
yi =   q + e i (1)

where i = 1,…, k denotes independent studies for which

outcomes were available for the age interval, yi denotes the

observed outcome measure in the ith study, q is the true outcome

of the k studies, and eie N(0,  s2) represents the sampling

error (32).

Weighing was determined according to subject numbers. The

conventional inverse variance weighing method was not

implemented, since the assumption of a proportional decrease in

variance with an increase in subject number was not met. A

comparison of two weighing methods was performed by visual

inspection of scatter plots:

q̂ = o
k
i=1w iyi

ok
i=1w i

(2)

where q̂ is the weighted average of the true outcomes in the

k studies; the weight was computed as wi =
ni

ok
i=1

ni
, where n is the

number of subjects in the ith study.

To implement a standard meta-analysis for continuous

outcomes and meet the requirement of information on mean and

standard deviation (SD), the data were transformed to obtain this

information. Missing mean and SD were imputed based on the

available central tendency and variability information, according to

the Wan et al. transformation equation, with the assumption of

normally distributed outcomes (Equations 3, 4) (33, 34).

Discrepancies between raw and transformed grouped data were

evaluated.

�y ≈
q1 +m + q3

3
(3)

sx ≈
q3 − q1

2F−1( 0:75n−0:125n+0:25 )
(4)

where �y is the estimate of the missing mean value for the outcome,

sx is the estimate of the missing SD value, q1 and q3 represent the (a)
and (100 − a) percentiles, respectively (a = 2.5%, 10%, 25%

(interquartile range)), m is the median, n is the sample size, and F−1

(z) is the upper zth percentile of the standard normal distribution.

Measurements of cell counts and concentrations were

standardized to obtain units in “cells/μL”. Mass (cells/g) and area

density (cells/mm2) numbers were also standardized, unit-wise, yet

these were not included in the final analysis due to smaller numbers

of observations. In addition, observations were grouped based on

the organ from which the measurements were obtained.

The presence of both individual and grouped data in the

database poses the challenge of combining these data for

weighted average calculations. Mean and SD values were

computed for individual subject observations in the pre-specified

age intervals: from 0 to 6 months with a 3-month step; from 6

months to 1.0 year; from 1.0 to 2.5 years; from 2.5 to 5.0 years; and

from 5.0 to 115 years with a 5-year step. Computed estimates based

on such individual subject-level data were then grouped for

further analysis.

Data binning for weighted average calculations was guided

based on both physiological and statistical considerations. The
frontiersin.org
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selected strategies for data binning are presented in Supplementary

Table 3. Age intervals were selected based on the life cycle grouping,

with more frequent divisions for the first years of life (2 to 5

intervals were considered within the 0-to-5 year age group). The

selection of age intervals was also guided by a requirement of at least

two (2) observations falling into a given interval.

Heterogeneity was evaluated via visual inspection of funnel

plots as well as an estimation of publication bias (Egger’s test) for

each outcome and each age interval.
2.4 Software

Data digitization was performed usingWebPlotDigitizer version

4.7 (for scatter and bar plots) and jcpicker version 6 (for heat maps).

Data processing, visualization (main packages: tidyverse, cowplot,

ggpubr, ggrepel) and meta-analyses (package: metafor) were

performed in the R Statistics software, version 4.2.3 (R-project,

www.r-project.org).
3 Results

3.1 Study selection and database overview

The systematic search in PubMed and Google Scholar resulted

in 551 potentially relevant records of quantitative data on T-

lymphocyte age-dependent homeostasis. A majority of records

(514) were identified via the PubMed database search, while 29

and 8 records were extracted, respectively, from the Google Scholar

search and review articles. 169 studies were discarded based on the

screening of titles and abstracts for the following reasons: not

available in English language; irrelevant species (dog, rodent; not
Frontiers in Immunology 05
human); and absence of control arms with healthy subjects. In total,

382 articles proceeded to the full-text analysis stage; this resulted in

the exclusion of 250 records due to: unavailability of text access in

the public domain; absence of quantitative data on T-lymphocyte

subpopulations; irrelevance of the subpopulation in the present

analysis and/or no specification according to subject age. As a result,

132 clinical studies fully satisfied the inclusion criteria and were

incorporated into the final database. The subsequent exploratory

analysis resulted in the exclusion of an additional 8 studies which

had not been conducted in fully healthy individuals or according to

relevant gating strategies (see Section 2.2 and Supplementary

Table 2). The flowchart leading to article and study selection is

presented in Figure 2.

The final dataset for the analysis comprised a total of 124 studies

with 11,722 unique observations on T-lymphocyte numbers (10, 18,

25, 30, 31, 35–153). Both individual and grouped data are presented

in the dataset, with the number of subjects ranging from 3 to 263.

All observations were stratified based on seven (7) physiological

organs: blood, lymphoid organs (consisting of spleen, Peyer

patches, bone marrow, lung, inguinal, mesenteric, iliac, pelvic and

cervical lymph nodes), lung (consisting of lung tissue, lung lamina

propria and broncho-alveolar lavage fluid), gastro-intestinal tract

(consisting of jejunum, ileum, colon, gut lamina propria and

rectum), thymus, kidney, liver and “other tissues” (consisting of

joint gut and lung lamina propria, cerebrospinal fluid

and colostrum).

The percentage distribution of individual and grouped data in

absolute and relative terms, for each of the 21 outcomes, is shown in

Supplementary Table 2. Individual data in absolute values of cell

counts constituted the majority of the total lymphocyte

subpopulation data (94.0% for total lymphocytes and 72.6% for

CD3+ T-lymphocytes) and several specific T-lymphocyte

subpopulations (66.3% and 65.5% for CD4+ and CD8+ total T-
FIGURE 2

Flow diagram for search and selection of clinical studies featuring quantitative data on T-lymphocyte homeostasis.
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lymphocytes, 50.2% and 57.9% for CD4+ and CD8+ memory T-

lymphocytes). Other specific subpopulation data consisted

predominantly of individual observations in relative values. Data

for CD8+ RTE cells were found only in relative values, most likely

because of inherent difficulties in distinguishing clear CD8+ RTE

differentiation within the common phenotypic CD31 marker (2). In

contrast, observations in absolute values of CD4+ cells accounted

for more than 15% of the total CD4+ RTE observations. Data for

activated CD38+ HLADR+ T-lymphocytes are presented mostly for

subject groups, not for individuals, for both CD4+ and CD8+

populations (with exception of two (2) observations in relative

values for CD8+ subpopulation). Observations of resident-memory

lymphocytes were available in relative values only.

Distributions of T-lymphocyte subpopulation observations in

the final dataset are shown in Figure 3. The majority of the

quantitative data for both total and specific subpopulations are
Frontiers in Immunology 06
presented for blood (3981, 2213 and 2014 observations for total,

specific CD4+, CD8+ subpopulations, respectively), the most

common and convenient measurement compartment. Blood was

enriched in total CD3+ (14.6%), CD4+ (22.7%) and CD8+ (21.5%)

total T-lymphocyte observations, while these subpopulations were

sparser, as compared to memory counterparts, in other organs. CD4

+/CD8+ ratio data are presented for all considered physiological

organs . The most represented specific T-lymphocyte

subpopulations were naïve, central-memory, effector-memory and

effector T-lymphocytes, comprising >20%, >14%, >14% and >12%

of observations in the dataset, respectively, for each organ. The least

represented subpopulations for each organ were activated (1.5%

and 1.0% for CD4+ and 1.4% and 1.0% for CD8+ of observations in

blood and lung, respectively) and resident-memory T-lymphocytes,

which were present mostly at peripheral sites (CD4+ RM: 1.2% in

blood vs. 12.4%, 10.2% and 9.8% in lymphoid organs, GI tract and
FIGURE 3

Percentage distributions of unique observations of total (A), specific CD4+ (B), and specific CD8+ (C) T-lymphocyte subpopulations in the final
dataset across 4 physiological organs (35 observations from “Kidney”, “Liver”, “Thymus”, “Other tissues” are not included here but can be found in
Supplementary Figure 1). Numbers within donut charts represent the total numbers of observations. The proportion of each T-lymphocyte
subpopulation in an organ is provided as a percentage, with the number of unique studies given within the brackets.
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lung, respectively; CD8+ RM: 1.3% in blood vs. 13.1%, 10.6% and

9.9% in lymphoid organs, GI tract and lung, respectively).
3.2 Age-dependent homeostasis of T-
lymphocytes in organs and tissues

Age-dependent homeostasis of T-lymphocyte subpopulations

was explored to evaluate the kinetics of age-related changes in cell

counts and percentages as well as the heterogeneity in the extracted

data. Age-related changes in percentages of specific subpopulations

of CD4+ and CD8+ T-lymphocytes in the blood and lymphoid

organs are shown in Figures 4 and 5, respectively. Individual data

on lymphocyte percentages were consistent with grouped data,

however, variabil ity increased with age in almost all

subpopulations. Percentages of naïve CD4+ and CD8+ T-

lymphocytes decreased with age, while percentages of central-
Frontiers in Immunology 07
memory, effector-memory, and effector cells increased – a result

consistent with the age-related shift in cell phenotypes to more

differentiated ones (16). No differences in age-dependent

homeostasis of specific subpopulations were observed between

blood and lymphoid organs. Age-related changes in cell counts

for total and specific subpopulations of T-lymphocytes are

presented in Supplementary Figures 2-4.

CD4+/CD8+ ratios tended to increase with age in blood,

lymphoid organs, lung and GI tract (see Supplementary Figure 5)

– an indication of cytotoxic CD8+ T-cells depleting more rapidly

with age, as compared to CD4+ helper T-cells. In each organ

considered, most CD4+/CD8+ ratios fell within the range of 1.0

and 5.0.

Age-related changes in CD4+ and CD8+ resident-memory T-

lymphocytes were explored, as shown in Supplementary Figures 6

and 7, respectively. Only one data source with observations on

CD45RO+CD69+ and CD45RO+CD103+ cell percentages was
FIGURE 4

Age-dependent homeostasis of CD4+ T-lymphocyte subpopulations in blood and lymphoid organs (values shown are relative to total CD4+ T-
lymphocytes) [(A) – naïve (studies: 36; observations: 509); (B) – central-memory (studies: 33; observations: 290); (C) – effector-memory (studies: 32;
observations: 277); (D) – effector (studies: 26; observations: 236)]. Dots represent individual data, dots with error bars represent the means with 95%
CIs of the grouped data, dot diameters indicate subject numbers per group.
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selected into the database, based on the gating strategy used (10).

CD69 represents an early activation marker and marker of tissue

residency, whose expression is upregulated by memory T-cells in all

tissues, while the CD103 integrin is associated with mucosal and

barrier tissue sites and is more specifically attributed to CD8+

resident-memory cells (154). Blood percentage counts of both CD4

+ and CD8+ resident-memory cells were close to zero (less than

10% for the majority of observations), indicative of tissue residency.

In contrast, CD4+ and CD8+ CD69+ resident-memory cells

constituted a large portion of memory cells in lymphoid organs

(average for all ages: ~64.8% for CD4+ and ~68.9% for CD8+), lung

(average for all ages: ~66.9% for CD4+ and ~69.0% for CD8+) and

GI tract (average for all ages: ~78.3% for CD4+ and ~80.7% for CD8

+). CD103+ expression was notably higher on CD8+ vs. CD4+

CD45RO+ memory T-lymphocytes (lymphoid organs: 15.8% vs.

0.7%; lung: 23.0% vs. 2.9%; GI tract: 68.9% vs. 18.3%).
Frontiers in Immunology 08
3.3 Meta-analysis of T-lymphocyte age-
dependent homeostasis

Weighted averages of counts were calculated for each T-

lymphocyte subpopulation in the pre-specified age intervals. The

meta-analysis results for total lymphocyte and CD3+ T-lymphocyte

age-related count changes in blood are shown in Figure 6; for

specific CD4+ and CD8+ subpopulations, age-dependent

homeostasis is presented in Figures 7 and 8, respectively.

Blood counts of most T-lymphocyte subpopulations declined

with age. A substantial decrease in T-lymphocyte counts was

observed in the first 10 years of life, followed by a slower decay in

subsequent years. Memory T-lymphocyte subsets (total, central-

memory, effector-memory CD4+ and CD8+) tended to increase at

older ages after approximately 50 years of age, consistent with the

concept of immune aging.
FIGURE 5

Age-dependent homeostasis of CD8+ T-lymphocyte subpopulations in blood and lymphoid organs (values shown are relative to total CD8+ T-
lymphocytes) [(A) – naïve (studies: 28; observations: 312); (B) – central-memory (studies: 27; observations: 255); (C) – effector-memory (studies: 27;
observations: 404); (D) – effector (studies: 24; observations: 371)]. Dots represent individual data, dots with error bars represent means with 95% CIs
of the grouped data, dot diameters indicate subject numbers per group.
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Intriguingly, an increase in T-lymphocyte counts was found,

upon close examination of age profiles, in nearly all subpopulations

in neonates, infants and toddlers (0 to 5 year-old age groups; see a

detailed representation in Figures 6–8 inserts). A maximal count in

total subpopulations was reached in the 6-to-12 month of age

group, with 6280 cells/μL (95% CI: 5950–6611) of total

lymphocytes and 4291 cells/μL (95% CI: 3889–4693) of total CD3

+ T-lymphocytes. However, an increase in blood count in neonates

and infants (0–6 months) was less discernible for total memory

CD4+ (Figure 7E) and CD8+ (Figure 8D) T-lymphocytes vs. total

CD4+ (Figure 7A) and CD8+ (Figure 8A) T-lymphocytes.

Moreover, maximal blood counts of memory subpopulations at

younger ages were reached later vs. total counterparts (1.0–2.5 years

of age for memory CD4+ and CD8+ cells vs. 6.0–12 months of age

for total CD4+ and CD8+ cells).

When considering specific subpopulations of memory T-

lymphocytes, differences in times-to-maximal counts during

childhood were observed. Maximal blood counts of effector-

memory T-lymphocytes were achieved at a later age (CD4+: 1.0–

2.5 years of age; CD8+: 1.0–5.0 years of age) vs. central-memory T-

lymphocytes (CD4+: 3.0–6.0 months of age; CD8+: 6.0–12 months

of age). Also, differences in maximal counts were found when

comparing CD4+ vs. CD8+ memory cells. The childhood peak

for CD4+ memory cells was greater for central-memory cells vs.

effector-memory cells [321 cells/μL (95% CI: 269–373) (Figure 7F)

vs. 212 cells/μL (95% CI: 164–261) (Figure 7G)]. The opposite was

observed for CD8+ memory cells [61 cells/μL (95% CI: 46–76) for

central-memory cells (Figure 8E) vs. 282 cells/μL (95% CI: 218–346)

for effector-memory cells (Figure 8F)]. The peak count for CD8+

effector cells was greater [459 cells/μL (95% CI: 357–561) vs. 343

cells/μL (95% CI: 243–443)] and occurred later (1.0–2.5 years of age

vs. 0.5–1.0 year of age) vs. CD4+ counterparts (Figures 8G, 7H).

When examining age-related changes in blood counts for less

differentiated T-lymphocytes, maximal counts of CD4+ and CD8+
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naïve cells were achieved earlier (3 to 6 months of age) vs. total (6.0

to 12 months of age) and other specific subpopulations. Moreover,

differences in peak counts were identified between two phenotypes

delineated by the lymph-homing markers CCR7 and CD62L (see

Supplementary Figure 8). The peak count of CD45RA+ CD62L+

naïve cells was significantly greater than for CD45RA+ CCR7+

naïve cells (2410 cells/μL (95% CI: 2036–2784) vs. 1589 cells/μL

(95% CI: 1276–1903) for the CD4+ population; 815 cells/μL (95%

CI: 715–916) vs. 467 cells/μL (95% CI: 368–565) for the CD8+

population). Differences between these subpopulations were

observed for the first 5 to 10 years of life only; such differences

were no longer observed later in life.

Publication bias as well as data heterogeneity were evaluated for

each age bin and each subpopulation through a visual inspection of

funnel plots and quantification using Egger’s test, as presented in

Supplementary Figures 9-25. When high data heterogeneity was

observed (funnel plots asymmetry and Egger’s test with a p-value

<0.001) within a selected age bin, further splitting of the bin was

tested if the number of measurements for meta-analysis allowed to

do so. Publication bias and high heterogeneity in the data was

observed for the majority of T-lymphocyte subpopulations in the 0–

10 years of age interval. This may be associated with the increase

and subsequent sharp decline in cell counts, in the first years of life.

Nevertheless, the exclusion of specific observations, along with the

aggregation or disaggregation of the age bins associated with

observed publication bias, did not result in significant alterations

to the weighted means or the loss of significance in Egger’s test.

Comparative results using the selected weighing method

(weighing on subject numbers) vs. the inverse variance weighing

method are presented in Supplementary Figures 26-28. For the

majority of T-lymphocyte subpopulations, weighted averages

calculated by either method were scattered around the identity

line. Discrepancies were observed for CD4+ and CD8+ total

memory and effector subpopulations. However, greater
FIGURE 6

Meta-analysis of age-dependent homeostasis of total lymphocyte subpopulations in blood [(A) – total lymphocytes (studies: 21; observations: 749);
(B) – total CD3+ T-lymphocytes (studies: 23; observations: 482)]. Numbers represent absolute values. Dots represent individual data, dots with error
bars represent means with 95% CIs of the grouped data; yellow solid lines with shaded area represent weighted means with 95% CIs for each age
bin (delineated by vertical dashed lines); dot diameters indicate subject numbers per group; purple shaded areas represent data for neonates, infants
and toddlers (0 to 5 years of age).
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heterogeneity (as evaluated via Egger’s test) was observed when

using the inverse variance weighing method vs. weighing on

subject numbers.
4 Discussion

Immune aging is a multiplex physiological process

characterized by multi-scale dynamic changes at molecular,

cel lular and tissue levels , such as thymic involution,

inflammation, immunosenescence. Our present quantitative

analysis of age-related changes covers a wide range of age groups
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in human, from neonates all the way to centenarians – for the latter,

see references (148–151). We did not identify significant age-related

differences in the numbers and percentages of immune cells in

centenarians, as compared with “younger” adult subjects.

Understanding the mechanisms as well as the quantitative

evolution of age-related changes in immune cells may help in

mitigating the increased susceptibility to infections and tumors

and reduced response to vaccination among elderlies. Our analysis

shows that peripheral naïve CD4+ and CD8+ T-lymphocyte

numbers decreased in mid-life adults and elderlies, as compared

to subjects in the 0–10 years-of-age groups - a widely known feature

of immune aging, linked to a reduced ability in responding to new
FIGURE 7

Meta-analysis of age-dependent homeostasis of CD4+ T-lymphocyte subpopulations in blood [(A) – total CD4+ (studies: 46; observations: 695);
(B) – CD4+ RTE (studies: 8; observations: 93); (C) – CD4+ naïve (studies: 19; observations: 190); (D) – CD4+ activated (studies: 5; observations: 15);
(E) – CD4+ total memory (studies: 15; observations: 240); (F) – CD4+ central-memory (studies: 13; observations: 40); (G) – CD4+ effector-memory
(studies: 13; observations: 40); (H) – CD4+ effector T-lymphocytes(studies: 13; observations: 40)]. Numbers represent absolute values. Dots
represent individual data, dots with error bars represent means with 95% CIs of the grouped data; yellow solid lines with shaded area represent
weighted means with 95% CIs for each age bin (delineated by vertical dashed lines); dot diameters indicate subject numbers per group; purple
shaded areas represent data for neonates, infants and toddlers (0 to 5 years of age).
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antigens (155). Moreover, our meta-analysis did not reveal a

substantial decrease in memory T-lymphocyte subsets in elderlies

(as compared to mid-life adults), rather a slight increase after ~50

years of age (Figures 7E–G, 8D–F). However, blood numbers of

effector CD4+ and CD8+ T-cells tended to decrease with age

(Figures 7H, 8G). Coupled with the persistence of immunological

memory, this may indicate a reduced potential in the generation of

effector cells upon a second antigen encounter (156). Certainly, age-

related changes in specific T-lymphocytes, in response to specific

antigens need to be evaluated on an individual basis. Age-

dependent homeostasis of resident memory cells demonstrated
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considerable variability (as illustrated in Supplementary Figures 6,

7), with no discernible age-related trends identified among subjects

younger than 60 years of age. This finding aligns with the

established longevity of these cells and stands in contrast to

existing literature that suggests a decline in their presence in

blood (157). Nonetheless, the pronounced decrease in resident

memory cell counts noted between the age of 20 and 40 warrants

further investigation, to elucidate underlying mechanisms.

An interesting outcome of our analysis is the lack of differences

in age trends, when comparing T-lymphocyte percentages between

blood and lymphoid organs (Figures 4, 5). Since blood counts of
FIGURE 8

Meta-analysis of age-dependent homeostasis of CD8+ T-lymphocyte subpopulations in blood. [(A) – total CD8+ (studies: 40; observations: 647);
(B) – CD8+ naïve (studies: 16; observations: 160); (C) – CD8+ activated (studies: 5; observations: 15); (D) – CD8+ total memory (studies: 10;
observations: 245); (E) – CD8+ central-memory (studies: 11; observations: 34); (F) – CD8+ effector-memory (studies: 11; observations: 34); (G) –
CD8+ effector T-lymphocytes(studies: 9; observations: 33)]. Numbers represent absolute values. Dots represent individual data, dots with error bars
represent means with 95% CIs of grouped data; yellow solid lines with shaded area represent weighted means with 95% CIs for each age bin
(delineated by vertical dashed lines); dot diameters indicate subject numbers per group; purple shaded areas represent data for neonates, infants and
toddlers (0 to 5 years of age).
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immune cells do not always adequately capture the actual

immunological status in other organs (158), these meta-analysis

derived estimates of cell counts in the blood and lymphoid organs

may serve as reference values for healthy subjects, as a starting point

to make further comparisons. By comparing rates of decreases in

CD4+ and CD8+ T-lymphocytes, we determined that CD8+ T-

lymphocytes depleted faster than CD4+ T-lymphocytes, as CD4

+/CD8+ ratios tended to increase with age (Supplementary

Figure 5). In terms of other potential applications, the derived

meta-analytical results are not limited to providing such reference

values of cell counts in peripheral organs. Indeed, the generalized

estimates derived from this study may serve as valuable reference

intervals in clinical practice, to assess whether patients are

experiencing “healthy” aging. The application of a meta-analytical

approach based on a large dataset enabled us to characterize T-cell

subpopulations for narrow age intervals, thereby enhancing

diagnostic precision. Moreover, researchers may use the proposed

findings as historical controls in the design of clinical trials, thereby

alleviating the need for a control arm with healthy subjects.

Additionally, the proposed methodology – which incorporates

specific weighing strategies and handles individual-level data –

can be deployed to evaluate age-related dynamics of other cell

subsets, under various pathophysiological conditions.

Owing to the large amount of data available in children, we

sought to further assess age-related changes within this most

variable age group (0 to 5 years of age). Our meta-analysis

showed that the age intervals within which blood count peaks

were achieved would shift from 3 to 6 months of age to 1 to 5 years

of age, moving from less to more differentiated T-lymphocyte

subpopulations (Figures 7, 8). Intriguingly, reaching the maximal

count for CD4+ RTE T-lymphocytes occurred later than for CD4+

naïve T-lymphocytes (6.0–18 months of age vs. 3.0–6.0 months of

age). One possible explanation is that the thymic output may be less

efficient than the RTE differentiation into naïve T-cells in infants -

coupled with the evidence that RTE cells are long-lived and may

remain in the peripheral pool longer than mature naïve cells (159).

Alternatively, these data may also be explained by the relatively

small amount of CD4+ RTE T-cells in the 0–5 years of age group or,

possibly, the non-specificity of the CD31 marker for distinguishing

RTE cells as reported recently (158). Also, the selected phenotypes

and gating strategies in flow cytometry analyses play a significant

role in the determination and quantification of T-lymphocyte

subpopulations. As shown for naïve T-cells (Supplementary

Figure 8), differences in the various markers used may affect cell

count data more significantly in younger age groups.

Investigations on quantifying age-dependent homeostasis of

lymphocytes have been undertaken by many research groups (25–31).

The first attempts to describe such age-related changes of immune cells

weremade in children. A comprehensive dataset consisting of data from

609 uninfected children (0–7 years of age) born of HIV-infected women

was used by Wade and colleagues to construct an exponential model of

CD4+ T-lymphocyte blood counts as a function of age (27). Less

extensive datasets (smaller number of subjects), yet with greater

coverage in terms of various lymphocyte populations have been

established to set reference values in healthy children using such an

exponential function (26, 28). The most recent work by Schröter and
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colleagues (25) shed light on age-related changes in lymphocyte

numbers in infants (0–1 year of age). These authors showed that

blood counts across all considered lymphocyte subpopulations tended

to increase in the first year of life. The researchers used a decay

exponential function with a constant initial time delay of half a year

and an asymptote corresponding to homeostatic levels in healthy adults,

to describe age-related changes in lymphocyte blood counts. Our results

on maximal counts of the various lymphocyte subsets are in close

agreement with those of Schröter et al., with the exception of CD4+ and

CD8+ effector cells, whosemaximal levels were estimated to be∼10-fold
higher. Such differences may relate to differing gating strategies; for

example, effector cells were identified by means of the absence of

CD45RO and CD27 markers (25). Moreover, increases in cell counts

during the first years of life were observed over longer periods than the

initial 6 months of life, for almost all subpopulations under

consideration, except for CD4+ naïve T-lymphocytes. Since the model

equation proposed by Schröter et al. contained an asymptote with a

minimal level of cells to be maintained, the data in the considered range

(0 to 62 years of age) were described well. However, dynamic changes in

older adults would be difficult to describe using this asymptotic method,

since our results show reductions in cell counts for almost all

subpopulations. Other investigators quantified age-related changes in

lymphocyte counts in adults and elderlies, however sample sizes in these

trials were relatively small (29–31).

All model-based analysis approaches discussed above make use

of individual-level data – data which are not always readily

available. Our meta-analysis approach allowed for the

combination and integration of individual- and group-level (or

aggregated) data. Handling individual-level data in a meta-analysis

is, however, not a trivial task, and several methods have been

proposed to account for such data (IPD) (160). We employed a

modified two-stage approach: in a first step, average estimates were

derived from IPD based on separate studies and within pre-

specified age bins; in a second step, the resultant average

estimates were combined with originally grouped data, to perform

the integrated meta-analysis. We did not perform any regression

analysis or analysis of covariance, which are typically used in the

first aforementioned stage (160), given the narrow age intervals and

the absence of individual characteristic descriptors for subjects.

Other approaches, in particular Bayesian approaches, need to be

explored to create a more informative combination of individual-

level and group-level (aggregated) patient data.

The proposed meta-analysis provided a consistent quantitative

description of age-related T-lymphocyte homeostasis across

comprehensive datasets; however, it also presents with several

limitations. The amount of data relevant to peripheral organs

such as kidney, liver and others precluded a quantitative

assessment of age-dependent homeostasis in these organs. Also,

the determination of age-related changes in stem cell–like memory

T-cells (Tscm) as well as regulatory T-cells (Tregs) was out of scope

in the present systematic review and corresponding meta-analysis.

However, it is the subject of intensive on-going research (161, 162),

given the potential of Tscm to maintain T-cell homeostasis and the

essential role of Tregs in immunoregulation and autoimmunity

development prevention. There is evidence which indicates that

CD4+ Tscm counts remain stable, whereas CD8+ Tscm counts tend
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to decline with age in blood samples (35). The aging process of

Tregs appears to be influenced by their origin; specifically, naturally

occurring or thymic Tregs seem to accumulate with age, while

peripheral or induced Treg populations decline (163). The age-

dependent quantification of different types of helper T-cells,

especially follicular helper T-cells which mediate antibody

production, would also be of interest since the aging of these cells

is associated with an increased risk of autoimmune disorders in the

elderly population (164). The aging processes of these T-

lymphocyte subpopulat ions deserve a comprehensive

investigation that carefully examines and accounts for the various

phenotypes associated with these cells. Furthermore, blood counts

data in elderly subjects aged >80 years are lacking with respect to

several specific T-lymphocyte subpopulations. However, given the

existence of relative percentages of specific cell subpopulations

(Figures 4, 5), blood numbers for this age range may be

calculated. For example, considering naïve CD4+ T-lymphocytes,

a reduction in percentage values relative to total CD4+ T-cell

concentrations was observed in the >80 years of age group

(Figure 4A), while the total CD4+ T-lymphocyte count also

slightly decreased in that same group (Figure 7A). We may thus

infer that the blood count (absolute value) of naïve CD4+ T-

lymphocytes would also decrease after 80 years of age. However,

for other specific subpopulations (central-memory, effector-

memory and effector cells), whose percentages increased with age

in elderlies (Figures 4B–D), trends in blood counts for these cells,

coupled with increases in blood counts of total memory cells after

~50 years, may not be intuitive. A model-based meta-analysis may

be performed, in future research, to address this specific question.

The proposed analysis investigated the age-related dynamics of

various T-lymphocyte subpopulations in all healthy subjects. The

influence of external immunological factors, such as CMV infection,

on immune aging was not in-scope for this analysis. It is well

established that CMV status plays a significant role in accelerating

immune aging and modulating the effectiveness of responses to novel

infections and vaccinations (165). The presence of CMV infection has

been shown to substantially alter the composition of immune cell

populations, characterized by a reduction in naïve and an increase in

effector-memory and effector subpopulations of both CD4+ and CD8+

T-cells, not only in elderly individuals but also in healthy young adults

(63, 85). Furthermore, the CD4+/CD8+ ratio exhibits an inversion

relative to its non-infected counterparts, with recent studies indicating

that this skewing of the T-cell repertoire predominantly occurs in

peripheral blood rather than within lymphoid tissues (49, 85). In our

systematic review of the literature, five individual studies had been

identified, that investigate the impact of CMV status on T-cell subsets

and the immune aging process (49, 63, 67, 85, 121). However, we

exclusively analyzed data pertaining to CMV-negative subgroups. The

remaining data sources lacked information regarding participants’

CMV status. Further exploration of the influence of CMV status on

various T-cell subpopulations and their associated aging processes, with

a determination of adequate meta-analytic estimates constitutes an

important area of future research, for a further characterization of

immune aging and individual variability interpretation.
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Furthermore, the influence of non-immunological factors, such

as sex and ethnicity on immune aging necessitates further

investigation. Regarding sex differences and their potential impact

on T-cell homeostasis, it remains unclear to what extent such

influences are understood. Several studies have been undertaken

to explore how subjects’ sex affects the T-lymphocyte repertoire and

immune aging (31, 149, 150, 166). The methodologies employed in

these studies primarily relied on correlations and linear regression

analyses, which impose certain limitations on the interpretation of

sex differences. The significance of subjects’ sex on age-related

dynamics was assessed through numerical comparisons of p-

values of correlation coefficients or of slope parameters across

male and female groups. The proposed meta-analytic

methodology offers opportunities for a quantitative evaluation

and statistical comparison of T-lymphocyte counts across various

groups through weighted means comparison or by incorporating

covariates. However, not all data sources provided the relevant

information to distinguish subjects by sex. We made a concerted

effort to include both individual and aggregated data in the curated

dataset; for individual subject data, “sex” was not reported in every

case, while for aggregated data, “sex” was accounted for as a

percentage of male/female subjects whenever this information was

provided in the corresponding article. This limited our ability to test

“sex” as a categorical covariate and to compare results upon

completing the full meta-analysis. Nonetheless, a preliminary

analysis on the influence of sex on immune aging was initiated by

combining individual data with known subjects’ sex alongside with

aggregated data from studies focused on single-sex groups

(Supplementary Figures 29-31). No significant differences were

revealed in the age dynamics of total lymphocyte, CD3+

lymphocyte, or CD4+ and CD8+ T-lymphocyte counts, when

comparing males vs. females (Supplementary Figure 29), in

agreement with recent studies (150). Notably, an inversion of the

CD4+/CD8+ ratio in older individuals was not observed, contrary

to findings reported by (166). Nevertheless, we noted that the

magnitude of the CD4+/CD8+ ratio was consistently but not

significantly higher among females vs. males, which is also

consistent with (166). Furthermore, the data on percentages of

specific CD4+ and CD8+ T-lymphocyte subsets across different age

groups did not overlap between male and female subjects (in

particular, for lymphoid organs), which limited the interpretation

of sex differences (Supplementary Figures 30-31). Given the

constraints imposed by the limited data for the first years of life

and the lack of consideration of aggregated datasets, expanding our

methodology for future investigations remains a priority. One

potential strategy to analyze aggregated data that incorporate sex

differences in age-related dynamics may involve the use of “sex” as a

continuous covariate within each age interval or the use of a non-

linear meta-regression.

The proposed analysis focused on flow cytometry data for the

main developmental cell populations, for which sufficient data were

available. However, the emergence and use of newer technologies

for assessing and characterizing immune homeostasis, such as

single-cell transcriptomics and multimodal assays, has led to the
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identification of rare cell populations and enhanced the resolution

of immune cell analyses at the single-cell level (167). Given such

advantages, these innovative methods have been increasingly used

to characterize cell subpopulations that have been previously under-

explored through flow cytometry analyses, largely due to limitations

associated with existing antibody clones and challenges in labelling

intracellular protein expression. Consequently, an integration of

data derived from these novel techniques (i.e., scRNA-seq and

ATAC-seq) with cytofluorometry data systematically collected in

the present study would present conceptual challenges; the marker

sets used for cell identification differ between these methodologies.

Other design parameters in flow cytometry data analyses include

the selection of markers and the gating strategy. The intense

development of novel techniques for cell analyses raises questions

on the relevance of markers used to identify certain cell

subpopulations. As mentioned previously, the use of the CD31

biomarker for distinguishing RTE cells may be questionable, when

considering the non-obligatory loss of CD31 marker expression as

naïve cells divide in the periphery (168). There are other markers

which can be used to distinguish RTE cells which include protein

tyrosine kinase 7 (PTK7) and CD103; however, their usage is also

limited and remains under debate (3, 169). The PTK7 marker is also

highly expressed on naïve T-cells, while the CD103 marker is

expressed mostly on CD8+ T-cells. A new distinguishing marker

for RTE cells – CD38 – was proposed recently (158); however, a

strong correlation between the expression of CD31+ and CD38+ on

RTE cells had been reported. Combined with the large amount of

cytofluorometry data presented for RTE cells expressing the CD31

marker, it justified the use of this particular marker in the proposed

analysis. Another point of debate is the use of the CD69 marker to

identify resident-memory T-cells. CD69 plays a dual role as an early

activation marker and a marker of tissue residency (170). In the

proposed analysis, the subpopulations of CD69+ CD45RO+

expressing CD4+ and CD8+ T-cells were considered as resident

memory T-lymphocytes, and their age-dependent homeostasis was

explored in peripheral tissues (Supplementary Figure 6A).

Nonetheless, the proposed meta-analytical methodology can be

effectively applied to multi-omic data and cell subpopulations

distinguished by other markers, once a sufficient amount of

information becomes available in the literature.

In meta-analyses, heterogeneity in the data may be handled

through the use of certain weighing strategies, based on subject

numbers. We did not apply the commonly used heterogeneity

measure I² (or Cochran’s Q test) in the present analysis, due to

reliability and stability concerns when based on a limited number of

events - an issue exacerbated by our use of age binning (171). A

sensitivity analysis was performed to address the variability associated

with gating strategies. Regarding lymph homing markers (CCR7 and

CD62L), we performed separate meta-analyses based on the selected

lymph-homing markers. The only difference detected was for naïve

CD4+ and CD8+ cells, especially during the first years of life (as

shown in Supplementary Figure 8). For other markers used to gate on

naïve, central-memory, effector-memory, and effector T-lymphocytes

(CD27, CD28), there were limitations in conducting such an analysis
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due to insufficient amounts of available data for these particular

phenotypes. Nevertheless, we undertook a sensitivity analysis

comparing weighted means with and without the inclusion of

CD28 and/or CD27 markers within the gating strategy for naïve

CD4+ and CD8+ T-lymphocytes – since, for these cells, the

percentage of phenotypes including CD27/CD28 markers was the

highest among other subpopulations (see Supplementary Table 2).

The sensitivity analysis showed that there was no influence of the

CD27/CD28 gating on the generalized estimates across age bins, as

illustrated in Supplementary Figure 32.

Although the presented meta-analysis provides a quantitative

snapshot of immune cell phenotype composition and its age-

dependent changes, it does not consider processes of immune

differentiation and dynamics. A systems immunology approach to

modeling can be applied in order to overcome this limitation and

quantitatively assess age-dependent changes in T-lymphocytes

circulation and their phenotypic differentiation, in a similar manner

to the mechanistic pharmacokinetic and pharmacodynamic modeling

actively used in support of drug development (172). For example,

quantitative systems pharmacology models, through the integration

of biological and patho-physiological mechanisms would enable the

community to consistently combine multi-scale experimental data -

including pharmacokinetic profiles of therapeutic drug and vaccine

treatments - to obtain a mechanistic and quantitative description of

the immune system.
5 Conclusions

A systematic review and quantitative meta-analysis of data on

age-dependent homeostasis focused on T-lymphocyte

subpopulations in healthy subjects was performed. An extensive

database containing 11,722 unique observations of quantitative

measurements for 20 different T-lymphocyte subpopulations from

124 distinct studies was compiled and used in the analysis. The broad

coverage of subjects aged from neonates to centenarians enabled us to

explore age-related changes in lymphocyte counts in blood and other

organs. The generalized estimates of cell counts were calculated for

each T-lymphocyte subpopulation of interest, within narrow age

intervals. Our analysis showed that the most significant decline in

blood counts was observed for total and less differentiated

lymphocyte subpopulations within the first 10 years of life.

Different subpopulations of memory T-lymphocytes tended to

increase with age after 50 years of life. No differences in age-

dependent homeostasis were found among relative values of

lymphocytes in blood vs. lymphoid organs. Differences in times-to-

maximal cell counts were found between less and more differentiated

cells, with the latter reaching the maximal number later. The

emerging approach of mechanistic model-based meta-analyses,

such as the one we presented here allows to systematically explore

and quantify various immunological profiles, by maximizing

information extraction and exploitation out of large yet

heterogeneous experimental and clinical datasets. The proposed

approach has been uniquely applied to the systematic exploration
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of immune aging and the corresponding lifetime dynamics of several

key T-lymphocyte subpopulations.
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47. Briceño O, Chávez-Torres M, Peralta-Prado A, Garrido-Rodrıǵuez D, Romero-
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109. Tiba F, Nauwelaers F, Sangaré L, Coulibaly B, Kräusslich HG, Böhler T.
Activation and maturation of peripheral blood T cells in HIV-1-infected and HIV-1-
uninfected adults in Burkina Faso: a cross-sectional study. J Int AIDS Society. (2011)
14:57–7. doi: 10.1186/1758-2652-14-57

110. Hehmke B, Michaelis D, Gens E, Laube F, Kohnert KD. Aberrant activation of
CD8+ T-cell and CD8+ T-cell subsets in patients with newly diagnosed IDDM.
Diabetes. (1995) 44:1414–9. doi: 10.2337/diab.44.12.1414

111. Mansoor N, Abel B, Scriba TJ, Hughes J, de Kock M, Tameris M, et al.
Significantly skewed memory CD8+ T cell subsets in HIV-1 infected infants during the
first year of life. Clin Immunol. (2009) 130:280–9. doi: 10.1016/j.clim.2008.09.006

112. Peroni DG, Chirumbolo S, Veneri D, Piacentini GL, Tenero L, Vella A, et al.
Colostrum-derived B and T cells as an extra-lymphoid compartment of effector cell
populations in humans. J Maternal-Fetal Neonatal Med. (2013) 26:137–42.
doi: 10.3109/14767058.2012.733744

113. Edelbauer M, Kshirsagar S, Riedl M, Billing H, Tönshoff B, Haffner D, et al.
Activity of childhood lupus nephritis is linked to altered T cell and cytokine
homeostasis. J Clin Immunol. (2012) 32:477–87. doi: 10.1007/s10875-011-9637-0

114. Resino S, Seoane E, Gutierrez MDG, Leon HA, Munos-Fernandes MA. CD4(+)
T-cell immunodeficiency is more dependent on immune activation than viral load in
HIV-infected children on highly active antiretroviral therapy. J Acquir Immune Defic
Syndr. (2006) 42:269–76. doi: 10.1097/01.qai.0000222287.90201.d7

115. Van den Hove LE, Vandenberghe P, Van Gool SW, Ceuppens JL, Demuynck H,
Verhoef GEG, et al. Peripheral blood lymphocyte subset shifts in patients with
untreated hematological tumors: Evidence for systemic activation of the T cell
compartment. Leukemia Res. (1998) 22:175–84. doi: 10.1016/S0145-2126(97)00152-5

116. Rodrigues DSS, Medeiros EAS, Weckx LY, Bonnez W, Salomão R, Kallas EG.
Immunophenotypic characterization of peripheral T lymphocytes in Mycobacterium
tuberculosis infection and disease. Clin Exp Immunol. (2002) 128:149–54. doi: 10.1046/
j.1365-2249.2002.01809.x

117. de Moraes-Pinto MI, Ono E, Santos-Valente E, Almeida L, Andrade P, Dinelli
M, et al. Lymphocyte subsets in human immunodeficiency virus-unexposed Brazilian
individuals from birth to adulthood. Memorias do Instituto Oswaldo Cruz. (2014) 109
(8):989–98. doi: 10.1590/0074-0276140182

118. Mikulkova Z, Praksova P, Stourac P, Bednarik J, Strajtova L, Pacasova R, et al.
Numerical defects in CD8+CD28– T-suppressor lymphocyte population in patients
with type 1 diabetes mellitus and multiple sclerosis. Cell Immunol. (2010) 262:75–9.
doi: 10.1016/j.cellimm.2010.02.002

119. Schubert R, Reichenbach J, Royer N, Pichler M, Zielen S. Spontaneous and
oxidative stress-induced programmed cell death in lymphocytes from patients with
ataxia telangiectasia (AT). Clin Exp Immunol. (2000) 119:140–7. doi: 10.1046/j.1365-
2249.2000.01098.x

120. Teschner D, Distler E, Wehler D, Frey M, Marandiuc D, Langeveld K, et al.
Depletion of naive T cells using clinical grade magnetic CD45RA beads: a new
approach for GVHD prophylaxis. Bone Marrow Transplantation. (2014) 49:138–44.
doi: 10.1038/bmt.2013.114

121. Derhovanessian E, Maier AB, Hähnel K, Beck R, de Craen AJM, Slagboom EP,
et al. Infection with cytomegalovirus but not herpes simplex virus induces the
accumulation of late-differentiated CD4+ and CD8+ T-cells in humans. Vol. 92 J
Gen Virology. Microbiol Society;. (2011) p:2746–56. doi: 10.1099/vir.0.036004-0

122. Abul H, Mahmoud F, Al-Saleh Q, Khajeji M, Haines D. Profiles of activated T
lymphocytes in peripheral blood of Kuwaiti psoriasis vulgaris patients. J Dermatol.
(2002) 29:202–8. doi: 10.1111/j.1346-8138.2002.tb00250.x

123. Jablonowska B, PalfiM, Matthiesen L, Selbing A, Kjellberg S, Ernerudh J. T and
B lymphocyte subsets in patients with unexplained recurrent spontaneous abortion:
IVIG versus placebo treatment. Am J Reprod Immunol. (2002) 48:312–8. doi: 10.1034/
j.1600-0897.2002.01010.x
Frontiers in Immunology 18
124. Lanio N, Sarmiento E, Gallego A, Navarro J, Palomo J, Fernandez-Yañez J, et al.
Kinetics of functionally distinct T-lymphocyte subsets in heart transplant recipients
after induction therapy with anti-CD25 monoclonal antibodies. Transplant Immunol.
(2013) 28:176–82. doi: 10.1016/j.trim.2013.04.005

125. Paganelli R, Scala E, Scarselli E, Ortolani C, Cossarizza A, Carmini D, et al.
Selective deficiency of CD4+/CD45RA+ lymphocytes in patients with ataxia-
telangiectasia. J Clin Immunol. (1992) 12:84–91. doi: 10.1007/BF00918137

126. Carbone J, Gallego A, Lanio N, Navarro J, Orera M, Aguaron A, et al.
Quantitative abnormalities of peripheral blood distinct T, B, and natural killer cell
subsets and clinical findings in obstetric antiphospholipid syndrome. J Rheumatol.
(2009) 36:1217. doi: 10.3899/jrheum.081079

127. Nickel P, Kreutzer S, Bold G, Friebe A, Schmolke K, Meisel C, et al. CD31+
Naïve th cells are stable during six months following kidney transplantation:
implications for post-transplant thymic function. Am J Transplantation. (2005)
5:1764–71. doi: 10.1111/j.1600-6143.2005.00924.x

128. Bisset LR, Lung TL, Kaelin M, Ludwig E, Dubs RW. Reference values for peripheral
blood lymphocyte phenotypes applicable to the healthy adult population in Switzerland. Eur
J Haematology. (2004) 72:203–12. doi: 10.1046/j.0902-4441.2003.00199.x

129. Kolte L, Gaardbo JC, Skogstrand K, Ryder LP, Ersbøll AK, Nielsen SD.
Increased levels of regulatory T cells (Tregs) in human immunodeficiency virus-
infected patients after 5 years of highly active anti-retroviral therapy may be due to
increased thymic production of naive Tregs. Clin Exp Immunol. (2009) 155:44–52.
doi: 10.1111/j.1365-2249.2008.03803.x

130. Resino S, Abad ML, Navarro J, Bellón JM, Sánchez-Ramón S, Ángeles Muñoz-
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