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Preeclampsia (PE) is an obstetrical disorder that occurs after the 20th week of

gestation. It is recognized as one of the “Great Obstetrical Syndromes” and

principally contributes to maternal morbidity and mortality. PE has been

associated with a range of immune disorders, including a preponderance of T

helper (Th) 1 over Th2 cells and imbalanced levels of Th17 and T regulatory cells

(Tregs). During pregnancy, T cells safeguard the placenta against immune

rejection and aid embryo implantation while involved in pregnancy

complications, such as PE. Promoting alloantigen-specific Treg cells is a

potential preventive and therapeutic strategy for PE. However, ensuring the

safety of mothers and infants is of the utmost importance since the risk-

benefit ratio of reproductive and obstetric conditions differs significantly from

that of immune diseases that pose a life-threatening risk. In this review, we

systematically summarize the roles of T-cell immunity in the peripheral blood,

reproductive tissues, and at the maternal-fetal interface of PE patients.

Furthermore, the recent therapeutic approaches centered on targeting T cell

immunity in PE are critically appraised.
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1 Introduction

Preeclampsia (PE) is a disorder that occurs during pregnancy, with a global incidence

rate of 2-8%. Recognized as one of the “Great Obstetrical Syndromes,” it principally

contributes to maternal mortality (1). Clinical manifestations, including hypertension

(BP ≥ 140/90 mmHg) and proteinuria, manifest after the 20th week of gestation to define

this condition (2). Furthermore, PE may be correlated with additional maternal and

obstetrical complications, such as impairment of placentation, intrauterine growth

restriction, preterm labor, aberrant liver function, acute renal failure, and hematological
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abnormalities (3, 4). Currently, preventive measures are limited to

lifestyle modifications and the use of aspirin, whereas management

consists solely of childbirth. Although early pregnancy induction is

often required to safeguard the health of the mother in cases of PE,

premature birth can have significant adverse effects on neonatal

health. For example, respiratory morbidity in neonates has been

observed in preterm infants, which exhibited a 4.4-fold increase in

comparison to full-term infants (5).

Currently, knowledge holds that PE develops in two stages: an

impaired trophoblast invasion and remodeling of spiral arteries,

along with changes in the immune system in the early maternal-

fetal environment. During the latter phase of pregnancy, systemic

inflammation occurs in the maternal body (6). Overall, significant

pathogenic factors include the presence of inflammatory processes

(7–9), the lack of maternal tolerance towards the fetus (10–12), and

cardiovascular maladaptation in the mother (13). Noticeably, PE is

associated with a range of immune disorders, including higher

activity of neutrophils, monocytes, and natural killer (NK) cells,

dysregulated cytokine secretion, a preponderance of T helper (Th)

1 cells relative to Th2 cells, imbalanced levels of Th17 and T

regulatory cells (Tregs), and the manifestation of autoimmunity

(14–18). Tregs, which have decreased levels of CD127 and

increased levels of CD4, CD25, cytotoxic T lymphocyte antigen-4

(CTLA-4), CD45RA, HLA-DR, and forkhead transcription factor 3

(FoxP3), are particularly important in preventing the development of

detrimental immune responses and promoting tolerance throughout

pregnancy (19).

Over the last two decades, considerable investigation has

indicated that T cells exert notable influence on both healthy and

unhealthy pregnancies, albeit with the exact characteristics of these

influences remaining obscure. Disputing the notion that decidual T

cells universally endanger fetal survival due to the “allograft”

placenta, distinct T cell subsets contribute to determining

pregnancy success or failure. Treg cells safeguard the placenta

against immune rejection and aid in embryo implantation. In

contrast, others, such as Th1 or Th17 cells, have been reported to

be involved in pregnancy complications, such as PE.

In this review, we systematically summarize the roles of T-cell

immunity in the peripheral blood, reproductive tissues, and at the

maternal-fetal interface of patients diagnosed with PE and further

substantiate the notion that T cell regulation may effectively

mitigate the detrimental prognosis of PE for both the mother and

neonate, ultimately leading to improved pregnancy outcomes.
2 T cells in normal pregnancy

In the human decidua of the first trimester, T cells comprise a

range of 10-20% of the overall leukocyte count, comprised of 30-45%

CD4+ and 45-75% CD8+ (20). Afterward, the proportion of decidual

T cells increases, eventually encompassing 40-80% of all leukocytes at

term (21). The regulation of normal reproductive functions depends

on CD4+ T cells and the immune factors they generate. Suitable T cell

reactions regulate the fertilization and embryo development, as well

as the initial development of the placenta and angiogenesis (22–26).
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Based mainly on the production of cytokines and surface markers,

CD4+ T helper cells are categorized as Th1, Th2, Treg, Th17, and

recently Th22 cells (27). A controlled transition to Th1 responses

occurs during the peri-implantation phase; these responses are

involved in immune surveillance and prevent an overabundance of

trophoblast invasion (28). Transitioning towards Th2 cells following

placental implantation is imperative to ensure and advance the

development of a healthy embryo and placenta by promoting

allograft tolerance. It entails the reduction of Th1 and Th17 cells

through the secretion of interleukin (IL)-13, IL-4, and IL-17 (28). The

Th1/Th2 paradigm during normal pregnancy is that Th1 immune

response dominates in the first trimester. However, in the second and

third trimesters, the maternal immune system shifts towards Th2

immune response (28–30).

CD8+ T cells are the prevailing immune cells in the decidua

during gestation, essential for fostering fetal-maternal tolerance.

Effector memory CD8+ T cells (CD8+ EM cells) comprise the

majority of decidual CD8+ T cells (dCD8+ T cells); these cells are

thought to possess the capability to induce fetal rejection. Naive

CD8+ T cells (CD8+ N cells), on the other hand, constitute the main

parts of peripheral CD8+ T cells (pCD8+ T cells) (31). In

comparison to pCD8+ EM cells, dCD8+ EM cells express greater

quantities of interferon-g (IFN-g) and IL-4, whereas perforin and

granzyme B are less abundantly expressed (31, 32). Programmed

cell death-1 (PD-1) was discovered to be highly expressed on Tregs,

CD8+ T cells, and NKT-like cells (33–35). A notable up-regulation

of programmed death ligand-1 (PD-L1) was observed in immune

cells situated at the maternal-fetal interface, as well as extravillous

trophoblasts (EVT) and syncytiotrophoblasts (ST) (36–39). Fetal

resorption is increased in mouse models when the PD-1/PD-L1

signal is inhibited; this suggests that this pathway is important for

maintaining immune tolerance in the decidua (40). Accordingly,

immune tolerance to fetal antigens is sustained in pregnancy by

regulating the response of decidual CD8+ T cells, although these

cells maintain the capability to eliminate virus-infected cells (41).

CD4+CD25+ Treg cells are essential in protecting the fetus from

rejection due to their potent ability to suppress immune responses

(42). Many Treg subtypes resembling induced type 1 regulatory

(Tr1) cells have been detected in the initial and terminal human

decidua (43). These subtypes have exhibited the capability to

impede the proliferative ability of effector T cells and increase the

secretion of IL-10 (44). Healthy pregnancy was related to a rise in

CD4+CD25+ Tregs in both rodents (45) and humans (46). There is a

rise in the circulating levels of CD4+CD25+ cells in the first

trimester, reaching the highest value in mid-pregnancy and then

declining after childbirth to levels slightly higher than those before

pregnancy (46) (Figure 1). A few weeks prior to delivery, a

discernible reduction in CD4+CD25high Treg cells is observed

(47). Treg cells are locally enriched in the decidua (48, 49).

Researchers observed similar proportions of Tregs in the decidua

basalis throughout normal pregnancies, while noting a rise in the

decidua parietalis from mid pregnancy to late pregnancy (49).

Tregs serve multiple functions, including inhibiting immune

system activity, mitigating inflammation, and remodeling of

blood vessels to promote successful embryo implantation in the
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decidua (10, 50). During pregnancy, peripheral Treg cells and

uterine Treg cells are generated in reaction to fetal antigens.

Peripheral Treg cells inhibit the production of the pro-

inflammatory cytokines (IFN-g, tumor necrosis factor (TNF)-a,
IL-2, and IL-12), creating a microenvironment with anti-

inflammatory properties (51–53). Uterine Treg cells suppress the

expansion of Th1 and Th17 cells, thereby averting their assault on

the semi-allogeneic fetus. Inhibiting the immune activity of effector

T cells to fetal alloantigens, uterine Tregs have diagnostic features of

inhibitory T cells, including elevated expressions of CTLA-4, IL-10,

CD25, and transforming growth factor (TGF)-b (54–57). Moreover,

Tregs are essential in preventing invariant NKT (iNKT)-induced

miscarriage (56). In support of a successful pregnancy, Tregs also

aid in the maintenance of a suppressive immune phenotype in other

cell types, including macrophages, dendritic cells (DCs), and uterine

NK (uNK) cells (50). Conversely, interaction between CD14+

myelomonocytic cells and decidual NK cells initiates a sequence

of events that facilitate the production of Treg cells and inhibit the

immune response (58).

In contrast, Th17 cells constitute an additional subgroup of CD4+

T cells that contribute to facilitating inflammatory responses (59). Th17

cell-produced IL-22 and IL-17 contribute to the eradication of

pathogens and the induction of inflammation in autoimmune

disorders, respectively (60, 61). The regulation of Th17 cell

development and differentiation is subject to the influence of the

retinoic acid-related orphan receptor gt (RORgt), as well as a

multitude of positive and negative factors (62, 63). In a healthy

pregnancy, CD4+ T cells comprise the majority of IL-17-producing

cells in the circulation and decidua (64, 65). Comparatively, the

percentage of IL-17+ lymphocytes in the decidua is evidently greater

than that in the periphery of first-trimester pregnant women (64). The

circulating quantity of Th17 cells exhibited no variation during the

entire gestational period (66). Research has documented that pregnant

women exhibit reduced quantities of CD4+ IL-17+ T cells and an
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increased proportion of FoxP3+ Tregs to IL-17+ CD4+ T cells during a

healthy pregnancy compared to non-pregnant females (14). IL-17

could augment the invasiveness of JEG-3 cells, which are

choriocarcinoma cell lines, and substantially increase progesterone

secretion in vitro co-culture models (67, 68). Another study found

that IL-17 levels remained in a similar range throughout the whole

pregnancy, but the average was higher in the third trimester (69). This

suggests that elevated IL-17 levels may contribute to the initiation of

labor and/or inflammation. Further research involving humans and in

vivo experiments is required to ascertain whether the existence of Th17

cells is a cause or an effect of effective pregnancy establishment.

To summarize, the accumulation of Tregs is critical for

maintaining a healthy semi-allogeneic pregnancy during its early

stages. The proportion of Tregs increases during the initial and

subsequent trimesters of gestation, and through a multitude of

mechanisms, Tregs promote the well-being of the fetus. While

significantly more Th17 cells are present in the decidua in early

pregnancy compared to the second and third trimesters, these cells

secrete IL-17, facilitating the invasion and proliferation

of trophoblasts.
3 Effector T cells in PE

Women with PE have an increased systemic effector T-cell pool,

as demonstrated by either a higher number/proportion or a greater

degree of activation (70–73). Patients diagnosed with PE exhibited

elevated circulating concentrations of CD4+ T cells compared with

those undergoing a healthy pregnancy (74). The elevation in CD4+

T cells could potentially be ascribed to the proliferation of memory

T cells since the percentage of this subgroup was greater in women

with PE relative to those who conceived successfully; contrarily, the

percentage of naive T cells was diminished (72). Aberrant function
FIGURE 1

The alterations in the circulating composition of Treg/Th17 cells during normal pregnancy and preeclampsia (PE) occur throughout the peri-
conception, various stages of pregnancy, and at delivery. During a healthy pregnancy, Treg cell levels rise during early pregnancy, peak in mid-
pregnancy, and then decline progressively after delivery, returning to slightly elevated levels compared to pre-pregnancy levels. In contrast to the
non-pregnant state, the quantity of Th17 cells remains comparatively low during the entirety of the pregnancy and does not endure substantial
changes. PE is correlated with reduced quantities, compromised suppressive capabilities, or instability of Treg cells. This may be attributed to the
limited ability of Treg cells to facilitate normal placentation and regulate the elevated inflammation frequently observed in PE. Furthermore, the
quantity of Th17 cells in expectant women with PE could be considerably greater than that of healthy controls. Generated using BioRender.com.
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of CD8+ T cells has also been observed in cases of PE compared to

healthy pregnancies (73). A rise in the cytotoxicity of CD8+ T cells

was found in preeclamptic women relative to non-preeclamptic

women; this may have been due to a reduction in Treg-mediated

inhibition (70). In addition to the heightened cytotoxic activity,

patients with PE exhibited a significant increase in the proportion of

peripheral microparticles originating from cytotoxic T cells

compared to controls who were not pregnant (75).

As stated previously, the majority of studies have indicated that

women with PE have increased T-cell activity. However, there have

been several reports indicating contradictory findings. Compared to

women with a normal pregnancy, patients with PE had decreased

peripheral T-cell counts (76, 77). According to these reports, while

the numbers of CD8+ and CD4+ T cells were comparable between

normal and preeclamptic pregnancies, PE patients exhibited

significantly lower percentages of CD4+ memory, CD4+ EM, and

CD4+ central memory (CM) subgroups than normal pregnancies

(78). Reduced T cell populations may indicate a decline in specific

subgroups instead of a decline in the T-cell population as a whole.

Undoubtedly, pregnancies impacted by PE exhibited a dramatic

decrease in the percentage of circulating CD4+ HLA-G+ T cells (79)

and diminished levels of soluble HLA-G in maternal plasma (80).

This observation holds significance since HLA-G, which is

predominantly detected in neonatal tissues (81) and functions to

enhance immune tolerance (82, 83), can be detected in a distinct

subgroup of T cells that possess immunosuppressive characteristics

(84, 85). Hence, specific peripheral T cell subsets may be reduced in

the context of PE, which contrasts with the elevated abundance of

inflammatory T cells documented in other reports.

Efforts to examine the functionality of effector T cells at the

uteroplacental interface have produced contradictory results,

potentially due to variations in patient cohorts, experimental

approaches, and other specific characteristics. Flow cytometric (86)

and immunohistochemical (87) analyses of decidual samples revealed

a reduction in the percentage of T cells in PE cases compared to

women who experienced preterm delivery or full-term childbirth,

respectively. Conversely, an immunohistochemistry method

identified a prominent abundance of CD8+ T cells in the decidua

of individuals diagnosed with PE compared with those without (88).

CD8+ T cells and total T cells were more abundant in placental bed

biopsies of women with PE than normal controls (89). Additionally, a

greater percentage of CD8+ T cells was identified in placental tissues

from pregnancies impacted by PE (90). The modifications in local

effector T cells associated with PE may be influenced by distinct

aspects: the flow cytometry analyses of early-onset and late-onset PE

revealed a decrease in the percentages of CD4+ central-memory (CM)

T cells and CD8+ regulatory-(Foxp3+) memory cell (CD45RO+) T

cells compared with normal pregnant women, and early-onset PE

showed higher proportions of activated CD4+ and CD8+ cells

compared to late-onset PE in the decidua parietalis (91). Hence, it

is evident that the changes in the local T-cell linked to PE are not

solely determined by specific subsets, as early-onset PE is frequently

accompanied by more significant immunological changes that may

be more severe. The elevated prevalence of decidual effector T cells

from women with PE could potentially be attributed to additional

regional factors that trigger a secondary immune response.
Frontiers in Immunology 04
Potentially, acute atherosis associated with PE or other placental

histological abnormalities may enhance the infiltration of T cells.

More T cells were detected in the decidual samples of preeclamptic

females with acute atherosis than those without this pathological

change (92). The significance of considering possible confounding

variables, such as placental lesions, should be emphasized when

assessing immune alterations in women with PE.

The reports mentioned above collectively indicate that PE is

distinguished by activated T cells in the decidua or placenta and

maternal circulation. The prevalence of systemic inflammation and

a decrease in the number and functionality of Tregs and

immunosuppressive HLA-G+ T cells are probable factors that

impact T cell activation. Notably, women who develop PE at an

early stage of pregnancy appear to have increased T-cell activities;

however, other situations that can induce T-cell-mediated

pathogenesis, such as acute atherosis, should also be evaluated.
4 The Th1/Th2 paradigm in PE

The hypothesis regarding immune regulation during

pregnancy, suggesting the conversion of the maternal immune

response from Th1 to Th2, has been widely accepted for a long

time (71, 93, 94). This model is built on the observation that the

reaction triggering an antigen presented to a Th0 lymphocyte in a

non-pregnant woman will be influenced, at least partially, by the

cytokine environment surrounding this lymphocyte. For example, a

cytokine microenvironment containing higher expressions of IL-12,

IL-18, and IFN-g will support the generation of Th1 cells, which

release TNF-a, IL-2 and IFN-g, and facilitate the stimulation of

other cells such as cytotoxic T cells. On the contrary, a milieu

characterized by elevated concentrations of IL-10 and IL-4 will

induce the secretion of Th2 lymphocytes. Additionally, the response

of Th2 is inhibited by the activity of Th1 cytokines.

PE is distinguished by an imbalance of the Th1/Th2 immune

systems, with Th1-type immunity more prevalent in the peripheral

circulation (15, 71, 95–101) (Table 1). Additionally, cytotoxic T-

lymphocytes (CTLs) can be classified as type 1 or 2 subgroups (102,

103). Type 1 cells are distinguished by the inclusion of the IL-18

receptor on the cell surface, whereas type 2 cells exhibit a cell

membrane protein resembling IL-1R (104). It has been proposed

that the shift towards a Th1 dominance during pregnancy is

responsible for the compromised placental function seen in PE.

An inquiry observed an increase in the synthesis of IFN-g, IL-2, and
TNF-a in peripheral blood mononuclear cells (PBMCs) from

patients with PE. Furthermore, a noteworthy correlation was

revealed between the mean blood pressure and Th1 cytokines

(105). In another study, 20 PE patients and 20 normotensive

counterparts were recruited (106). They discovered that women

with PE had a Th1 polarization shift and a Th2 reduction in their

peripheral blood profiles. This was linked with elevated

concentrations of TNF-a and IFN-g and lower expressions of

TGF-b1 and IL-10, compared with healthy pregnant women

(106). These alarmins may cause disease development by

modulating CD4+ T cells and encouraging the secretion of pro-

inflammatory cytokines, thereby inducing innate and adaptive
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immune responses (106). An additional study examined the

concentrations of Th1/Th2 cytokines in peripheral blood

lymphocytes and CD3+ T, CD4+ Th, and CD8+ Tc cells in

women with PE (107). When comparing PE to a normal

pregnancy, an increased count of CD4+ lymphocytes was

observed (107). While the Th1/Th2 shift was not detected in PE

involving CD3+ cells, it might be evident in CD4+ and CD3-

lymphocytes (107).

In patients with PE, reinforcement of Th1 reactions is evident

not only in the periphery but also at the maternal-fetal interface

(108). In vitro trophoblast cultures derived from term placentas of

preeclamptic patients exhibited a profound reduction in IL-10

expression compared with cultures from normal pregnancies

(109, 110). In PE, the placental ratios of TNF-a/IL-10 and IL-2/

IL-10 were substantially elevated than in a healthy pregnancy (111).
Frontiers in Immunology 05
In PE, PD-1 expression was decreased in CD8+ T cells (112, 113),

suggesting further activated CD8+ T cells. Compared to normal

pregnant women, PE patients exhibited elevated levels of T-bet, Th1

transcription factor and decreased expressions of GATA-3, Th2

transcription factor in circulating and decidual T cells (114, 115).
5 Treg/Th17 paradigm in PE

5.1 Treg/Th17 imbalance in the peripheral
blood of PE patients

Numerous studies have investigated the relationship between PE

and peripheral blood Treg populations. Some research investigations

utilized flow cytometry to examine the populations of Tregs (77, 106,

115–137), whereas others employed qPCR (62, 114, 138, 139).

Pregnant women with PE have decreased numbers of circulating

Tregs (14, 77, 117, 120, 123–125, 127, 132, 134, 140–144), including

CD4+CD25+ FoxP3+ T lymphocytes (125), and CD8+CD25+FoxP3+

cells (138). However, other studies revealed that there was no

significant difference in the peripheral proportion of Treg cells

between the normal group and the PE group (136, 145, 146).

Treg cells might have a diminished suppressive capacity in PE

patients (77, 118, 120, 140, 142).

In patients with PE, the proportions of Treg subtypes are

distinct from that of healthy expectant women. In comparison to

normal pregnant females, the frequency of fully functional effector

Tregs (CD4+ FoxP3+ CD45RA−) was lower in patients with PE.

Conversely, naive Tregs (CD4+ FoxP3+ CD45RA+) were unchanged

(116). In one study, a distinct subset of Treg cells that express HLA-

G was characterized (147). These cells, which are hypo-proliferative

and thymic-derived, do not show expression of FoxP3 and CD25

molecules. These entities are identified in instances of multiple

sclerosis, HIV-1 infection, and transplantation (148). Compared

to normal pregnant women, the proportions of peripheral

CD4+HLA-G+, CD8+HLA-G+, and CD4+CD25+CD127low cells

are diminished in PE patients (77). Likewise, an additional

investigation demonstrated an evident reduction in the circulating

CD4+HLA-G+ T cells in individuals with PE compared to

healthy pregnant women (79). Moreover, healthy pregnant

women have a significantly higher percentage of circulating

CD4+CD127lowCD25+, CD4+FoxP3+, and CD4+CD25high cells

compared to patients with PE (14). Furthermore, an increased

Th17/Treg ratio was identified in PE by researchers via an

examination of the proportions of CD4+CD25+CD127+ and CD4+

IL-17+ cells (122). In addition, the quantity of CD45RA+CD31+

recent thymic emigrant Tregs are diminished in patients with

PE (119).

In PE cases, the inhibitory function of Treg cells diminishes in

tandem with their diminished quantity (Table 2). It has been

discovered that CD4+CD25+CD127low/neg Treg cells isolated from

PE women via magnetic sorting showed a diminished suppressive

activity in comparison to Treg cells isolated from healthy expectant

individuals (140). In addition, CD4+CD25+ Treg cells obtained

from PE patients via magnetic activated cell sorting (MACS)
TABLE 1 The Th1/Th2 cytokine imbalance in preeclampsia (PE).

Th1/Th2
cytokines

Peripheral blood Maternal-
fetal interface

TNF-a ↑ (15, 16, 105, 250–255) (256, 257)

TNF-a → (110, 111)

IFN-g ↑ (15, 98, 101, 105, 106, 258) (108, 256, 259, 260)

IFN-g → (99, 261)

IL-1 ↑ (256)

IL-2 ↑ (95, 97, 98, 105)

IL-2 → (110, 111)

IL-6 ↑ (252–254, 262–264) (256, 257)

IL-6 ↓ (15) (108, 259, 265)

IL-6 → (110)

IL-8 ↑ (124, 252–254, 261, 264) (257)

IL-12 ↑ (99, 100, 266)

IL-12 → (261)

IL-12 ↓ (108, 259)

IL-18 ↑ (267) (267)

TGF-b ↑ (268)

TGF-b ↓ (76)

TGF-b1 ↑ (262)

TGF-b1 ↓ (106, 115, 255) (256)

IL-4 ↓ (15)

IL-4 → (95, 115, 261)

IL-5 ↓ (15, 269)

IL-10 ↓ (15, 95, 98, 106, 115, 252, 255,
258, 269, 270)

(108, 110, 257, 259)

IL-10 ↑ (253, 262)

IL-10 → (111)

Th1:Th2 ratio ↑ (71, 96, 124, 253, 268) (111)
↑, increase; ↓, decrease; →, no significant change.
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failed to impede the growth of CD4+CD25− responder cells (120).

Nevertheless, contradictory studies have been reported that the

inhibitory capacity of the Treg cell subset was comparable between

PE patients and healthy pregnant controls (14, 126).

Several studies, however, failed to identify any distinctions

between the populations of Treg cells in preeclamptic patients

and those of healthy pregnancies. However, these studies used

frozen PBMCs with a small sample size (145) and investigated

CD4+CD25+ T lymphocytes without specific Treg markers (146).

Minimal variation was observed in the quantity and ratio of Treg

cells between women with normal pregnancy and PE (146).

Additionally, an independent investigation revealed no distinction

in the population of activated and resting Treg cells among women

with severe and early-onset PE, pregnant women who did not have

PE, or non-pregnant females (149). However, an analysis of

functional and migratory Treg markers (CCR4 and CTLA-4)

revealed that untreated preeclamptic individuals had higher

percentages of CTLA-4+ and CCR4+ resting and inactivated Treg

populations than healthy pregnant controls. It is worth noting that

ten of eighteen PE patients in this study (149) were treated with

glucocorticoids, which may affect the experimental results. It has

been reported that glucocorticoids could affect the number and

phenotype of Treg cells (150–152). Therefore, it is necessary to

select PE patients who have not received glucocorticoids for

further research.

The divergent results can likely be attributed primarily to the

various definitions of Treg cells. A notable concern pertains to the

expression of the critical phenotypic markers, namely CD25 and

FoxP3, upon stimulation of conventional CD4+ T cells. Determining

the precise quantity of “authentic” Treg cells in conditions marked by

systemic T-cell stimulation, such as PE, is thus complicated. Diverse

flow cytometric methods and markers have been devised to prevent

the inclusion of non-suppressive activated Treg cells, which could

potentially generate erroneous outcomes. These encompass the

identification of suppressive Treg cells characterized by reduced

CD4 expression (CD4dim) relative to conventional CD4 cells (153),

as well as diminished or nonexistent expression of the IL-7 alpha
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receptor subunit CD127 (154). Additionally, the use of CD45RA

helps distinguish between suppressive resting Treg cells

(FoxP3dimCD45RA+) and non-suppressive, activated FoxP3

expressing T helper cells (FoxP3dimCD45RA-) (155).

The dysregulation linked to PE has been illustrated by

modifications in transcription factors of T-cells. RORgt and

FoxP3 are transcription factors that contribute to the

development of Th17 and Treg cells, respectively (122). Ribeiro

et al. (115) revealed that early-onset PE women had a greater

proportion of CD4+ T cells expressing the RORc transcription

factor and a consequential decline in the percentage of Treg cells

expressing FoxP3, indicating more severe early-onset PE.

Additionally, the mRNA expressions of FoxP3 and RORgt in

peripheral T cells of patients with PE were higher and lower,

respectively, in comparison to healthy expectant women (114, 122).

Altered concentrations of circulating cytokines may influence

the equilibrium between Th17 and Treg cells, thus potentially

contributing to the pathogenesis of PE. Pro-inflammatory

responses result from the stimulation of chemokines (CXCL1,

CXCL2, CCL20), cytokines (IL-6 and TNF-a), and inflammatory

factors (the complement system and acute-phase proteins) by IL-17

(156). Consequently, IL-17 could facilitate the proliferation of Th17

cells. Circulating IL-17 concentrations are significantly elevated in

PE women relative to normal pregnant females and non-pregnant

controls (156). Furthermore, IL-17 concentrations in the plasma of

pregnant women with severe PE are higher than those of healthy

pregnant women (123). Another group, nevertheless, failed to

identify a statistically significant difference in serum IL-17

concentrations between pregnant women with PE and those

without complications (157). Furthermore, considering the

capacity of IL-6 and IL-1b to stimulate the transformation of

Treg cells into Th17 cells (158, 159), it is conceivable that

heightened concentrations of these cytokines in PE could trigger

the transformation from Treg to Th17 cells (160). It has been found

that PE induces a rise in IL-6 and IL-1b production (161). IL-6

expression was found to be elevated in chorionic villus sampling

(CVS) tissues of women who subsequently develop PE

accompanied by fetal growth restriction (FGR) (162). Increased

levels of IL-6 expression promote Th17 generation and undermine

the stability of Tregs, while concurrently reducing the quantity of

alternatively activated M2 macrophages and T cell markers (163).

Variations in the expression of apoptotic molecules contribute

to the premature deletion of Tregs, which may account in part for

the diminished quantity of Tregs observed in patients with PE

(117). Compared with normal pregnancies, the percentage of Tregs

expressing the anti-apoptotic molecule Bcl-2 was considerably

diminished in PE patients. Furthermore, there was a significant

rise in the expression of pro-apoptotic molecule, Bax, in Tregs of PE

patients (117). These findings indicate that the presence of PE may

increase the vulnerability of Tregs to apoptotic cell death, which is

consistent with the reduced Treg counts observed in this specific

clinical scenario. Indeed, the signatures of Tregs and effector T cells

were found to be differently regulated in women with PE (164). A

consistent reduction in STAT5 signaling in Th1 cells was observed

in individuals who subsequently experienced PE (164). IL-2/STAT5

signal contributes to the differentiation of T helper (165) and Treg
TABLE 2 The Treg/Th17 immune imbalance in preeclampsia (PE).

Immune
pathway

Peripheral blood Maternal-
fetal interface

Treg Decreased Treg percentage
(141, 143)

Decreased Treg
proportion (141)

Depressed suppressive
ability (120, 140)

Reduced Treg clonal
expansion (173)

Decreased FoxP3 mRNA
(114, 122)

Lower FoxP3 mRNA
at delivery (114)

Lower IL-10 protein
expression (109)

Th17 Increased Th17 cells (120)

Increased RORgt
mRNA (122)

Increased IL-17 level
(123, 156)
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(166) cells, and it also potentially inhibits Th17 differentiation

(167). Furthermore, an increase in the p38 signaling pathway,

which is essential for Tregs to exert their suppressive function

(168), was observed in Tregs from women who were carrying a

healthy pregnancy, but not in those who were diagnosed with PE

(164). These results suggest the potential utilization of specific

signal pathways in maternal blood for the evaluation of PE.
5.2 Treg/Th17 imbalance in the deciduae of
PE patients

Various studies have revealed decreased Treg cells and

increased Th1 and Th17 immune responses in women with PE

using various modalities (Table 3). There have been numerous

hypotheses regarding the decrease in Tregs observed in women with

PE. An initial factor to consider is the potential reduction in

decidual Treg differentiation (169). The evidence that peripheral

DCs from pregnant women with PE have a stronger ability to

stimulate Th1/Th17-like T-cell responses than those from

normotensive controls supports this view (170). In addition,

alterations in circulating DCs were related to lower peripheral

Treg levels in patients with PE (134) and elevated Th17 cell levels

in women with early-onset PE (171). Furthermore, the insufficient

maturation of decidual lymphatic vessels in PE might impede the

penetration of immune cells into this region (172). In fact, a

correlation between the number of Tregs and the density of

lymphatic vessels in the decidua was established, suggesting that

in cases of PE, the entry of circulating Tregs into the decidua may be

obstructed (172). Lastly, a study investigating the T-cell receptor

(TCR) repertoires of Tregs in the decidua discovered that the

proportion of clonally-expanded Tregs decreased obviously in PE

pregnancies (173), indicating that the inability of decidual effector

Treg cell populations to undergo clonal expansion may be

associated with the onset of PE.

Currently, there are some innovative methodologies attempting

to explore the molecular mechanisms underlying the onset of PE,

including single-cell RNA sequencing (scRNA-seq). In one study,

researchers conducted scRNA-seq on the placenta and decidual

tissues of individuals with late-onset PE as well as those in a healthy

pregnancy (174). It was discovered that the cells in the decidua that

do not express extracellular matrix (ECM) are primarily immune

cells, which consist of two subtypes of T cells (T1 and T2) (174). T2

cells show the expression of Treg marker genes, and there is a

decrease in the down-regulation of the GO term “regulatory T cell

differentiation” in T2 cells within the PE group. The pathway for

“positive regulation of cytokine production” and several pathways

for interleukin production show decreased activity in T cells,

suggesting a significant impairment of their regulatory functions

in late-onset PE (174). Another study examined transcriptomic

changes specific to different cell types through unbiased scRNA-seq

of placental samples, including two individuals with PE and two

normotensive pregnant women (175). This comprehensive analysis

involved 29,008 cells across 11 distinct cell types, encompassing

trophoblasts and immune cells (175). They found that compared

with normal pregnancies, there are significant differences in the
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gene expressions of GZMA, CD3E1, and CD3G in T cells from PE

placental tissues, suggesting that these genes may be involved in the

pathogenesis of PE (175). These findings provide a novel molecular

theoretical foundation for the treatment of PE.

Treg cell dysfunction or a deficiency in quantity within the

decidua has been linked to diminished invasion of EVT and

ineffectual remodeling of spiral arteries. These factors collectively

disrupt placental growth and ultimately result in placentation

disturbance (176, 177). Therefore, it is not difficult to hypothesize

that a deficiency of Treg cells during pre- and peri-conception could

act as an initial catalyst for a cascade of events culminating in

impaired placental development and shallow placentation, which

ultimately manifest as conspicuous symptoms of PE later in

pregnancy. Furthermore, in PE, Tregs undergo apoptosis at the

feto-maternal interface, and galectin-2 (Gal-2) appears capable of

inhibiting this process (178). Moreover, modifications in the

activity of uNK cells may result in a potential dysregulation

between Th17 and Treg cells. It has been shown that uNK cells

communicate with CD14+ monocytic cells to induce the

development of Treg cells and that IFN-g produced by decidual

NK cells can impede Th17 cells; these effects result in reduced

inflammation and increased maternal-fetal tolerance (58, 179).

Treg cells possess a unique combination of anti-inflammatory

and immune-regulatory properties that endow them with

formidable capabilities to support placental development,

facilitate the adaptation of maternal blood vessels, suppress

inflammation, and preserve maternal acceptance of the fetus. As a

result, enhancing the functionality of Tregs and augmenting their

quantity in order to regulate the immune response may represent a

viable therapeutic strategy for these pregnancy-related

complications, including PE. However, in the context of human

reproduction, any experimental evaluation of a method to stimulate

Tregs must be conducted extremely cautiously and in strict

adherence to robust principles of clinical trial design. Ensuring

the safety of mothers and infants is of the utmost importance, and it

is critical to recognize that the risk-benefit ratio of reproductive and

obstetric conditions differs significantly from that of immune

diseases that pose a life-threatening risk. Consideration should be

given to the potential adverse effects of artificially increasing

maternal Treg cells, such as a diminished capacity to combat

pathogens (180) or immune surveillance for cancer (181).

Notwithstanding the necessity for a comprehensive assessment of

various approaches and identification of appropriate patient

cohorts, the advanced immune therapy must take precedence to

control over reducing adverse health outcomes and mortality rates

associated with PE.
6 Memory T cells in PE

Memory T cells are a distinct subgroup of T cells that develop

subsequent to a previous encounter with an antigen (182).

Cytokines including IL-23, IL-7, and IL-15 influence the survival,

function, and cytokine production of memory T-cells (183–185).

CD4+ and CD8+ cell lineages both demonstrate the ability to

recognize CM and EM cells (182, 186–188). Research on memory
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TABLE 3 Studies about the Treg/Th17 imbalance at the maternal-fetal interface in preeclampsia (PE) patients.

Results Conclusions

The proportion of FoxP3+ cells within
CD3+ T cells of PE patients was lower
compared with those from
normal controls.

The reduced number of Treg cells in PE
may affect immune tolerance
in pregnancy.

PE patients had significantly lower
mRNA expressions of FoxP3 and higher
mRNA expressions of RORc.

Reduced expression level of FoxP3 mRNA
may lead to the dominant Th1 immune
response in PE.

FoxP3 mRNA expressions were lower in
PE cases.

The decrease of Treg cells is associated
with the pathogenesis of PE.

The number of Treg cells was lower in
early-onset PE cases compared to late-
onset preeclamptic cases and normal
pregnant women.

Early-onset PE has a unique pathogenesis,
including immune abnormalities.

The mRNA expressions of FoxP3 and
GATA-3 in the decidua of PE were
significantly reduced, while T-bet mRNA
expressions were increased. PE chorionic
samples showed significantly lower FoxP3
mRNA expressions and elevated mRNA
expressions of RORgt.

T cell immune imbalance in placental
tissues can affect normal pregnancy.

There was no statistically significant
difference in the percentage of Treg cells
between the two groups.

Treg cells in PE patients did not show a
decrease in suppressive ability.

Clonally expanded populations of effector
Treg cells reduced in PE patients
compared with healthy controls.

Failure of clonal expansion of populations
of decidual effector Treg cells may lead to
the occurrence of PE.

The mRNA and protein levels of FoxP3
were lower in PE compared to normal
pregnant women, while the RORgt
expression levels were higher.

There was a Treg/Th17 imbalance at the
maternal-fetal interface in PE.

The number of CD25+ FoxP3+ cells was
decreased in both PE groups.

The reduced immune response in PE may
affect Treg cells in the decidua.

There was a significant decrease in FoxP3
positive cells in PE decidua.

PE patients showed reduced numbers of
decidual resident Tregs.
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Authors and year
of publication

Race Experimental
group

Control group Samples Methods

Y Sasaki et al,
2007 (141)

Japanese and Polish 38 PE patients 40 normal controls Placental beds Immunohistochemistry

Zhou Jianjun et al,
2010 (114)

Chinese 15 PE patients 15 healthy
pregnant women

Decidua Flow cytometry

Liu Xiaoqian et al,
2011 (271)

Chinese 16 PE patients 18 normal
pregnant women

Placenta qRT-PCR

Kristen H Quinn et al,
2011 (272)

American 14 late-onset severe
PE, and 12 early-
onset severe PE

14 healthy term
pregnant women

Decidua Immunohistochemistry

Behrouz Gharesi-Fard
et al, 2016 (256)

Iranian 15 PE patients 15 normal
pregnant women

Decidual and
chorionic layers of
the placentas

qRT-PCR

Tina A Nguyen et al,
2017 (118)

Caucasian, Hispanic,
Black, and Asian

16 PE patients 30 healthy
pregnant women

Uteroplacental
interface

Flow cytometry

Sayaka Tsuda et al,
2018 (173)

Japanese 7 PE patients 12 normal pregnant
women in the
third trimester

Decidua Flow cytometry

Zhang Yonghong et al,
2018 (273)

Chinese 41 PE patients 67 healthy
pregnant women

Decidua qRT-PCR and
western blot

Martina Orlovic Vlaho
et al, 2020 (274)

Bohemia 13 mild PE, 15
severe PE patients

19 healthy term
pregnant women

Decidua basalis Immunohistochemistry
and
double
immunofluorescence

Sarah Meister et al,
2022 (178)

German 32 PE patients 34 normal controls Decidua Immunohistochemistry
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T cells in PE has been scant and inconsistent to date. Two

investigations identified elevated circulating numbers of the general

CD4+ memory T cells in PE cases compared with normal pregnant

women (72, 144). However, whether the observed differences

pertained to the EM or CM cell subset was not specified. An

alternative investigation revealed a significant elevation in the

quantities of DRlow+CD45RA- Tregs and DRhigh+CD45RA- Tregs

among pregnant women diagnosed with PE compared to the

pregnant women with normal blood pressure (140). Nevertheless,

DRlow+CD45RA- and DRhigh+CD45RA- Tregs were not classified as

memory Tregs in this investigation, notwithstanding the widespread

usageofCD45RA- as amemorymarker. Inaddition, the percentages of

mature naive Tregs and circulating recent thymic immigrant (RTE)

were lower in women with PE. Conversely, the proportion ofmemory

Treg cells increased, suggesting a possible disruption in the

differentiation of peripheral Treg cells (119, 189). PE patients had

lower percentages of circulating CD4+ memory, CD4+ EM, and CD4+

CM subgroups than normal pregnancies (78). Furthermore,

comparing healthy pregnant females and PE women, the levels of

CD4+ EM cells in peripheral blood and lymphocytes isolated from

intrauterine biopsies obtained during cesarean section were identical

(118). However, caution should be exercised in interpreting these

findings due to the inability to ascertain the precise cell origin extracted

from the biopsy. Furthermore, clonally expandedCD8+EMcells in the

deciduae of PE women exhibit decreased PD-1 expression compared

with normal pregnancies (112), indicating that the existence of local

expansion of effector T cells may be due to a decrease in their

suppressive function in PE patients.
7 Th22 cells in PE

Th22 cells are known for their production of IL-22. An in vitro

experiment has shown that IL-22 could prevent premature birth

caused by inflammation (190). RORgt and T-bet have opposing

effects on the differentiation of Th22 cells from naive Th cells; RORgt
promotes it while T-bet inhibits it. On the other hand, Th22 cells have

the potential todifferentiate into eitherTh1orTh2 cells. TheTh22 cells

showed significantflexibility ingenerating IFN-gunder conditions that
promote Th1 immunity or in an inflammatory environment rich in

IFN-g in living organisms (191). Th22 cells exhibit the ability to

enhance IL-13 production when exposed to a Th2 environment

(191). The presence of decidual IL-22+ Th17/Th2 and Th17/Th0

subsets in normal pregnancy suggests that these cells are important

for embryo implantation (192). In patients with severe PE, there was a

notable rise in the circulating levels of Th22 cells and IL-22 compared

with healthy pregnant individuals (123).

8 T cells in cord blood of PE women

The proportion of Treg cells in cord blood from normal

pregnancies has been examined in three studies; the percentages

are 2.63-8.94% (193), 4.0-10.0% (194), and 2-3% (195). The normal

ranges for T lymphocyte subgroups in cord blood from healthy full-

term neonates have been reported: 15.40% to 70.06% for Th cells

(CD3+/CD4+); 9.65% to 34.28% for cytotoxic T cells (CD3+/CD8+).
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The reference interval for Treg cells spanned from 0.35% to 9.07%,

in contrast to the reference interval for adult peripheral blood

(1.64% to 6.45%) (196).

Several investigations have explored the modifications in

umbilical cord T cells of women with PE. A shift in the

percentages of Th1/Th2 and Th17/Treg in the direction of

inflammation with unchanged Th1 and Th17 cells and reduced

Th2 and Treg cells was noticed (197). Furthermore, an obvious

decrease in the proportion of CD4+ T cells was observed in the

umbilical cord blood of neonates delivered by mothers with PE

(198). Compared to healthy pregnant individuals, this decline was

accompanied by a substantial decrease in the proportion of FoxP3+

Treg, specifically within the FoxP3lo populations (198).

Additionally, the proportions of CD4+CD25highFoxP3+ and

CD4+FoxP3+ Treg were evidently lower, whereas the proportion

of CD4+CD25low was prominently increased in the cord blood of

neonates born from preeclamptic women (199). Hence, it suggests

that PE is associated with aberrant fetal immunity, manifesting as a

reduction in Treg levels within the cord blood.
9 Potential therapies for PE targeting
T cell immunity

9.1 Inhibiting IL-17 and reducing Th17 cells

IL-17 is important to the body’s response to bacterial infections

and inflammation. In addition to compromised tolerance in

conditions such as PE, it has been associated with contact

dermatitis, autoimmune disorders, and organ rejection following

transplantation. Secukinumab, a monoclonal antibody that

specifically targets IL-17, has been employed in treating contact

dermatitis (NCT02778711) and discoid lupus erythematosus

(NCT03866317) to correct the Th17 imbalance. Tibulizumab

(LY3090106) is a tetravalent antibody currently under development

for the treatment of Sjögren’s disease (NCT04563195). It functions as

a dual antagonist against B cell activating factor and IL-17. The long-

term use of recombinant mouse IL-17 receptor C (IL-17RC), a

soluble receptor that inhibits IL-17, reduced uterine perfusion

pressure (RUPP) in rats as well as reduced levels of circulating IL-

17 and placental Th17 cells (200). Thus, the prospective efficacy of IL-

17RC in the treatment of pro-inflammatory effects mediated by IL-17

in PE was demonstrated (Figure 2).
9.2 Reducing IL-6

In addition to inhibiting immunosuppressive Tregs and Th2

cells, IL-6 enhances the differentiation of Th17 and cytotoxic T cells,

thereby leading to inflammation in PE (201). IL-6 inhibitors, such

as anti-IL-6 receptor mAbs (sarilumab and tocilizumab) and anti-

IL-6 mAbs (siltuximab), have the potential to drive the

development of inexperienced CD4+ T cells away from

inflammatory Th1 and Th17 subsets (202). Clinically, anti-IL-6

therapy has been used to treat atherosclerosis (203) and rheumatoid

arthritis (202). Incorporating strategies to decrease IL-6 for the
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management of PE may potentially promote the transformation of

naive CD4+ T cells into Treg and Th2 cells, as opposed to Th1 and

Th17 cells.
9.3 IL-10 administration

In the RUPP model, IL-10 administration via infusion through

an osmotic mini-pump implanted intraperitoneally results in

modest reduction in blood pressure as well as a substantial

reduction in the levels of circulating Th1 and Th17 cells, an up-

regulation of Treg cell differentiation, and the restoration of TNF-a
expressions to normal (204). Culturing naive CD4+ T cells with IL-

10-producing DCs could enhance the differentiation of Treg cells

(204), a process that potentially alleviates PE. This study (204)

indicate that IL-10 may function as an innovative treatment for PE.
9.4 Neutralizing TNF-a

TNF-a, a potential target for modulating CD4+ T cells, is

produced by Th1 and Th17 cells. TNF-a expressions in PE could

be considerably increased, reaching 2-3 times higher than in

pregnancies with normal blood pressure (176, 205). These

elevated levels have been linked to complications such as

gestational hypertension, compromised endothelial function, and
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unfavorable obstetric outcomes (206). In addition to its essential

function in facilitating successful implantation and placental

development, TNF-a also functions as an inhibitor of CD4+ T

cell proliferation via a mechanism dependent on IL-10 (11). By

inhibiting effector T cells and repressing the activity of TNF-a, anti-
TNF-a neutralizing mAbs promote the development of Tregs (207).

The British Association of Dermatologists suggests that TNF-a
inhibitors may be used during pregnancy, when large cohort studies

that are well-designed, with a follow-up of over 10 years are

performed in the future (208). According to the European

Crohn’s and Colitis Organization, it is acceptable to utilize TNF-

a inhibitors during the third trimester of pregnancy (208).

Considering its perceived safety, anti-TNF-a could potentially

function as a treatment option for PE by increasing the quantity

of Treg cells and restoring the Th1/Th2 and Th17/Treg ratios.
9.5 Progestogens

17-hydroxyprogesterone caproate (17-OHPC), a progesterone

derivative, is deemed secure for application in obstetrics. In a PE rat

model, 17-OHPC induced an elevation in infant weight and a

reduction in uterine artery resistance index (UARI) (209).

Implementing an intervention such as 17-OHPC to enhance the

current treatment for PE patients may have positive effects on both

the mother and child. Furthermore, by activating glucocorticoid
FIGURE 2

The immune imbalance between Th1/Th2 and Treg/Th17 in preeclampsia (PE) and potential treatments that target CD4+ T cells. Patients with PE have a
propensity to Th1 and Th17 phenotypes, as indicated by the cytokine profiles in their peripheral blood. These phenotypes are distinguished by elevated
concentrations of TNF-a, IFN-g, IL-17, and IL-22 and reduced expressions of IL-4, IL-5, IL-10, and TGF-b. Additionally, IL-6, IL-1b, and IL-23 can induce
the differentiation of Treg cells into Th17 cells. Increased levels of IL-12 will support the generation of Th1 cells. Potentially, regulating the proportion of
pro- to anti-inflammatory CD4+ T cells could be implemented to prevent PE by promoting healthy placental development and maintaining a viable
pregnancy. It is also possible to repress particular cytokines, such as IL-6 via anti-IL-6, IL-17 via IL-17RC and anti-IL-7, and TNF-a via anti-TNF-a. It is
known that IL-2 directly regulates Treg homeostasis by enhancing their survival, proliferation, and function. Consequently, low-dose IL-2 can augment
the quantity and durability of Treg cells. In addition, IL-10 administration, which increases Treg cell differentiation and Th2 immune response and
significantly decreases circulating Th1 and Th17 cells, might be a potential treatment option (Produced with BioRender.com).
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receptors, progesterone induces the proliferation of Treg cells and

advances apoptosis in conventional T cells (210). Consequently, the

use of the orally-administered progestogen or dydrogesterone may

have the potential to alleviate the adverse pregnancy outcomes in

women with PE (211–213).
9.6 Intravenous immunoglobulin G

IVIg is employed in the treatment of various immune-regulated

disorders, organ transplantation, and systemic inflammatory

conditions by virtue of its capacity to inhibit the proliferation of

DCs, increase concentrations of anti-inflammatory IL-10, and

diminish the functionality of pro-inflammatory T cells (214).

Moreover, IVIg improves pregnancy outcomes by stimulating Tregs’

responses (215). IVIg therapy may, therefore, be contemplated as a

prospective therapeutic intervention forPE. Inwomenwithahistoryof

recurrent pregnancy loss (RPL) and unexplained infertility, the

prevalence of PE was comparable with normal pregnant women

when they were treated with prednisone and IVIg (216).
9.7 Vitamin D

VD has the ability to affect many cell types, such as immune cells,

specifically CD4+ T cells (217). The circulating concentrations of VD

were considerably diminished in pregnant women with PE in

comparison to those without (218–220). Furthermore, in

comparison to pregnant women with VD levels above 20 ng/mL,

those with VD deficiency (25(OH) D < 20 ng/mL) have a five-fold

increased risk of developing PE (220). Patients with PE who received

VD supplementation exhibited decreased levels of IFN-g, TNF-a, IL-
17, IL-6, and IL-23, whereas IL-10 and TGF-b levels elevated (218,

219). VD exerts its immunomodulatory effects through multifaceted

mechanisms, including inhibitionofTh1andTh17cells, up-regulation

of Th2 cell expression, and facilitation of Treg cell proliferation (221–

225). Therefore, VD could potentially be suggested as a strategy for

regulating the systemic inflammatory response in PE. Moreover,

exposure to sunlight (226) and exercise (227) contribute to the

maintenance of Treg homeostasis. Nevertheless, the precise

mechanisms of VD in human Treg cells remain obscure.
9.8 Aspirin

Receiving low-dose aspirin from 11-14 weeks reduced the

occurrence of preterm PE in high-risk women compared to those who

received a placebo (228). This discovery indicates that giving aspirin

early on may decrease the likelihood of PE, potentially by enhancing

placental development. A study done on mice revealed that aspirin

greatly increased the percentage of functional CD4+CD25+FoxP3+ Treg

cells (229). Patients with RPL associated with antiphospholipid

syndrome (APS) showed elevated levels of serum cytokines, T cell

phenotypes, and transcription factor gene expressions indicative of

Th1 responses, while those indicative of Th2 responses were decreased

(230).The imbalancebetweenTh1andTh2couldbe restored inpatients
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who responded well to the combination of low-molecular weight

heparin (LMWH) and aspirin treatment (230). Moreover, aspirin

functions through the production of aspirin-triggered lipoxin, which

inhibits the effects of antiphospholipid antibodies on the migration of

human trophoblasts and their interactions with endothelial cells (231).

In other diseases, aspirin can exert therapeutic effects by regulatingT cell

function. One example is the potential for aspirin to mitigate the

progression of atherosclerosis through restoring balance to the Th17/

Treg axis (232). Additionally, aspirin could potentially suppress the

autoimmune reaction in atherosclerosis by promoting the expansion of

CD4+CD25+FOXP3+ Treg cells (233). In studies on experimental

autoimmune encephalomyelitis (EAE), aspirin could enhance Tregs

while reducing Th1 and Th17 responses (234, 235). This includes an

increase in the levels of FoxP3 and IL-4 inTcells, aswell as inhibiting the

differentiation of naive T cells into Th17 and Th1 cells (234, 235). The

abovefindings indicate that aspirinmayplaya role in the treatmentofPE

by targeting T cells.
9.9 Antioxidants

Elevated levels of indicators for oxidative stress and reduced levels

of antioxidants (such as vitaminE, vitaminC, and lycopene) inwomen

withPE indicate thatoxidative stressmarkers are significantly involved

in the development of PE (236–238). AC-11 (AC-11®, hot-water

extract of U. tomentosa) has a potential antioxidant effect (239). The

administration of AC-11 resulted in a significant decrease in blood

pressure and a significant down-regulation of CD8+ T cells and CD8/

CD4ratio inPEmicemodels inducedbyangiotensin II, comparedwith

healthy pregnant animals (239). A survey of existing research suggests

that the products of the kynurenine (Kyn) pathway have the ability to

promote T cell differentiation into Treg cells and trigger the apoptosis

of Th1 cells (240). Therefore, the Kyn pathway may be a potential

therapeutic target for PE due to the antioxidant effect of itsmetabolites

(240). Moreover, the well-established powerful antioxidant

pentoxifylline can mitigate oxidative stress and enhance placentation

(241). Its function is to maintain the balance between Th1 and Th2

immunity, reduce Th1-type immune responses, and promote a shift

towards Th2 immune reactions (242). A different type of antioxidant,

known as heme oxygenase-1 (HO-1), has the ability to stimulate the

release of Th2 cytokines (243). Moreover, one study has shown that

severe PE is linked to elevated T-cell-endothelium adhesion, and

effective antioxidants can prevent this impact (244). Clinically

achievable concentrations of antioxidants in the circulation can be

attained through oral intake of vitamins E and C, or by intravenous

administration of N-acetylcysteine, as demonstrated by this study

(244). Accordingly, supplementing with antioxidants for PE patients

may be a simple and effective treatment.
9.10 Transfer of Tregs to enhance anti-
inflammatory response

The promotion of alloantigen-specific Treg cells is a potential

preventive and therapeutic strategy for PE. This could be achieved
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by increasing exposure to paternal antigen in high-risk population.

In addition, medications that enhance the activity of Treg cells by

targeting immune checkpoints, such as CTLA-4Ig (245), may

represent viable alternatives for the treatment of PE. To develop

therapeutics that target immune checkpoints, it is imperative to

investigate costimulatory and inhibitory molecules that are unique

to antigen-specific Treg cells. Additional investigation about Treg

cells at the single-cell level may yield valuable knowledge regarding

the progression of immunotherapeutic approach for PE.

In rodent models of PE, proof-of-concept trials have already

demonstrated that PD-L1 Fc (246), CD28 superligand (247), and

low dose IL-2 (248, 249) were efficacious biological agents for

increasing the percentage and stability of Treg cells. In light of the

swift advancements in Treg cell immunology, including the

development of numerous intervention therapies and the application

of flow cytometry for peripheral blood diagnosis, it is important to

investigateTregcell therapy inhigh-riskwomen.Prior toor in the early

phases of pregnancy, it is essential to develop diagnostic tools and

treatment modailities that can halt the progression of disease and

prevent fetal or placental damage. Regarding the “window of

opportunity” for timely and effective PE treatment, since Treg cells

play an essential role in implantation and placentation during early

pregnancy, initiating treatments before conception or as soon as

pregnancy is identified is the optimal choice (10).
10 Conclusions

There is a limitation in this review due to the insufficient

distinction between early-onset and late-onset PE T cell profiles,

which arises from the lack of specific studies. In conclusion, a

decreased maternal tolerance to paternal antigens is associated with

preeclamptic pregnancy. This decrease can be attributed to several

factors, including compromised placentation, inadequate oxygen

supply to the placenta, heightened activation of the immune system

both locally and systematically, a bias to inflammatory T cell response,

and increased inflammation. Notwithstanding the copious body of

evidence demonstrating the substantial impact of T cell immunity in
Frontiers in Immunology 12
PE, insufficient endeavors persist to implement these discoveries and

improve the standard of care for women afflicted with this obstetric

syndrome. As a result, subsequent investigations ought to strive to

generate outcomes and frameworks with pragmatic implications,

thereby advancing PE prevention, detection, and management.
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