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Identification and immunoassay
of biomarkers associated with
T cell exhaustion in systemic
lupus erythematosus
Yiqing Zheng †, Hejun Li †, Yanqing Wang, Lixin Huang,
Ling Chen, Shunping Lin and Shuhuan Lin*

Department of Rheumatology, Fujian Medical University Union Hospital, Fuzhou, China
Background: Systemic lupus erythematosus (SLE) is an autoimmune disease with

unclear etiology. T cell exhaustion (TEX) suppresses the immune response and

can be a potential therapeutic strategy for autoimmune diseases. Therefore, this

study primarily investigated themechanism by which TEX influences SLE, offering

a novel target for its treatment.

Methods: GSE72326 and GSE81622 were utilized in this study. TEX related genes

(TEX-RGs) were obtained from the published literature. Differentially expressed

genes (DEGs) were obtained through differential expression analysis.

Subsequently, candidate genes were selected by overlapping DEGs and TEX-

RGs. These candidate genes underwent protein-protein interactions (PPIs)

analysis for further screening. Machine learning was applied to identify

candidate key genes from the PPI-identified genes. The candidate key genes

exhibiting an area under the receiver operating characteristic (ROC) curve (AUC)

greater than 0.7, along with consistent expression trends and significant

differences in GSE72326 and GSE81622 were defined as biomarkers.

Additionally, enrichment analysis, immune infiltration analysis, chemical

compounds prediction and molecular docking were carried out. Importantly,

the biomarkers were validated for expression by reverse transcription-

quantitative polymerase chain reaction (RT-qPCR).

Results: The biomarkers MX1, LY6E, IFI44 and OASL were screened by

overlapping 327 DEGs and 1,408 TEX-RGs. Gene set enrichment analysis

(GSEA) showed that there was a significant positive correlation between the

expression of these biomarkers and immune-related pathways, such as the

NOD-like receptor signaling pathway, Toll-like receptor signaling pathway and

RIG-I-like receptor signaling pathway significant positive correlation. The

immune infiltration of 8 types of immune cells differed significantly in SLE.

Naive B cells, resting memory CD4 T cells and resting NK cells were

significantly down-regulated in the SLE group. 4 biomarkers showed the

highest correlation with resting memory CD4 T cells. Bisphenol A targeted

OASL and LY6E, whereas acetaminophen targeted IFI44 and MX1.The binding

activity between the biomarkers and the chemical compounds targeting them

was very strong. Finally, RT-qPCR expression of MX1, LY6E, IFI44 and OASL was

consistent with the results of the dataset.
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Conclusion: MX1, LY6E, IFI44 and OASL were identified as biomarkers related to

TEX in SLE. These biomarkers could be detected in the blood for early diagnosis

of the disease or to monitor the efficacy of the disease treatment, thus providing

a new target for the management of SLE.
KEYWORDS

systemic lupus erythematosus, T cell exhaustion, biomarkers, type I interferon,
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1 Introduction

Systemic lupus erythematosus (SLE) remains a poorly

understood multifactorial autoimmune disease, with genetic,

environmental, and hormonal factors believed to contribute to its

etiology (1). The clinical manifestations of SLE are diverse. Due to

the complexity of the clinical manifestations and the lack of specific

diagnostic criteria, the diagnosis and treatment of SLE are extremely

difficult (2). SLE patients often exhibit T lymphocytopenia, reduced

inhibitory T cell function, and hyperplasia of B cells, resulting in the

production of large numbers of autoantibodies against ds-DNA and

other nuclear antigens, which subsequently trigger immune

complex-induced inflammatory responses in various organs. In

recent years, interference with B-cell activation targeting B-cell

stimulators (BAFF/BLyS) or B-cell monoclonal antibodies

targeting CD20 has been used to treat SLE, and CAR-T

(Chimeric Antigen Receptor T) cell immunotherapy has also

enabled SLE patients to achieve rapid remission with high safety

(3). B cell depletion has emerged as an effective treatment strategy

for SLE. However, clinical observations reveal that a subset of

patients does not respond favorably to B-cell depletion therapy,

with 52-week response rates for belimumab and rituximab reported

as 53.8% and 29.6% respectively (4, 5), and for telitacicept the 52-

week response rate was 82.6% (6). Although cellular therapy has

had some success in patients with SLE, the presence of extremely

complex immune pathways in patients with SLE has necessitated

the search for new ways to treat SLE.

T cell exhaustion (TEX), commonly referred to as CD8+T cell

exhaustion, represents a state of diminished functionality within T

lymphocytes (7). T lymphocytes have a variety of biological functions,

ranging from the direct elimination of target cells, assisting or

inhibiting B cells to produce antibodies, responding to specific

antigens and mitogen, such as producing cytokines, etc. Central to

the body’s defense against disease infections and tumor formation, T

cells orchestrate cellular immunity, which operates through two

primary mechanisms: specific binding and destruction of target cell

membranes leading to direct cell killing, and the release of

lymphocytokines that amplify and potentiate the immune response.

TEX arises from prolonged antigenic stimulation, often triggered by

the persistent presence of invasive pathogens in chronic infection

states or the exhaustion of T cells resulting from chronic antigenic
02
exposure in tumorous environments (8). Blanco et al. (9)

demonstrated that CD8+T cells exhibited a more prominent

cytotoxic phenotype and functions during SLE onset than during

remission. Furthermore, the frequency of such cells was correlated

with SLE Disease Activity Index (SLEDAI) score. In the study

conducted by Winchester et al. (10). tubulointerstitial nephritis

associated with CD8+T cell infiltration was identified as a risk

factor for the progression of lupus nephritis (LN). This is

consistent with the previous research results of Couzi et al. (11).,

which indicated that CD8+T cell can also generate CD4-CD8-double

negative (DN) T cells in an inflammatory environment, subsequently

secrete IL-17, infiltrate the kidney and induce tissue damage (12).

Collectively, these studies suggest a pivotal role for CD8+T cells in the

pathogenesis of SLE. However, despite studies indicating a

relationship between TEX and systemic autoimmune diseases, the

exact therapeutic mechanism of TEX in SLE remains relatively scarce.

To screen biomarkers for SLE, we performed differential

expression profiling, machine learning techniques, enrichment

analysis, immune infiltration assessment, regulatory network

construction, chemical compounds prediction, molecular docking

simulation, and expression validation on datasets and genes from

the public database. These findings offer promising potential targets

for clinical diagnosis of SLE and prognostic predictions, while also

providing a theoretical foundation for further elucidating the

intricate mechanisms underlying SLE.
2 Materials and methods

2.1 Data extraction

GSE72326 (platform: GPL10558) and GSE81622 (platform:

GPL10558) were acquired from the public database-Gene Expression

Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/)

containing a rich set of genes associated with expression in

patients with SLE. The GSE72326 dataset, comprising 238

samples, was employed as the training set. This study

encompassed a total of 177 blood samples (SLE: Control = 157:

20). The validation set GSE81622 consisted of 30 SLE blood samples

and 25 control blood samples. Additionally, 1408 TEX related genes

(TEX-RGs) were obtained from the published literature (13).
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2.2 Differential expression analysis

Differentially expressed genes (DEGs) were obtained through

differential expression analysis (SLE vs Control) in training set

using limma package (version 3.56.2) (14), with screening criteria of

|log2fold change (FC)| > 0.5 and p.adjust < 0.05. Volcano plots and

heatmaps were drawn to show the expression of DEGs using

ggplot2 package (version 3.4.2) (15) and circlize package (version

0.4.15) (16), respectively. Among them, the heat maps exclusively

depicted the top 10 DEGs with the most significant up- and

down-regulation.
2.3 Functional and protein-protein
interaction analysis

Candidate genes were obtained by overlapping DEGs and TEX-

RGs. The clusterProfiler package (version 4.8.2) (17) was employed

to perform enrichment analysis of candidate genes containing Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG), aiming to investigate the shared functions and signaling

pathways among these candidate genes (p < 0.05). GO analysis

included cellular component (CC), molecular function (MF) and

biological process (BP). The GOplot package (version 1.0.2) (18)

was used to draw a chord plot to show the top 8 significantly

enriched pathways. In order to explore whether there was an

interaction between candidate genes, a PPI network was

constructed through STRING database (https://cn.string-db.org/)

(confidence > 0.4). Subsequently, MCODE plug-in in Cytoscape

software (version 3.9.1) (19) was used to identify important

candidate genes in PPI network for subsequent analysis.
2.4 Identification of biomarkers

Least absolute shrinkage and selection operator (LASSO)

regression was a regularization method for linear regression. It

added an L1-paradigm penalty term to the objective function on the

basis of ordinary least squares regression, which served to shrink the

regression coefficients, making the coefficients of some unimportant

independent variables converge to 0, so as to achieve the purpose of

variable selection (20). Support vector machine-recursive feature

elimination (SVM-RFE) was a powerful classification algorithm

whose goal was to find a hyperplane such that data points of

different categories were maximally spaced on either side of this

hyperplane (21). It measured the importance of features by

calculating the squared paradigm of the weight vector

corresponding to each feature; the smaller the paradigm, the less

important the feature. The key candidate genes were further

screened by LASSO and SVM-RFE methods using glmnet

package (version 4.1-7) (22) and e1071 package (version 1.7-13),

respectively. Subsequently, these two parts of obtained genes were

intersected to gain candidate key genes. Furthermore, the receiver

operating characteristic (ROC) curve analysis and expression
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verification of candidate key genes were performed in GSE72326

and GSE81622. The ROC curve (Receiver Operating Characteristic

curve) was a tool for evaluating the performance of a classification

model by plotting the True Positive Rate (TPR) and False Positive

Rate (FPR) at different thresholds. The closer the AUC value was to

1, the better the model performance (23). The candidate key genes

exhibiting an area under the ROC curve (AUC) greater than 0.7,

along with consistent expression trends and significant differences

in GSE72326 and GSE81622 were defined as biomarkers.

Additionally, Spearman analysis of biomarkers was conducted

using psych package (version 2.3.6) (24). Spearman correlation

analysis was a non-parametric method of correlation analysis which

was used to measure the strength and direction of a monotonic

relationship between biomarkers.
2.5 Gene-gene interaction and gene set
enrichment analysis

A GGI network was constructed by GeneMANIA database

(https://genemania.org/) to investigate the genes and functions

associated with biomarkers. The TOP 20 genes most relevant to

biomarkers, as well as the top 7 pathways involved in biomarkers

were selected for presentation. Additionally, GSEA was used to

assess whether a pre-defined set of genes was significantly

differentially enriched between two sets of samples to further

explore the functional implications of the biomarker (25). Firstly,

Spearman correlation analysis was performed between each

biomarker and all genes in GSE72326 using psych package

(version 2.3.6). Secondly, the results were sorted based on the

correlation coefficient. Subsequently, GSEA enrichment analysis

was carried out using clusterProfiler package (version 4.8.2),

utilizing the KEGG background gene set from Molecular

Signatures Database (MSigDB) (https://www.gsea-msigdb.org).

The screening criteria were |NES| > 1 and p.adjust < 0.05.
2.6 Immune infiltration analysis

Immune infiltration refers to the process by which immune cells

infiltrate into specific tissues or organs. This process exemplifies the

response and regulation of the body’s immune system towards the

local microenvironment. Therefore, we further investigate the

infiltration of immune cells in the blood tissues of SLE patients and

a control group, aiming to uncover the enrichment patterns of

immune cells during the progression of SLE. The proportion of 22

immune cells in GSE72326 was calculated using CIBERSORT

(version 1.03) (26) algorithm based on the LM22 gene set. Immune

cells with immune infiltration of 0 were removed, resulting in 19

types for subsequent analysis. A histogram was generated using

ggplot2 package (version 3.4.2) to visualize immune cell infiltration.

The infiltration differences of 19 immune cells between SLE and

control groups were compared through Wilcoxon rank sum test.

Finally, Spearman correlation analysis was performed on biomarkers
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and differential immune cells followed by visualization using a

lollipop map created with ggplot2 package (version 3.4.2).
2.7 Construction of regulatory networks

The miRNAs targeting biomarkers were predicted using starBase

database (http://starbase.sysu.edu.cn/ and microRNA target prediction

database (miRDB) (http://www.mirdb.org/), respectively.

Subsequently, these two sets of miRNAs were overlapped to

obtain key miRNAs. In addition, lncRNAs targeting key miRNAs

were predicted through miRNet database (https://www.mirnet.ca/)

and starBase database (http://starbase.sysu.edu.cn/). The lncRNAs

obtained from these two databases were intersected to obtain key

lncRNAs. Based on the identified key miRNAs, key lncRNAs and

biomarkers, a competitive endogenous RNA (ceRNA) network was

constructed. To further explore the upstream regulatory mechanism

of biomarkers in diseases, transcription factors (TFs) that can

regulate biomarkers were predicted based on JASPAR database

(http://jaspar.genereg.net/) from NetworkAnalyst platform (https://

www.networkanalyst.ca/). Furthermore, a mRNA-TFs network

were conducted.
2.8 Chemical compounds prediction and
molecular docking analysis

The Comparative Toxicogenomics Database (CTD) (http://

ctdbase.org/) was utilized for the prediction of chemical compounds

targeting biomarkers. Compounds with a reference count greater than

2 were selected. Furthermore, Cytoscape software (version 3.9.1) was

employed to construct a network illustrating the relationship between

chemical compounds and biomarkers. To further validate the role of

biomarkers in the treatment process, we conducted molecular docking

analysis between biomarkers and predicted chemical compounds. The

protein structure corresponding to the biomarkers was retrieved from

Protein Data Bank (PDB) database (https://www.rcsb.org/), while the

AlphaFold prediction structure was obtained fromAlphaFold (https://

alphafold.ebi.ac.uk/). The molecular structure of ligand (chemical

compounds obtained through prediction) was acquired from

PubChem database (https://pubchem.ncbi.nlm.nih.gov), followed by

molecular docking of the biomarker’s protein structure with its

respective ligand using Autodock software. It was widely accepted

that a more stable conformation of ligand-receptor binding

corresponds to lower required binding free energy. A molecular

binding free energy ≤ -5.0 kcal/mol indicated superior binding

activity (27).
2.9 Expression assessment of biomarkers

The blood samples from the 6 SLE patients and 6 healthy

individuals were gained in Fujian Medical University Union

Hospital in China. All of the patients with SLE have positive ANA

and fulfilled the Systemic Lupus International Collaborating Clinics
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(SLICC) 2012 SLE classification criteria (28). In addition, all included

patients (SLE and Control) did not receive any immunomodulators

or hormonal therapy and immunosuppressive drugs. Patients with

acute and chronic infections, pregnancy and malignancies were

excluded. We also collected the patient’s (SLE and Control) age,

sex, SLEDAI-2000 score (29), and clinical laboratory test results such

as Antiphospholipid antibody, complement, anti-dsDNA, and anti-

Smith antibody (Table 1). These blood samples were utilized for

reverse transcription quantitative polymerase chain reaction (RT-

qPCR) analysis. This study was approved by the ethics board of

Fujian Medical University Union Hospital (Ethical number:

2023KY234). All patients (SLE and Control) had signed an

informed consent form. Following the manufacturer’s instructions,

TRIzol (Ambion, Austin, USA) was utilized to extract the total RNA

of 12 samples. Following the manufacturer’s instructions, the

SureScript-First-strand-cDNA-synthesis-kit (Servicebio, Wuhan,

China) was employed to reverse transcribe whole RNA to cDNA.

The 2xUniversal Blue SYBR Green qPCR Master Mix (Servicebio,

Wuhan, China) was utilized to conduct the qRT-PCR.

Supplementary Table 1 displayed the PCR primer sequences. As an

internal reference gene, GAPDH was used. Candidate biomarkers’

expression was calculated using the 2−DDCt technique (30).
2.10 Statistical analysis

R software (version 4.2.1) was used to process and analyze the

data. The Wilcoxon rank sum test was employed to assess the

differences between different groups. Also correction was performed

using the Benjamini-Hochberg (BH). The p value less than 0.05 was

considered statistically significant.
TABLE 1 Clinical and laboratory characteristics of patients with SLE
and control.

Characteristics SLE (n=6) Control (n=6)

Females 6 6

Age, years (median, IQR) 28.0 (20.8-38.0) 20.0 (20.0-38.8)

Acute/Subacute cutaneous lupus 2

Non-scarring alopecia 1

Arthritis 2

Pleural or pericardial effusion 4

Renal involvement 2

Hematologic involvement 5

SLEDAI-2000 score (mean ± SD) 13.50 ± 4.85

C3, mg/dL (mean ± SD) 0.34 ± 0.18

C4, mg/dL (median, IQR) 0.03 (0.02-0.08)

Anti-dsDNA antibody (%) 6 (100.0)

Anti-Sm antibody (%) 3 (50.0)

Antiphospholipid antibody (%) 1 (16.7)
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3 Results

3.1 A total of 13 important candidate genes
were identified in SLE

The SLE group and the control group in the dataset GSE72326

were analyzed by differential expression analysis to obtain 327 DEGs

of which 243 genes were expressed significantly high expression and

84 genes were expressed significantly lower expression (Figures 1A, B).

Then, 37 candidate genes were obtained by taking the intersection of

327 DEGs and 1,408 TEX-RGs in the literature (Figure 1C).

Enrichment analysis demonstrated that these candidate genes were

enriched to 292 GO terms (243 BP, 23 CC, and 23 MF) and 8 KEGG

pathways (Figures 1D, E). These enriched pathways included negative

regulation of viral genome replication, defense response to symbiont,

hematopoietic cell lineage, viral life cycle-HIV-1 and so on. Through

PPI analysis of 37 candidate genes, we found that 13 important

candidate genes had strong interaction with each other. Among

them, LY6E interacted with BST2, IFIT3, MX1, RSAD2, IFIT1,

IFI44, OAS3, and OASL (Figures 1F, G).
3.2 MX1, LY6E, IFI44 and OASL were
identified as biomarkers related to TEX
on SLE

We subjected the 13 important candidate genes obtained to LASSO

and SVM-RFE analyses. The candidate key genes, namely MX1,

TRIM22, LY6E, IFI44 and OASL, were identified through the

integration of 8 genes from LASSO analysis and 6 genes from SVM-

RFE analysis (Figures 2A–C). The ROC curve analysis revealed

that the AUC values of MX1, LY6E, IFI44, and OASL in both

GSE72326 and GSE81622 exceeded 0.7, indicating their strong

discriminatory power on SLE (Figure 2D). Moreover, these candidate

key genes exhibited consistent expression patterns across both

GSE72326 and GSE81622 and were significantly up-regulated in SLE

group (Figure 2E). Consequently, MX1, LY6E, IFI44, and OASL

were identified as biomarkers associated with TEX on SLE.

Additionally, there was a significant positive correlation among these

four biomarkers (Figure 2F).
3.3 The expression of biomarkers was
significantly positively correlated with
immune related pathways

We observed that these biomarkers were associated with OAS1,

ISG15, IRF9, RSAD2, IFIT1 and other genes through constructing a

GGI network. The pathways in which they were implicated

encompassed response to type I interferon (IFN-I), cellular

response to IFN-I, regulation of symbiotic processes and more

(Figure 3A). Furthermore, GSEA analysis revealed significant

enrichment of MX1, LY6E, IFI44, and OASL in 17, 11, 10, and 19

pathways respectively. The enrichment results of ranking top 5

from small to large according to p-adjust value were selected for
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display. Additionally, MX1, LY6E, IFI44 and OASL were

significantly co-enriched in NOD-like receptor (NLR) signaling

pathway, Toll- like receptor (TLR) signaling pathway and RIG-I-

like receptor (RLR) signaling pathway (Figures 3B–E).
3.4 There was the most significant
correlation between biomarkers and
resting memory CD4 T cells

The infiltration abundance of 19 immune cell types in the blood

tissues of both the control group and the SLE group is shown in

Figure 4A, where infiltration abundance refers to the relative number

or proportion of immune cells within the blood tissue. These

differential immune cells included naive B cells, naive CD4 T cells,

resting memory CD4 T cells, regulatory T (Tregs) cells, resting NK

cells, monocytes, activated dendritic cells and resting mast cells.

Among these differential immune cells, naive B cells, resting

memory CD4 T cells and resting NK cells exhibited significant

down-regulation in SLE compared to other differential immune cells

(Figure 4B). Importantly, 4 biomarkers showed the most significant

correlation with restingmemory CD4 T cells (Figures 4C–F). Memory

CD4 cells are a special class of T lymphocytes that are activated and

differentiated from the primary immune response of CD4 T cells.

They play a crucial role in maintaining immune memory and

preventing reinfection by pathogens (31).
3.5 Construction of ceRNA and mRNA-TFs
regulatory networks for biomarkers

Firstly, a total of 8 key miRNAs (targeting 3 biomarkers) were

identified by integrating 150 miRNAs from starBase database and

114 miRNAs from miRDB database. Subsequently, based on these 8

key miRNAs, we further identified 17 key lncRNAs by intersecting

267 lncRNAs frommiRNet database and 48 lncRNAs from starBase

database. Consequently, utilizing these 3 biomarkers along with the

aforementioned 8 key miRNAs and 17 key lncRNAs, we

constructed a ceRNA network. The regulation of OASL by

NEAT1 in this network involved hsa-miR-532-3p, hsa-miR-574-

5p, hsa-miR-338-3p and hsa-miR-1286. IFI44 was regulated by

NEAT1 through hsa-miR-942-5p, hsa-miR-944, and hsa-miR9-5p,

while MX1 was regulated by GAS5 via hsa-miR-223-3p (Figure 5A).

Additionally, a total of 32 TFs regulating biomarkers were obtained.

In the constructed TFs-mRNA regulatory network, IFI44, MX1,

LY6E and OASL were simultaneously regulated by FOXC1 and

USF2 (Figure 5B).
3.6 To predict the binding activity between
biomarkers and chemical compounds that
target them

It was predicted that there were 1, 3, 3, 2 kinds of chemical

compounds targeting MX1, LY6E, IFI44 and OASL, respectively.
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FIGURE 1

Differential expression analysis of important candidate genes (SLE patients vs. healthy controls). (A, B) Volcano and heat maps of DEGs obtained by
differential analysis based on the public database dataset GSE72326 (The top 10 genes showing the most significant up- and down-regulation).
(C) Venn diagram of the overlapped candidate genes. (D, E) GO analysis and KEGG analysis of candidate genes. (F, G) The PPI network in candidate
genes and the most significant module (GO, gene ontology; KEGG, Kyoto Encyclope dia of Genes and Genomes; PPI, protein–protein interaction).
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Among these chemical compounds, bisphenol A (BPA) was found to

target both OASL and LY6E, while acetylaminophen targeted both

IFI44 and MX1 (Figure 6A). Furthermore, the molecular docking

results demonstrated that a hydrogen bond (-5.07 kcal/mol) formed

between the amino acid residue THR-112 of (+)-JQ1 compound and

IFI44. There may be a non-hydrogen bond interaction (-5.75 kcal/

mol) with benzo(a)pyrene (BaP). Additionally, a hydrogen bond

interaction (-5.94 kcal/mol) was observed between the amino acid

residue SER-95 of progesterone and LY6E. Another hydrogen bond

interaction was identified between the amino acid residue THR-278
Frontiers in Immunology 07
of tetrachlorodibenzodioxin and OASL (-5.18 kcal/mol) (Table 2,

Figures 6B–E).
3.7 The RT-qPCR results were consistent
with those of the dataset

The expression of MX1, LY6E, IFI44, and OASL was assessed

using RT-qPCR analysis. Our findings revealed a significant up-

regulation of MX1, LY6E, IFI44, and OASL in the SLE group
FIGURE 2

Machine learning screening for biomarkers. (A–C) LASSO regression and SVM-RFE algorithms for screening key candidate genes. The horizontal
coordinate in the left panel was the log(lambda) value and the vertical coordinate is the degree of freedom, which represents the cross-validation
error. In the right graph the horizontal coordinates were log(lambda) and the vertical coordinates are the coefficients of the genes. The dashed
position was the position with the smallest cross-validation error, and the corresponding horizontal coordinate log (Lambda) was determined based
on this position (Lambda.min), and the upper horizontal coordinate shows the number of characterized genes to find the optimal log (Lambda)
value. (D) Diagnostic performance of 4 biomarkers in SLE diagnosis (AUC > 0.7, training set GSE72326 and validation set GSE81622). (E) Expression
validation of 4 biomarkers. The left figure showed the training set GSE72326 and the right figure showed the validation set GSE81622 (Significance:
ns, P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). (F) Heatmap of 4 biomarkers correlations (The shade of the blue pentagram in the
graph represents the degree of relevance. The lighter the colour the higher the correlation. Significance: ns, p > 0.05, *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001). The figure was obtained by analysing the dataset based on the public database.
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compared to the control group (p < 0.05). Importantly, these results

were consistent with those obtained from the dataset (Figure 7).
4 Discussion

TEX diminishes the immune response mediated by T cells,

leading to decreased secretion of effector cytokines, poorer

proliferative capacity, reduced persistence, and enhanced

expression of cell surface receptors (e.g., PD-1 and CTLA-4 on

CD 8+T cell surface) (32). And in autoimmune diseases, patients

with TEX show a better prognosis (33, 34). Therefore, there is an

urgent need to better understand the detailed mechanisms of TEX

to provide new strategies for the treatment of SLE.
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Previous studies have shown that MX1 is highly expressed in the

glomeruli and that this gene is associated with renal fibrosis (35).

Peripheral blood MX1 gene expression has been used as a sensitive

biomarker for LN therapy (36). The immune systems of mice and

humans share some similarities, yet they also exhibit numerous

differences in physiological structure and function. Despite these

variations, observing the production of specific antibodies and local

inflammatory responses in the kidney of mice may offer insights that

are more readily discernible (37). In experiments with lupus mice, the

expression level of Ly-6A/E on splenic lymphocytes was positively

correlated with disease severity (38). The expression of Ly6E in

proximal convoluted renal tubules is elevated due to proteinuria (39),

suggesting a potential role for LY6E in nephropathophysiology. OASL

expression in PBMCs and CD19+ B cells is upregulated in patients with
FIGURE 3

Relationship between biomarkers and immune related pathways. (A) The GGI network for biomarkers (Demonstrate the top 20 genes in terms of
correlation with 4 biomarkers and the top 7 pathways in terms of significance. GGI, gene–gene interaction). (B–E) GSEA enrichment analysis of
biomarkers in the training set GSE72326 (Display the entries with the top 5 P-adjust values). The horizontal axis was the sorted genes and the vertical
axis was the corresponding Running ES. The peak in the line graph was the enrichment score of the gene set of this pathway; the lower part of the
line marks the genes that were located under this gene set.
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active SLE with renal disease compared with patients without clinical

manifestations (40). IFI44, as a LN specific biomarker, can distinguish

between patients with active and inactive LN (41). In our study, four

biomarkers MX1, LY6E, OASL and IFI44 were screened, and they are

ISGs (42). These biomarkers, which are all upregulated in SLE patients,

are closely linked to the activity of SLE disease. This is consistent with

previous studies (43–45). A previous study comparing lymphocyte
Frontiers in Immunology 09
subtypes in heal thy and SLE pat ients by two-color

immunofluorescence flow cytometry analysis showed a reduction in

circulating CD8+ T cells in SLE patients (491(146-1136) VS 331 (92-

1401), p < 0.01) (46), but there are no relevant studies at the genetic

level. This is also the innovation of this study.

Interferon-stimulated genes (ISGs) are produced by induction

of interferon (IFN), and the activities of IFN-Is are potentiated by
FIGURE 4

Immune infiltration analysis. (A) The landscape of 19 types of immune cell infiltration in the GSE72326 dataset. (B) Boxplot of the proportion of 19
types of immune cells in the GSE72326 dataset (Significance: ns, P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). (C–F) Correlation
between the expression levels of biomarkers and the immune infiltration level of differential immune cell (The size of the circle indicates correlation,
the larger the correlation the better; the colour indicates significance, red means significant and blue means not significant).
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hundreds of ISGs. ISGs include antimicrobial proteins, chemokines,

cytokines and other immune mediators that induce recruitment of

immune cells and inflammation. ISGs play diverse roles in many

cellular processes such as migration, antigen processing and

presentation, cellular activation, differentiation, mitosis and

apoptosis (47). Previous in vitro experiments have shown that

anti-LY6E antibody treatment leads to CD3z chain tyrosine

phosphorylation and blocks TCR-mediated T cell apoptosis (48).

It indirectly reflects the role of LY6E in T cell apoptosis. In a

cytological study by Perez et al., it was found that SLE patients

experienced a decrease in Naive CD4+ T cells and an expansion of
Frontiers in Immunology 10
cytotoxic GZMH+ CD8+ T cells, as well as increased expression of

ISG signals. It is speculated that IFN-1 causes monocytes to

explicitly express ISGs and inhibits the basis of CD4+ T cell

export to lymphoid tissue, leading to the observed decrease in

circulating naive CD4+ T cells (49). This is consistent with the

clinically observed lymphocytopenia in SLE patients and our

findings. In studies of COVID-19, strong infiltration of CD8 T

cells into lung tissue and manifestations of TEX have been shown in

patients with low local expression of ISG (50). Previous scholarly

endeavors have established that a substantial quantity of

endogenous DNA, present in the cytoplasm beyond the confines
FIGURE 5

Biomarkers regulatory network analysis. (A) Potential impact of ceRNA on biomarkers expression through interaction with miRNAs. This figure
predicted the corresponding intersecting miRNAs for the key genes in the starBase database (http://starbase.sysu.edu.cn/) and in the miRDB database
(http://www.mirdb.org/) (B) Regulatory networks of TF-mRNAs and biomarkers. The figure was in the NetworkAnalyst platform (https://www.
networkanalyst.ca/) based on the JASPAR database predicting TFs that can regulate key genes (Orange circles are mRNA and green circles are TF. TFs,
Transcription Factors).
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of the nucleus and mitochondria, possesses the capacity to activate

the cGAS-STING signaling pathway (51). Upon activation, STING

meticulously orchestrates the recruitment of TANK-binding kinase

1 (TBK1), which, in turn, activates and phosphorylates interferon

regulatory factor 3 (IRF-3), thereby stimulating the production of
Frontiers in Immunology 11
IFN-I. These IFN-1s subsequently engage with the IFN-I receptor,

igniting the JAK/STAT signaling cascade and prompting the

transcription of ISGs (52). Notably, the STING gene itself is

classified as an ISG, paving the way for a potential self-sustaining

positive feedback loop (53). Recent research has further
FIGURE 6

Chemical compounds prediction and molecular docking. (A) Biomarkers corresponds to target chemical compounds network diagram. (B) IFI44-
(+)-JQ1 compound. (C) IFI44-Benzo(a)pyrene. (D) LY6E-Progesterone. (E) OASL-Tetrachlorodibenzodioxin.
TABLE 2 Docking results of potential targets with chemical compounds.

Target Chemical compounds Compound CID Binding energy (kcal/mol)

IFI44 (+)-JQ1 compound 46907787 -5.07

Acetaminophen 1983 -4.38

Benzo(a)pyrene 2336 -5.75

LY6E bisphenol A 6623 -4.48

pirinixic acid 5694 -4.82

Progesterone 5994 -5.94

MX1 Acetaminophen 1983 -4.08

OASL bisphenol A 6623 -4.63

Tetrachlorodibenzodioxin 15625 -5.18
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demonstrated that elevated STING expression in T cells triggers an

enhanced response associated with the induction of IRF-3-

dependent and p53-dependent pro-apoptotic genes, ultimately

culminating in the programmed cell death or apoptosis of T cells

(54). During chronic infections and perhaps some cancers, IFN-a/b
and IFN-g can remain elevated and induce the expression of IL-10,

IDO, PD-L1, TIM-3, LAG-3 and other negative regulators of T cell

responses (32, 55, 56). CXCL9, CXCL10 are primarily secreted by

monocytes, endothelial cells, fibroblasts, and cancer cells in

response to IFN-g, CXCL10 can also be strongly induced by IFN-

a/b (57), and may also play a role in TEX (32). IFN-a/b can also

foster attrition of activated T cells via Fas/FasL-mediated T cell

death and perhaps other mechanisms (58, 59). There is also

evidence that high IFN-a/b signaling can promote terminal

exhaustion by antagonizing the TEX progenitor pool through

effects on the transcription factor T cell factor-1 (Tcf-1) (60).

Chen et al. showed that chronic IFN-I stimulation disrupted lipid

metabolism and REDOX balance in TEX cells, resulting in

abnormal lipid accumulation and elevated oxidative stress, and

these defects promoted lipid peroxidation, thereby enhancing TEX

cell metabolism and directly contributing to the terminal

exhaustion of CD8+ T cells. At the same time, in vitro studies

showed that IFN-I treated TEX cells exhibit greater gene

enrichment associated with TEX, including MX1, OSAL (61).

Studies have also found that long-term exposure to IFN-I
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increases NAD+ consumption of CD8+ T cells, triggering

mitochondrial changes in CD8+T cells, resulting in impaired

mitochondrial respiration and reduced cell viability, and

promoting CD8+T cell death after TCR reactivation (62). At the

same time, IFN can up-regulate the expression and secretion of

galectin-9 (Gal-9), and promote TIM-3 mediated T cell death (63).

At present, there are no relevant studies on how ISGs affects the

specific molecular pathways of TEX in SLE patients. This study is

the first to screen TEX-related genes from the perspective of TEX,

providing a new approach and basis for the treatment of SLE.

GSEA analysis showed that the expression of these biomarkers

was significantly positively correlated with immune-related

pathways such as NLR signaling pathway, TLR signaling pathway,

and RLR signaling pathway. Numerous studies have consistently

demonstrated that IFN-I, particularly IFN-a, serves as the principal
pathogenic mediator in SLE (64–66). The majority of patients with

SLE exhibit overexpression of genes associated with the IFN-I

pathway in peripheral blood cells (67–69). Studies have shown

that TLR signaling exists in SLE (70, 71). TLRs, especially TLR7 and

TLR9, are involved in the activation of plasmacytoid dendritic cells

(pDC) to produce IFN-I (72). The increased TLR7 expression is

associated with the risk of SLE and the severity of lupus in mice (73,

74). Some studies have shown that RIG-I is significantly expressed

in kidney tissue samples from patients with LN, in addition (75).

Other studies have demonstrated that the expression level of RIG-I
FIGURE 7

Expression levels of 4 biomarkers in SLE and control (Significance: *P < 0.05).
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mRNA in urinary sediment is significantly elevated in patients with

LN compared to those with IgA nephropathy (76), hinting at a

potential role of RIG-I in the underlying pathogenesis of LN. At

present, there are few studies on SLE and NLR signaling pathway.

All the 4 biomarkers studied in our study were ISGs, which may

play a role in SLE by interfering with IFN signaling pathway.

We showed by immune infiltration analysis that naive B cells,

restingmemory CD4 T cells and resting NK cells exhibited significant

downregulation. This is consistent withmost of the available findings.

Research has demonstrated that immune imbalance is an important

factor in the emergence and progression of SLE (77). Studies have

shown that the proportion of naive B cells is significantly lower in

patients with SLE (78). Most recent studies indicate a significant

reduction in the number of NK cells present in the peripheral blood

of SLE patients (79–81). However, the underlying cause remains

elusive. Cells differentiated from a subpopulation of CD4+memory T

cells may rapidly secrete effector cytokines to promote memory

responses to reinfection (31). In the study conducted by Kosalka

et al., a notable decrease in the absolute counts of naive CD4+ T cells

and T central memory cells within the lymph nodes was observed,

with the decrement being particularly pronounced in patients

experiencing active disease (82). Currently, the fundamental

mechanisms of information transmission and functionality of these

cells in SLE remain largely unexplored. Research has demonstrated

that SLE patients exhibit abnormal distribution of CD4+ memory T

cell subsets, along with a diminished proliferative response to in vitro

stimulation and a notable elevation in cellular apoptosis (83, 84).

However, the results of various studies on memory CD4+ T cells are

now inconsistent (85).

Immunoinfiltration analysis showed upregulation of regulatory

T (Treg) cells, monocytes, activated dendritic cells and resting mast

cells. Increased accumulation of DCs in affected tissues is associated

with tissue inflammation and damage (86). In response to

microenvironmental stimuli, monocytes can polarize into M1-like

or M2-like macrophages. The imbalance between the M1 and M2

phenotypes correlates with SLE pathogenesis, and disease activity

(87, 88). Although most reports have concluded that circulating

Treg numbers are reduced or functionally impaired (89), some

research groups have found elevated Treg levels in patients with SLE

that correlate with disease activity (90). These findings are

consistent with our immune infiltration results.

Drawing upon our literature review, we postulate that SLE can

be triggered by the augmentation of the IFN pathway following the

IFN-induced expression of ISGs. Additionally, prolonged exposure

to IFN can lead to the expression of STING, IL-10, IDO, PD-L1,

TIM-3, LAG-3 and other negative regulatory factors, which induced

the apoptosis of T cells. Meanwhile, IFN also triggered alterations in

the mitochondrial metabolic pathway of CD8+ T cells, leading to

the death and exhaustion of chronically activated CD8 T cells,

thereby contributing to the pathogenesis of SLE.

In order to fully understand the potential mechanism of action

between the 4 biomarkers and TEX, the TF-mRNA network and

ceRNA network were constructed in this study, and the results

showed that the 4 biomarkers were regulated by different TFs.

FOXC1 and USF2 are co-regulated TFs. At present, the main
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research on the 8 micrornas suggested in the study focuses on the

secretion of cellular inflammatory factors, cell metabolism,

apoptosis, proliferation, invasion and migration, especially in

tumor (91). However, there are few studies on SLE. LncRNAs are

critical in regulating lymphocyte activity, T-helper cell polarization,

and adaptive immune cells. BPA, BaP, Tetrachlorodibenzodioxin

(TCDD) are not used as drugs, but they are also present in our lives.

BPA is an industrial chemical widely used in the polymerization of

plastics and in non-food-related materials, such as thermal paper

receipts, eyeglasses and children’s toys (92). >90% of human BPA

exposure occurs through the oral route, with absorption occurring

in the gastrointestinal tract (93). BPA closely resembles the

physiological impacts of estrogen (94). BPA induces structural

alterations in DNA in vitro and is strongly recognized by SLE

IgGs and induces high titer antibodies in rabbits (95). Lee et al.

demonstrated that the exposure of mouse embryonic stem cells to

BPA and progesterone led to a reduction in LY6E mRNA levels,

indicating the suppressive effect of these compounds on LY6E

expression (96). BPA may act on SLE by interfering with different

signaling pathways. BaP is found in smoky environments, processed

meat products such as smoked and barbecued. It has been

extensively studied and is thought to be associated with an

increased risk of many types of cancer and is listed as toxic or

dangerous by several countries (97). TCDD is generally considered

to be the most toxic synthetic molecule known. TCDD used to be a

contaminant of some herbicides and is a harmful contaminant

produced by industrial processes (98). Based on the findings of this

study, we recommend that patients adopt appropriate preventive

measures. These measures include selecting environmentally

friendly products free from BPA, avoiding the use of dioxin-

containing pesticides and other harmful compounds, and

minimizing exposure to environmental pollutants such as

industrial emissions, traffic exhaust, waste incineration,

barbecuing, and tobacco smoke. Utilizing molecular docking, we

predicted chemical compounds that specifically target biomarkers,

and in light of the current limited research, we postulate that these

chemical compounds have the potential to bind to and disrupt

mRNA expression via the interaction with these biomarkers.

In conclusion, based on bioinformatics analysis, we identified 4

biomarkers that were highly correlated with T cell depletion in SLE

patients, including LY6E, OASL, MX1, and IFI44. Our findings

provide potential therapeutic targets and shed light on the

pathogenesis of SLE. However, there are some limitations to our

study. First, the patients in the validation cohort were made up of

Chinese. Therefore, our findings may not generalize across racial

and ethnic groups of SLE patients. Second, there are limited samples

available for RT-qPCR validation and insufficient validation has

been performed. Therefore, more mRNA expression that would

validate these biomarkers is needed. In the forthcoming research

undertakings, our principal emphasis will be placed on conducting

comprehensive studies encompassing SLE patients from various

racial and ethnic backgrounds. These studies will strive to

meticulously assess the universal applicability of biomarkers MX1,

LY6E, IFI44, and OASL across various global populations. Third,

addressing the challenge of insufficient validation resulting from
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limited sample sizes, we intend to collect samples from SLE patients

at various stages of the disease. This will enable a more

comprehensive validation of the role these biomarkers play in the

initiation and progression of SLE. Simultaneously, we will integrate

other methodologies, including gene silencing and overexpression

assays, flow cytometry, and immunoimprinting, to explore the

molecular regulatory mechanisms underlying the interplay

between these biomarkers and T cell exhaustion. Furthermore, we

aspire to embark on multi-center, interdisciplinary collaborative

research initiatives, ultimately enhancing the quality of life for SLE

patients and fostering advancements in this research domain.
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