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Background: Immunotherapy has emerged as a pivotal therapeutic modality for

a multitude of malignancies, notably hepatocellular carcinoma (HCC). This

research endeavors to construct a prognostic signature based on immune-

related genes between different HCC molecular subtypes, offer guidance for

immunotherapy application, and promote its clinical practical application

through immunohistochemistry.

Methods: Distinguishing HCC subtypes through Gene set variation analysis and

Consensus clustering analysis using the Kyoto Encyclopedia of Genes and

Genome (KEGG) pathway. In the TCGA-LIHC cohort, univariate, Lasso, and

multivariate Cox regression analyses were applied to construct a novel

immune relevant prognostic signature. The Subtype-specific and Immune-

Related Prognostic Signatures (SIR-PS) were validated in three prognostic

cohorts, one immunotherapy cohort, different HCC cell lines and tissue chips.

Further possible mechanism on immunotherapy was explored by miRNA-mRNA

interactions and signaling pathway.

Results: This prognostic model, which was based on four critical immune-

related genes, STC2, BIRC5, EPO and GLP1R, was demonstrated excellent

performance in both prognosis and immune response prediction of HCC.

Clinical pathological signature, tumor microenvironment and mutation analysis

also proved the effective prediction of this model. Spatial transcriptome analysis

shows that STC2 and BIRC5 are mainly enriched in liver cancer cells and their

mRNA and protein expression levels were greater in higher malignant HCC cell

lines than in the lower ones. Further validation on HCC tissue chips of this model

also showed good correlation with cancer prognosis. The risk score of each

patient demonstrated that the SIR-PS exhibited excellent 1 and 3-year survival

prediction performance.
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Conclusions:Our analysis demonstrates that the SIR-PSmodel serves as a robust

prognostic and predictive tool for both the survival outcomes and the response

to immunotherapy in hepatocellular carcinoma patients, whichmay shed light on

promoting the individualized immunotherapy against hepatocellular carcinoma.
KEYWORDS

hepatocellular carcinoma, immune-related genes, prognosis, immunotherapy,
immunohistochemistry, biomarker
1 Introduction

According to the 2020 Global Cancer Statistics, liver cancer is the

sixth most common human malignancy and the third leading cause of

cancer related deaths worldwide, in which liver hepatocellular

carcinoma (HCC) accounts for the vast majority (75%-85%) (1).

Characterized by nonspecific symptoms and pronounced

heterogeneity in the early phases, HCC is often diagnosed at

advanced stages, precluding the possibility of curative surgery for the

majority of patients (2). Even with the emergence of

immunotherapeutic and targeted therapies, the 5-year survival rate for

HCC patients remains below 20% (3). The prognosis of patients with

HCC is highly variable, which is attributable to its inherent

heterogeneity (4). Consequently, there is a pressing need for a novel

signature that leverages tumor heterogeneity to predict patient

prognosis and select immunotherapy candidates for precision medicine.

Cancer immunotherapy activates the immune system to induce the

death of cancer cells (5). The tumor microenvironment (TME), which

includes immune cells, stromal cells, the extracellular matrix, and

peripheral blood vessels, significantly influences tumor proliferation,

metabolic processes, and metastatic potential (6). What’s more, TME

plays a vital role in response to cancer immunotherapy in patients with

HCC. Amidst the rapid advancements in immunotherapy, its role in

HCC treatment is increasingly pivotal.

High-throughput transcriptome sequencing has been widely used

in recent years for both clinical and research purposes. However,

stringent requirements, intricate procedures and elevated costs

impeded its widespread adoption. Immunohistochemistry (IHC)

offers a practical and economical alternative for determining

protein expression via antibody-mediated staining. Currently, the

majority of studies rely on RNA-Seq data for prognostic assessments,

whereas models utilizing IHC are limited. If gene-guided predictions
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can ultimately be validated and applicated through IHC, that will

provide a more convenient and cost-effective option.

Therefore, in this study, we established a prognostic model

based on HCC subtypes and immune related genes. This model was

also proofed by the immunohistochemical score to facilitate clinical

prognosis and treatment. Figure 1 illustrates the methodological

steps undertaken in this study. The findings might provide insights

for future IHC-based studies and contribute to advanced

individualized immune therapies for HCC.
2 Materials and methods

2.1 Data resources

This investigation procured RNA -Seq, clinical, and SNP data from

HCC patients through the TCGA (https://portal.gdc.cancer.gov/) and

ICGC (https://dcc.icgc.org/) databases, with the exclusion of

subjects lacking complete overall survival (OS) data or having

survival durations of less than 30 days. The GSE54236 dataset

and GSE202069 dataset, sourced from the GEO (https://

www.ncbi.nlm.nih.gov/geo/) database, were incorporated into this

analysis. The complete TCGA-LIHC cohort served as the training

set, while the ICGC- LIRI-JP, GSE54236 and GSE202069 cohorts

were utilized as validation datasets.
2.2 Gene set variation analysis and
consensus clustering

The GSVA algorithm, implemented in the “GSVA” package (7),

was employed to derive the relative enrichment scores for the entirety

of Kyoto Encyclopedia of Genes and Genome (KEGG) pathways that

referenced from the MSigDB (c2.cp.kegg.v2023.1.Hs.symbols) for the

comprehensive TCGA cohort (8, 9).

Unsupervised hierarchical clustering of all HCC patients from

the TCGA cohort was conducted using the “ConsensusClusterPlus”

package (10) to discern distinct HCC subtypes. This procedure

entailed 1000 iterations, sampling 80% of the dataset per iteration,

to ascertain the stability and reliability of the resulting clusters. The

optimal cluster number was determined through the application of

the proportion of ambiguous clustering algorithm (11, 12).
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2.3 Differential and enrichment analysis of
the subtypes

Using the “DESeq2” software package for differential analysis,

screening differential expressed genes between the two subtypes

(SDEGs) based on adjusted P value<0.05 and absolute value of

logFC>1 as criteria (13, 14). Utilizing the “clusterProfiler” R package

(15), we performed enrichment analysis on above differential genes

using gene sets from diverse databases, including OMIM disease gene

set, OMIM expanded gene set, ClinVar 2019 gene set, and Rare

Diseases GeneRIF Gene Lists gene sets (16–18).
2.4 Identification of immune-related
differentially expressed genes among HCC
subtypes (SIRDEGs)

Immune-related genes (IRGs) were identified from the

Immunology Database and Analysis Portal (ImmPort, https://
Frontiers in Immunology 03
immport.niaid.nih.gov/). Intersection of SDEGs and IRGs to

obtain SIRDEGs.
2.5 Construction and validation of a
prognostic signature based on the
SIRDEGs

The TCGA-LIHC Cohort was utilized as the training set for

model development. Validation was conducted using the ICGC-

LIRI Cohort, the GSE54236 and GSE202069 datasets. Univariate

and least absolute shrinkage and selection operator (LASSO) Cox

regression analyses were performed using the “survival” and

“glmnet” packages to identify the modeling genes. Subtype-

specific and Immune-Related Prognostic Signatures, designated

the SIR-PS, were identified through multivariate Cox regression.

The computational formula for SIR-PS is given by SIR-PS =on
i co

efi*mRNAi. The R packages “survivalROC” and “survminer” were

used to generate time-dependent receiver operating characteristic
FIGURE 1

Flow diagram of the analysis procedure: data collection, preprocessing, analysis and validation.
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curves (t-ROC) and Kaplan–Meier survival curves, respectively.

The samples were stratified into high-risk and low-risk groups

based on the median risk score derived from the TCGA-LIHC

cohor t . The a s soc i a t i on s be tween the S IR-PS and

clinicopathological parameters were assessed using the chi-square

test and graphically depicted using the “ComplexHeatmap” package

(19). Significant clinical parameters were further represented

through a stacked bar plot.
2.6 Exploration of the tumor immune
microenvironment and immunotherapy
response

This study utilized the CIBERSORT algorithms for a

quantitative assessment of immune cell infiltration, thereby

elucidating immunological variations across different groups.

Additionally, we scrutinized the expression profiles of immune

checkpoint molecules, conducting a comparative analysis to

delineate the distinctions between the high-risk and low-risk

groups. Furthermore, we leveraged the HCC Immunotherapy

Cohort (RNA-Seq data from Li et al.’s study) to substantiate the

predictive efficacy of the SIR-PS in forecasting responses to

immunotherapy (20).
2.7 Mutation analysis

The mutational data of patients in the TCGA-LIHC cohort were

obtained from the TCGA database. The “maftools” R package was

utilized to evaluate the mutational landscape and compare the

mutational spectra between high-risk and low-risk groups of

HCC patients (21).
2.8 Spatial transcriptome analysis

The spatial transcriptomics data were obtained from Liu et al.’s

study (22). According to the authors’ provided data, we calculated

the model score for each cell using SIR-PS. We then used the Seurat

package to visualize cell types and their corresponding scores.
2.9 Quantitative real-time reverse
transcriptase polymerase chain reaction in
cell lines

Hep3B, Huh7, MHCC-97H (97H), and SNU-449 cell lines

(ATCC Cell Bank, United States) were cultured to verify the

expression levels of these signature genes. Total RNA was isolated

from the aforementioned cell lines utilizing FreeZol Reagent

(Vazyme, China) followed by the synthesis of cDNA using a

reverse transcription kit (Vazyme, China). qPCR was conducted

with SYBR Green Mix (Q711, Vazyme) and a C1000 thermal cycler

from Bio-Rad (Hercules, CA). The sequences of the primers used
Frontiers in Immunology 04
for the signature genes are detailed in Table 1. The relative

expression levels were normalized to those of the housekeeping

gene GAPDH.
2.10 Western blotting

Cellular lysates were prepared using RIPA lysis buffer. Equal

amounts of proteins were subjected to SDS–PAGE and then

transferred to polyvinylidene fluoride membranes. The

membranes were blocked with a protein-free rapid blocking

solution (PS108P, Epizyme) for 20 minutes to prevent nonspecific

antibody binding. Primary antibodies (10314, 10508, 26196 from

Proteintech, A5663 from ABclonal) were diluted according to the

manufacturer’s instructions and incubated at 4°C for 12 hours to

allow for antibody-antigen binding. After washing with Tris-

Buffered Saline with Tween, secondary antibodies (SA00001 from

Proteintech) were applied and incubated for 1 h at room

temperature to facilitate signal detection. After washing, the

immunoreactive bands on the membranes were visualized using

an enhanced chemiluminescence chromogenic substrate.
2.11 Validation of SIR-PS in HCC tissue
chips

Two HCC tissue chips were obtained from the Department of

Liver Surgery at Tongji Hospital, Tongji Medical College,

Huazhong University of Science and Technology. Patients with

incomplete clinical data or tissue loss excluded from the analysis.

The immunohistochemistry staining was performed as described

previously (23). The slides were incubated with primary antibodies

(anti-STC2 ab255610, Abcam, anti-GLP1R 26196, Proteintech, anti-

EPO ZRB1366, Sigma, and anti-BIRC5 ZA0530, ZSGB-BIO).

Semiquantitative scores were assigned according to the staining

intensity and the proportion of positively stained cells, with the

following categories and corresponding scores: no staining (0), light

yellow (1), medium yellow (2), dark yellow (3), and heavy yellow

(4); multiple with the corresponding positive percentage of stained

cells relative to the total number of cells > The composite score for

each specimen was calculated as the sum of the products of the

staining intensity and the percentage of positively stained cells.

Immunohistochemical staining was independently evaluated by two

pathologists in a double-blinded manner via microscopy. The HCC
TABLE 1 The sequences of the primers used in qPCR.

Gene
name

Forward primer sequence Reverse primer sequence

GAPDH TCCAAAATCAAGTGGGGCGA TGATGACCCTTTTGGCTCCC

STC2 TGAAATGTAAGGCCCACGCT ACTGTTCGTCTTCCCACTCG

BIRC5 TCAAGGACCACCGCATCTCT CCAAGTCTGGCTCGTTCTCA

EPO AGGCCGAGAATATCACGACG CAGACTTCTACGGCCTGCTG

GLP1R AGTCCAAGCGAGGGGAAAGA GAGGCGATAACCAGAGCAGAG
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tissue chip cohort was stratified into High-risk and Low-risk groups

utilizing “surv_cutpoint” from the “survminer” package. The

prognostic predictive efficacy of the SIR-PS was confirmed using

Kaplan–Meier analysis and t-ROC curves. In the HCC tissue chip

cohort, use the “compactGroups” package to generate a three line

table to statistically analyze the distribution of clinical pathologica l

parameters between different groups for each indicator (24).
2.12 Exploring the potential mechanisms of
SIR-PS regulating immunotherapy efficacy

Analyze the relationship between modeling genes and PDL1

expression in the TCGA-LIHC cohort. Based on the above results,

miRNAs targeting PDL1 and modeling genes correlated with PDL1

expression that have been experimentally validated in the TarBase

database were screened using the MultiMiR package. Take the

intersection of the miRNA results of the modeling genes

mentioned above with the miRNAs targeting PDL1.
2.13 Statistical analysis

All the statistical tests and bioinformatics analyses were

performed with R software, version 4.0.1. The Wilcoxon rank

sum test, Pearson chi-square test, t test and log-sum test were

included. P <0.05 was considered to indicate statistical significance.
3 Results

3.1 Identification and enrichment analysis
of subtypes based on KEGG pathway in
HCC

Utilizing the enrichment scores of KEGG gene sets based on the

GSVA algorithm, we conducted unsupervised hierarchical

clustering to classify the samples into two distinct subtypes,

which were validated by the examination of the cluster heatmap,

the consensus CDF plot, the average silhouette width, and the

Proportion of Ambiguous Clustering algorithm (Figures 2A-C).

Consequently, the patients of TCGA-LIHC cohort was stratified

into two distinct molecular subtypes (Supplementary Table 1).

Subsequently, a comparative analysis of the clinical factors across

different subtypes was conducted, employing heatmap for

visualization (Figure 2D). Additionally, stacked bar charts were

utilized to highlight factors exhibiting significant inter-subtype

disparities (Figure 2E). Compared to Sub2, Sub1 is characterized

by elevated levels of AFP, a higher GRADE, advanced path stage

and T stage, a greater proportion of female patients, and a lower

median age. As indicated by the Kaplan–Meier analysis, patients

classified into Sub2 exhibited a more favorable prognosis than those

classified into Sub1 (Figure 2F). In light of the observed disparities

in survival outcomes, we employed the “DESeq2” package to

perform a differential analysis between the two identified
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subtypes. Employing LogFC>1 as the criterion, Sub1 and Sub2

were found to harbor 2284 and 751 differentially expressed genes,

respectively. The enrichment analysis conducted on Sub1 disclosed

that in the gene sets of the four databases, OMIM disease, OMIM

Expanded, ClinVar2019, and Rare Disease GeneRIF GeneLists, the

genes enriched by Sub1 are unanimously associated with

immunodeficiency diseases (Figure 2G). Additionally, an analysis

of immune checkpoint expression levels among the subtypes was

performed. This analysis indicated that the expression levels of

immune checkpoint genes in Sub1 were, on the whole, markedly

elevated compared to those in Sub2 (Figure 2H).
3.2 Development and validation of the
SIR-PS

In the TCGA-LIHC cohort we obtained 3035 SDEGs

(Supplementary Figure 1). Then, SDEGs were intersected with

1,509 immune-related genes obtained from the ImmPort

database, yielding a total of 239 immune-related SDEGs

(SIRDEGs) (Figure 3A). Univariate Cox regression analysis

revealed 67 SIRDEGs with significant prognostic potential

(Supplementary Table 2). Then, LASSO regression analysis was

performed, and five SIRDEGs were further identified for modeling

(Figures 3B, C). Four genes, STC2, BIRC5, EPO, and GLP1R, were

identified for their substantial influence on the prognostic model.

The group with high expression levels of these genes exhibited a

markedly poorer prognosis than the group with low expression

(Supplementary Figures 2A-D). These genes were subsequently

utilized to construct a prognostic model (called SIR-PS) through

multivariate Cox regression analysis, resulting in the following risk

score formula: risk score = (STC2 × 0.22344) + (BIRC5 × 0.19238) +

(EPO × 0.11058) + (GLP1R × 0.24472). The four-gene model

demonstrated a prediction performance closely comparable to

that of the five-gene model (Supplementary Figures 2E, F).

Subsequently, 343 TCGA-LIHC patients were stratified into low-

risk and high-risk groups based on the median risk score. In

addition, we plotted ensemble plots of survival status and four

signature gene expression profiles as the risk score increased

(Figures 3D, E). There was a progressive increase in both

mortality rates and the expression levels of the four signature

genes concomitant with increasing risk scores. Kaplan–Meier

analysis revealed that patients in the high-risk group experienced

a more adverse clinical prognosis than did those in the low-risk

group (Figure 3F). The AUC value at 1 and 3 years were 0.771 and

0.727 respectively, which is indicative of the model’s robust

predictive capability (Figure 3I). Leveraging the SIR-PS, we

computed individual risk scores for all HCC patients within the

ICGC cohort. These scores were then stratified to distinguish

between high-risk and low-risk groups based on the median value

of the risk scores. Consistent with the findings in the TCGA-LIHC

cohort, the Kaplan–Meier analysis demonstrated that the OS of

patients in the high-risk group was significantly inferior to that of

patients in the low-risk group in ICGC-LIRI-JP cohort (Figure 3G).

The AUCs for the ICGC-LIRI-JP cohort at 1 and 3 years were 0.791
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and 0.751, respectively (Figure 3J). In the GSE54236 cohort and the

GSE202069 cohort, the Kaplan–Meier analysis revealed that

patients in the high-risk group experienced significantly shorter

OS than those in the low-risk group (p<0.0001 and p=0.08,
Frontiers in Immunology 06
respectively) (Figure 3H, Supplementary Figure 3A). The AUCs

for the GSE54236 cohort and the GSE202069 cohort at the 1-year

were 0.838 and 0.818, respectively, while at the 3-year they were

0.67 and 0.866, respectively (Figure 3K, Supplementary Figure 3B).
FIGURE 2

Identification and differential analysis of HCC Subtypes based on KEGG pathways. (A) Heatmap of sample clustering at consensus k=2. (B)
Consensus clustering CDF for k= 2 to 9. (C) The Average Silhouette width Plot. (D) Heatmap of and (E) Stacked bar chart of multiple
clinicopathological features between Subtypes. (F) Kaplan-Meier survival plots between Subtypes for Overall Survival (0S). (G) Enrichment analysis of
diseases associated with Sub1 enrichment genes. (H) Immune Checkpoint genes’ expression between Subtypes. *p<0.05, **p<0.01,
***p<0.001, ****p<0.0001.
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In addition, we compared the three-year survival prediction

performance of SIR-PS with nine other prognostic models in four

datasets (25–33). The results showed that the AUC value of SIR-PS

had the best predicted performance in these datasets
Frontiers in Immunology 07
(Supplementary Figure 3C). Taking the average AUC value at 1

and 3 year of four datasets, the AUC value of SIR-PS ranked the

second and first respectively, which also proofed its comprehensive

prediction value.
FIGURE 3

Construction and Validation of SIR-PS. (A) Venn plot showed 239 immune-related DEGs among subtypes. (B) LASSO coefficient profiles of 67 prognostic
genes of HCC. (C) 10-fold cross validated lasso regression identified five prognostic genes with minimal l. (D, E) Riskscore distribution, survival status, and
expression of four SIR-PS signature genes of patients in the Low-risk and High-risk group of TCGA Cohort and ICGC Cohort, respectively. (F–H) Kaplan-
Meier survival plots of High-risk and Low-risk group for Overall Survival in the TCGA Cohort, the ICGC Cohort and the GSE54236 Cohort. (I–K) Time-
dependent ROC curves of SIR-PS for Overall Survival in the TCGA Cohort, the ICGC Cohort and the GSE54236 Cohort.
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3.3 Exploration of the clinical significance
and tumor microenvironment of the
SIR-PS

To investigate the association between the SIR-PS and a range

of clinicopathological characteristics, the correlation analysis was

conducted and revealed significant associations between the risk

groups and various HCC features (Figure 4A). The high-risk group
Frontiers in Immunology 08
exhibited increased levels of AFP, a greater percentage of patients

within Sub1 and female patients, more advanced GRADE, and

higher pathological stage and T stage than did the low-risk group

(Figure 4A). Subsequently, leveraging the CIBERSORT algorithm,

we quantified the infiltration levels of various immune cells across

samples and delineated the comparative immune landscape

between the high-risk and low-risk groups within the TCGA

cohort. The analysis delineated that the high-risk group was
FIGURE 4

Exploration of clinical significance and tumor microenvironment of SIR-PS in the TCGA Cohort. (A) Heatmap and Stacked bar chart of multiple
clinicopathological features between High-risk and Low-risk group of SIR-PS. (B) Heatmap of Immune Checkpoint expression and CIBERSORT result
between High-risk and Low-risk group of SIR-PS. (C) Stacked bar chart of immunotherapy response between High-risk and Low-risk group of SIR-
PS in our HCC Immunotherapy Cohort. (D) Diagnostic ROC plot of SIR-PS predicting response to immunotherapy. **p<0.01, ***p<0.001.
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distinguished by an enhanced infiltration of B cells memory, T cells

regulatory, Dendritic cells resting, Neutrophils, T cells CD4

memory activated and T cells CD8 and a diminished presence of

NK cells activated, Mast cells activated and resting, Macrophages

M1, Dendritic cells activated (Figure 4B). Further analysis of

immune checkpoint gene expression between risk groups within

the TCGA database revealed that the high-risk group displayed

elevated expression levels for the majority of these genes, in contrast

to the low-risk group (Figure 4B). Concurrently, we assessed the

predictive efficacy of SIR-PS concerning the response to

immunotherapy within the HCC Immunotherapy Cohort, with

results indicating a higher response rate among patients in the

high-risk group as per the median risk score (Figure 4C). The t-

ROC curve analysis revealed that the AUC value for predicting

treatment responsiveness based on the risk score was

0.787 (Figure 4D).
3.4 Mutation landscape analysis of SIR-PS

Initially, we scrutinized the 10 genes exhibiting the highest

mutation frequencies within the low-risk and high-risk group.

Oncoplots revealed that within the TCGA database, the genes

exhibiting the highest mutation frequencies in the high-risk and

low-risk groups were TP53, with a 40% mutation frequency, and

CTNNB1, with a 33% mutation frequency, respectively

(Figures 5A, B).
3.5 Spatial transcriptome analysis of SIR-PS

To determine the cell types in which our model is active, we

analyzed spatial transcriptomics data from HCC patients. Our

analysis revealed that the riskscores highest in HCC cells,

indicating that the SIR-PS’s riskscore in patients is predominantly

determined by its riskscore in these cancer cells (Figure 5C).

Concurrently, STC2 and BIRC5 exhibit predominant expression

within HCC cells.
3.6 qPCR and Western blotting in HCC cell
lines

In light of the spatial transcriptome analysis findings, we chose

HCC cell lines, including SNU-449, 97H, Hep3B and Huh7, to

conduct cellular-level validation studies. The SNU-449 and 97H cell

lines exhibited a greater degree of malignancy or transfer ability

than the Hep3B and Huh7 cell lines, which commonly means a

worse prognosis (34, 35). No matter in the qPCR or the western

blotting detection, the expression levels of STC2 and BIRC5 were

higher in the SNU-449 and 97H cell lines than in the Huh7 and

Hep3B cell lines (Figures 5D, E), which were in accordance with

their malignancies. However EPO and GLP1R showed not obvious

trends in the mRNA and protein levels.
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3.7 Validation of the SIR-PS based on iHC
staining of the HCC tissue chips

Owing to the remarkable prognostic potential of the four

signature genes, we conducted IHC staining on tissue chips

sourced from HCC patients and subsequently scored the

expression of these genes. Post-IHC staining revealed that STC2,

BIRC5, EPO, and GLP1R exhibited increased expression in HCC

tissues relative to normal controls (Figures 6A–D). Utilizing the

“surv_cutpoint” function from the “survminer” package, the IHC

scores for each gene were stratified into high-IHC and low-IHC

groups. Kaplan–Meier analysis demonstrated that Patients in the

high-IHC group for STC2, BIRC5, EPO and GLP1R exhibited a

markedly poorer prognosis than did those in the low-IHC group

(Figures 6E-H). Subsequently, we calculated the riskscore of each

patient of HCC tissue chips using SIR-PS based on the IHC score of

four genes. The riskscores of patients were subsequently categorized

into high-risk and low-risk group using “surv_cutpoint” function of

“survminer” package. Based on the calculated risk scores, patient

stratification into high-risk and low-risk groups was determined

using a cutoff value of 0.6115285. Kaplan–Meier analysis indicated

that across the entire HCC tissue chip cohort, the high-risk group

had a significantly worse prognosis than did the low-risk group

(Figure 7A). ROC curve analysis revealed that the AUC value for the

entire HCC tissue chip cohort at the 1 and 3-year was 0.711 and

0.795, respectively (Figure 7B). Furthermore, given that GPC3 and

CK19 are commonly used prognostic markers in clinical liver

cancer diagnostics, we also conducted IHC staining for these

markers on HCC tissue chips and scored them accordingly.

Subsequent to their score, these two prognostic indicators were

evaluated independently to predict patient outcomes. Kaplan-Meier

analysis revealed no significant survival disparity between the high-

IHC and low-IHC groups for CK19 and GPC3 across the entire

HCC tissue chips cohort (Figures 7C, E). Correspondingly, the 1-

year AUC values of their respective t-ROC curves were 0.664 and

0.504, while the 3-year AUC values were 0.571 and 0.585,

respectively (Figures 7D, F).
3.8 Exploration of clinical information
between high-risk and low-risk group of
patients with HCC tissue chips data

A comparative analysis of the clinical characteristics between

different groups was conducted. Summary descriptives table of

general clinical factors of all patients and riskgroup is shown in

Table 2, while the different indicators groups are shown in

Supplementary Table 3. Based on the clinical data and varying

classifications of staining and risk groups, we conducted both

univariate and multivariate Cox regression analysis (Table 3). The

results of univariate Cox regression analysis showed that there were

significant differences in survival between AST, childpugh, tumor

size, vascular invasion, BIRC5, EPO and risk groups. STC2 and

GLP1R cannot be subjected to Cox regression analysis due to the
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fact that the number of deceased patients in one of the high and low

IHC groups is less than 3. Given that risk group are determined by

the expression levels of STC2, BIRC5, GLP1R, and EPO, we

prioritized risk group, and other factors exhibiting significant
Frontiers in Immunology
 10
intergroup survival differences for inclusion in the multivariate Cox

regression analysis. In the multivariate Cox regression analysis, the

risk group remained the sole significant predictor, with a

p-value<0.05.
FIGURE 5

Mutational and spatial transcriptome analysis of SIR-PS risk groups and cell experiment of different cell lines. (A, B) Oncoplot analysis of the high-risk
and low-risk group, respectively. (C) Spatial expression pattern of SIR-PS (including BIRC5, STC2, EPO and GLP1R). (D) qPCR and (E) Western Blotting
result of Hep3B, Huh7, 97H and SNU-449 (compare with Hep3B cell lines). *p<0.05, ***p<0.001, ****p<0.0001.
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3.9 Exploration of the mechanism by which
prognostic models affect immunotherapy

Due to the good predictive effect of risk scores in the liver cancer

immunotherapy queue treated with anti-PD1/PDL1, SIR-PS may

affect the efficacy of immunotherapy by affecting PDL1 expression.

In the TCGA-LIHC cohort, the expression levels and risk scores of

STC2 and BIRC5 were positively correlated with the expression

level of PDL1 (Figures 8A, B, E, F), indicated that both STC2 and

BIRC5 can promote the expression of PDL1 on cancer cells, thereby
Frontiers in Immunology 11
promoting tumor immune escape. However, there is no obvious

correlation between EPO or GLP1R and PDL1 (Figures 8C, D).

Further exploration on the potential mechanism of STC2 and

BIRC5 regulating PDL1 was conducted. Since the potential

mutual influence of gene expression through miRNAs, the

multiMIiR package was used to screen miRNAs in the TarBase

database that have been experimentally validated to bind to STC2,

BIRC5, and PDL1. There are a total of 87 miRNAs targeting PDL1,

with 61 shared miRNAs between PDL1 and STC2, and 48 shared

miRNAs between PDL1 and BIRC5 (Figures 8G, H, Table 4).
FIGURE 6

Immunohistochemistry staining and corresponding Kaplan Meier analysis of STC2, BIRC5, EPO, GLP1R. Tumor and paired Normal tissue IHC staining
of HCC tissue chip by STC2 (A), BIRC5 (B), EPO (C), GLP1R (D). Kaplan-Meier curve between high and low expression of STC2 (E), BIRC5 (F), EPO
(G), GLP1R (H) in HCC tissue chip Cohort, respectively. ****p<0.0001.
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Discussion

Currently, nonsurgical therapeutic interventions are

instrumental in the management of HCC, as the majority of

patients present with advanced disease stages that preclude

surgical intervention (2). As immunotherapy continues to evolve,
Frontiers in Immunology 12
the role of immunotherapies in the management of HCC has

become increasingly pivotal, exerting a profound influence on

patient prognosis. In this study, we constructed a prognostic and

immunotherapy efficacy prediction model SIR-PS based on two

distinct HCCmolecular subtypes. This model consists of four genes:

STC2, BIRC5, EPO, and GLP1R. Using a group of genes to build the
FIGURE 7

Prognostic performance of SIR-PS, GPC3, and CK19. (A, C, E) Kaplan-Meier survival plots of SIR-PS risk group, CK19 and GPC3 expression group for
Overall Survival in the HCC tissue chip Cohort. (B, D, F) Time-dependent ROC curves of SIR-PS, CK19 and GPC3 for Overall Survival in the HCC
tissue chip Cohort.
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prognostic model was successfully used in some solid tumors, such

as breast cancer (36, 37). But to our knowledge, this is the first-time

using SIR-PS to predict the prognosis and give suggestion of

immune therapy in HCC.

Further validation on HCC cell lines revealed distinct RNA or

protein expression levels of STC2 and BIRC5 in different malignant

HCC cell lines, which were correspondence with these cells’

malignances. STC2 has been revealed a marked increased

expression in HCC tissues compared to normal tissues (38).

Additionally, STC2 has also been implicated in promoting tumor

cell invasion and metastasis while concurrently inhibiting apoptosis

in numerous tumor types (39). This heightened expression was

positively correlated with an adverse patient prognosis, et al. which

was consistent with our results. There was also been reported a

significant overexpression of BIRC5 in HCC tissues, contrast to its

near undetectability in tissues affected by cirrhosis (40). The

expression of BIRC5 appears to be correlated with the metastatic

potential of HCC, which is aligns with the findings of this study.

However, same trends didn’t been observed on EPO and GLP1R in

different HCC cells. In this study, we found that EPO and GLP1R could
TABLE 2 Summary descriptives table of all patients and riskgroup in the
tissue chips cohort.

All IHC Riskgroup

Low High p.overall

N:
80

(100%)
33 (41.2%) 47 (58.8%)

Gender: 0.233

Female
16

(20.0%)
4 (12.1%) 12 (25.5%)

Male
64

(80.0%)
29 (87.9%) 35 (74.5%)

Age: 0.79

<=50
39

(48.8%)
15 (45.5%) 24 (51.1%)

>50
41

(51.2%)
18 (54.5%) 23 (48.9%)

ALT: 1

<=41
61

(76.2%)
25 (75.8%) 36 (76.6%)

>41
19

(23.8%)
8 (24.2%) 11 (23.4%)

AST: 0.234

<=40
56

(70.0%)
26 (78.8%) 30 (63.8%)

>40
24

(30.0%)
7 (21.2%) 17 (36.2%)

AFP: 1

<=20
20

(25.3%)
8 (24.2%) 12 (26.1%)

>20
59

(74.7%)
25 (75.8%) 34 (73.9%)

Child-Pugh: 0.139

A
76

(95.0%)
33 (100%) 43 (91.5%)

B
4

(5.00%)
0 (0.00%) 4 (8.51%)

Cirrhosis: 0.707

No
26

(32.5%)
12 (36.4%) 14 (29.8%)

Yes
54

(67.5%)
21 (63.6%) 33 (70.2%)

Tumor
number:

0.933

1
59

(73.8%)
25 (75.8%) 34 (72.3%)

>1
21

(26.2%)
8 (24.2%) 13 (27.7%)

Tumor size: 1

(Continued)
TABLE 2 Continued

All IHC Riskgroup

Low High p.overall

Tumor size: 1

<=5cm
31

(38.8%)
13 (39.4%) 18 (38.3%)

>5cm
49

(61.3%)
20 (60.6%) 29 (61.7%)

Vascular
invasion:

1

No
66

(82.5%)
27 (81.8%) 39 (83.0%)

Yes
14

(17.5%)
6 (18.2%) 8 (17.0%)

Differentiation: 0.389

Moderate or High
54

(67.5%)
20 (60.6%) 34 (72.3%)

Low or
Moderately low

26
(32.5%)

13 (39.4%) 13 (27.7%)

BCLC.stage: 0.981

A
52

(65.0%)
22 (66.7%) 30 (63.8%)

B or C
28

(35.0%)
11 (33.3%) 17 (36.2%)

TNM.stage: 0.475

1 or 2
61

(76.2%)
27 (81.8%) 34 (72.3%)

3 or 4
19

(23.8%)
6 (18.2%) 13 (27.7%)
fr
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promote HCC development and coincident with worse prognosis by

bioinformation data and the validated results on HCC cohorts.

However, the validation in different HCC cell lines didn’t show

obvious relationship with their corresponding malignances. The

protein levels of EPO and GLP1R were even no statistical differences.

Further exploration on the expression of these genes in HCC cell

cohorts was taken out by spatial transcriptome analysis. Differ from

STC2 and BIRC5 which were mainly expressed in liver cancer cells,

EPO and GLP1R did not exhibit specific expression in a certain cell

type, which could potentially be attributed to the fact that EPO and

GLP1R may not predominantly expressed in HCC cell lines.

Analysis of the mutational landscape of genes between low-risk

and high-risk groups of HCC revealed significant differences in

TP53 and CTNNB1. TP53 mutations are correlated with an

unfavorable prognosis in HCC patients, and are predictive of

potential responsiveness to immunotherapy (41). In various cell

lines, TP53 mutations or knockdown lead to increased PDL1

expression (42, 43). Conversely, CTNNB1 mutations, while

indicative of a favorable prognosis, are linked to reduced efficacy

of immunotherapy in HCC patients (44, 45). And patients with

CTNNB1 mutations exhibit lower PDL1 expression (46, 47).

Therefore, TP53 and CTNNB1 may influence the efficacy of

immunotherapy by affecting PDL1 expression. These findings

supported SIR-PS as the predictive model for HCC prognosis and
Frontiers in Immunology 14
immunotherapy efficacy. Meanwhile, validation on external HCC

cohorts and gathering the corresponding clinical characteristics

proofed SIR-PS as an apt prognostic model for HCC patients,

demonstrating robust predictive accuracy in forecasting clinical

outcomes. Patients categorized in the high-risk group by SIR-PS

exhibited significantly adverse prognosis.

Moreover, microenvironment analysis showed this model could

serves as an excellent and dependable tool for the prediction of

treatment responses to immunotherapy. CD8+ T cells were the

primary immune cells that exert anti-tumor effects (48). The

expression of PDL1 on tumor cells often led to the exhaustion or

reduced function of CD8+ T cells (49, 50). The mechanism of anti-

PD-1 therapy is to restore the function of exhausted CD8 T cells and

promote their proliferation (51, 52). In this study, a higher

infiltration level of CD8+ T cell was observed within the high risk

group. High CD8 T cells pave the way for anti-PD-1 therapy to

restore those exhausted T cell function and finally killed the tumor

cells. Meanwhile, we also detected the immune checkpoint gene

expressions between risk groups which revealed that in contrast to

the low-risk group, the high-risk group displayed elevated

expression levels for most of these genes. This should be a direct

clue for anti-PD-1/PDL1 efficiency.

In order to explain the potential mechanisms of prognostic

models on the efficacy of immunotherapy, especially on the
TABLE 3 Cox Univariate and Multivariable regression analysis between cumulative overall survival rate and clinicopathological variables of all patients
in the HCC tissue chip.

Variables

Univariate analysis Multivariable analysis

HR (95% CI) P-value HR (95% CI) P-value

Gender (Male/Female) 1.69 (0.385-7.41) 0.487

Age (>50/<=50) 1.42 (0.55-3.68) 0.467

ALT (>41/<=41) 1.33 (0.473-3.76) 0.586

AST (>40/<=40) 4.4 (1.7-11.4) 0.00229 2.32 (0.777-6.9) 0.132

ALP (>130/<=130) 1.8 (0.589-5.48) 0.303

AFP (>20/<=20) 0.656 (0.245-1.75) 0.401

ChildPugh (B/A) 8.95 (2.36-34) 0.00129 2.81 (0.679-11.6) 0.154

Cirrhosis (Yes/No) 1.08 (0.403-2.87) 0.884

Tumornumber (>1/1) 1.6 (0.596-4.3) 0.351

Tumorsize (>5cm/<=5cm) 3.75 (1.08-13) 0.0371 2.5 (0.663-9.4) 0.176

Vascularinvasion (Yes/No) 3.66 (1.25-10.7) 0.0181 1.95 (0.584-6.52) 0.278

Differentiation (Low or Moderately low/Moderate or High) 1.64 (0.63-4.25) 0.312

BCLCstage (B or C/A) 2.54 (0.994-6.49) 0.0514

TNMstage (3 or 4/1 or 2) 2.39 (0.917-6.24) 0.0747

STC2group (High/Low) 7.45e+08 (0-Inf) 0.997

BIRC5group (High/Low) 7.99 (1.74-36.8) 0.00763

GLP1Rgroup (High/Low) 2.71e+08 (0-Inf) 0.998

EPOgroup (High/Low) 4.41 (1.48-13.1) 0.0076

RiskGroup (High/Low) 22.8 (2.85-182) 0.0032 23.8 (2.74-207) 0.00405
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expression of PDL1, we further explored STC2 and BIRC5 form

endogenous competitive RNAs with PDL1 through multiple

miRNAs, which affect the expression of PDL1. STC2 and PDL1

mRNAs can compete with each other for binding to miR-17-5p,

miR-33a, miR-34a, miR-138-5p, miR-140, miR-152, miR-155, miR-

197, miR-200, and miR-424 (53–68). Additionally, BIRC5 and
Frontiers in Immunology 15
PDL1 mRNAs also compete with each other for binding to miR-

17-5p, miR-34a, miR-140, miR-142-5p, miR-152, miR-200, and

miR-424 (53, 54, 56, 58, 59, 63–66, 69, 70). Consequently, an

increase in the expression level of one mRNA enhances its

competitive binding with miRNAs, which in turn can lead to an

increase in the expression level of another mRNA to a certain
FIGURE 8

Exploration of the mechanism by which prognostic models affect immunotherapy. (A–D) Correlation diagram between PDL1 and STC2, BIRC5, EPO,
GLP1R, respectively. (E) Boxplot between PDL1 and riskgroup. (F) Correlation diagram between PDL1 and riskscore. (G, H) Venn diagram of miRNAs
targeting PDL1 with targeting STC2 and BIRC5, respectively.
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TABLE 4 The miRNAs targeting STC2, BIRC5, and PDL1.

STC2 BIRC5 PDL1

hsa-miR-106a-5p hsa-miR-15a-5p hsa-let-7a-5p

hsa-miR-335-5p hsa-miR-424-5p hsa-let-7f-5p

hsa-miR-15b-5p hsa-miR-218-5p hsa-miR-15a-5p

hsa-miR-20b-5p hsa-miR-550a-3p hsa-miR-424-5p

hsa-miR-424-5p hsa-miR-219a-5p hsa-miR-182-5p

hsa-miR-15a-5p hsa-miR-21-5p hsa-miR-15b-5p

hsa-miR-708-5p hsa-miR-33b-5p hsa-miR-374a-5p

hsa-miR-125b-5p hsa-miR-320d hsa-miR-16-5p

hsa-miR-103a-3p hsa-miR-223-3p hsa-miR-195-5p

hsa-miR-130a-3p hsa-miR-219a-1-3p hsa-miR-17-5p

hsa-miR-16-5p hsa-miR-16-5p hsa-miR-155-5p

hsa-miR-374b-5p hsa-miR-195-5p hsa-miR-302c-3p

hsa-miR-106b-5p hsa-miR-34a-5p hsa-miR-106a-5p

hsa-miR-576-5p hsa-miR-20b-5p hsa-miR-15b-3p

hsa-miR-20a-5p hsa-let-7g-5p hsa-miR-106b-5p

hsa-miR-17-5p hsa-miR-452-5p hsa-let-7b-5p

hsa-miR-124-3p hsa-miR-181b-5p hsa-miR-20a-5p

hsa-miR-302a-3p hsa-miR-129-2-3p hsa-miR-107

hsa-miR-302d-3p hsa-miR-1225-5p hsa-miR-1246

hsa-miR-30e-5p hsa-miR-671-5p hsa-miR-1292-5p

hsa-miR-876-3p hsa-miR-30c-2-3p hsa-miR-24-3p

hsa-miR-887-3p hsa-miR-106a-5p hsa-miR-34a-5p

hsa-miR-545-5p hsa-miR-30a-5p hsa-miR-142-5p

hsa-miR-30a-5p hsa-miR-17-5p hsa-miR-9-3p

hsa-miR-34a-5p hsa-miR-182-5p hsa-miR-130a-3p

hsa-miR-301b-3p hsa-miR-106b-5p hsa-miR-150-3p

hsa-miR-454-3p hsa-miR-194-5p hsa-miR-3928-3p

hsa-miR-155-5p hsa-miR-576-3p hsa-miR-93-5p

hsa-miR-130b-3p hsa-miR-203a-3p hsa-miR-103a-3p

hsa-miR-181b-5p hsa-miR-7-5p hsa-miR-301b-3p

hsa-miR-132-3p hsa-miR-30a-3p hsa-miR-33a-5p

hsa-miR-181a-5p hsa-miR-20a-5p hsa-miR-30c-1-3p

hsa-miR-4491 hsa-miR-130b-3p hsa-miR-23a-3p

hsa-miR-181d-5p hsa-miR-124-3p hsa-miR-320a-3p

hsa-miR-101-3p hsa-miR-135a-5p hsa-miR-20b-5p

hsa-miR-139-5p hsa-miR-130a-3p hsa-miR-320c

hsa-miR-24-3p hsa-miR-148a-3p hsa-miR-18a-5p

hsa-miR-27a-3p hsa-miR-301a-3p hsa-miR-363-3p

(Continued)
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TABLE 4 Continued

STC2 BIRC5 PDL1

hsa-miR-27b-3p hsa-miR-301b-3p hsa-miR-2278

hsa-miR-449b-5p hsa-miR-454-3p hsa-miR-183-5p

hsa-let-7a-5p hsa-miR-10a-5p hsa-miR-25-3p

hsa-let-7c-5p hsa-miR-10b-5p hsa-miR-138-5p

hsa-let-7d-5p hsa-miR-497-5p hsa-miR-185-5p

hsa-let-7e-5p hsa-miR-181a-5p hsa-miR-301a-3p

hsa-let-7f-5p hsa-miR-142-5p hsa-miR-374b-5p

hsa-let-7g-5p hsa-let-7b-5p hsa-miR-30e-3p

hsa-let-7i-5p hsa-miR-140-3p hsa-miR-23c

hsa-miR-196a-5p hsa-miR-148b-3p hsa-miR-877-5p

hsa-miR-425-5p hsa-miR-205-5p hsa-miR-320b

hsa-miR-7-5p hsa-miR-1180-3p hsa-miR-23b-3p

hsa-miR-3140-3p hsa-miR-181d-5p hsa-miR-32-5p

hsa-miR-625-5p hsa-miR-200a-3p hsa-miR-7-5p

hsa-miR-18a-5p hsa-miR-30d-3p hsa-miR-3934-5p

hsa-miR-18b-5p hsa-miR-30e-3p hsa-miR-92a-3p

hsa-miR-671-5p hsa-miR-320b hsa-miR-18b-5p

hsa-miR-4306 hsa-miR-542-3p hsa-miR-590-5p

hsa-miR-3177-3p hsa-miR-93-5p hsa-miR-92b-3p

hsa-miR-1827 hsa-let-7d-5p hsa-miR-320d

hsa-miR-135b-3p hsa-miR-15b-3p hsa-miR-19a-3p

hsa-miR-378a-3p hsa-miR-139-5p hsa-miR-19b-3p

hsa-miR-28-5p hsa-miR-141-3p hsa-miR-5000-3p

hsa-miR-19b-3p hsa-miR-27a-3p hsa-miR-29c-3p

hsa-miR-182-5p hsa-miR-877-5p hsa-miR-30a-5p

hsa-miR-423-5p hsa-miR-25-5p hsa-miR-30d-5p

hsa-miR-147b-3p hsa-let-7c-5p hsa-miR-26a-5p

hsa-miR-193b-5p hsa-miR-671-3p hsa-miR-26b-5p

hsa-miR-191-5p hsa-miR-4677-3p hsa-miR-29b-3p

hsa-miR-92a-3p hsa-miR-1307-5p hsa-miR-194-5p

hsa-miR-15b-3p hsa-miR-196a-5p hsa-miR-29c-5p

hsa-miR-218-5p hsa-miR-423-5p hsa-miR-584-5p

hsa-miR-98-5p hsa-miR-22-3p hsa-miR-4677-3p

hsa-miR-19a-3p hsa-miR-26b-5p hsa-let-7d-5p

hsa-miR-449c-5p hsa-miR-375-3p hsa-let-7c-5p

hsa-miR-30a-3p hsa-miR-149-5p hsa-miR-148b-3p

hsa-miR-576-3p hsa-miR-96-5p hsa-let-7e-5p

hsa-miR-10a-5p hsa-miR-151b hsa-let-7i-5p

(Continued)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1481366
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2025.1481366
TABLE 4 Continued

STC2 BIRC5 PDL1

hsa-miR-152-3p hsa-miR-101-3p hsa-miR-221-3p

hsa-miR-183-5p hsa-let-7i-5p hsa-miR-302a-3p

hsa-miR-135b-5p hsa-miR-484 hsa-miR-196a-5p

hsa-miR-96-5p hsa-miR-152-3p hsa-miR-148a-3p

hsa-miR-877-5p hsa-miR-182-3p hsa-miR-222-3p

hsa-miR-628-5p hsa-miR-450a-5p hsa-miR-335-3p

hsa-let-7b-5p hsa-miR-99b-5p hsa-miR-191-5p

hsa-miR-107 hsa-miR-1234-3p hsa-miR-1271-5p

hsa-miR-195-5p hsa-miR-3184-3p hsa-miR-340-5p

hsa-miR-503-5p hsa-miR-328-3p hsa-miR-34b-5p

hsa-miR-411-3p hsa-miR-320a-3p hsa-miR-1-3p

hsa-miR-193a-3p hsa-miR-203b-5p

hsa-miR-193b-3p hsa-miR-27b-3p

hsa-miR-205-5p hsa-miR-19a-3p

hsa-miR-21-5p hsa-miR-183-5p

hsa-miR-497-5p hsa-miR-103a-3p

hsa-miR-125b-2-3p hsa-miR-15b-5p

hsa-miR-186-5p hsa-miR-107

hsa-miR-320a-3p hsa-miR-148b-5p

hsa-miR-4677-3p hsa-miR-29a-3p

hsa-miR-93-5p hsa-miR-19b-3p

hsa-miR-29c-3p hsa-miR-423-3p

hsa-miR-196b-5p hsa-miR-486-3p

hsa-miR-29a-3p hsa-miR-29c-3p

hsa-miR-641 hsa-miR-30d-5p

hsa-miR-589-3p hsa-miR-132-3p

hsa-miR-429 hsa-miR-103b

hsa-miR-1301-3p hsa-miR-17-3p

hsa-miR-320b hsa-miR-760

hsa-miR-577 hsa-miR-199a-3p

hsa-miR-532-5p hsa-miR-199b-3p

hsa-miR-140-3p hsa-let-7f-5p

hsa-miR-148a-3p hsa-miR-185-5p

hsa-miR-30b-3p hsa-let-7a-5p

hsa-miR-194-5p hsa-miR-210-3p

hsa-miR-3909 hsa-miR-340-5p

hsa-miR-4446-3p hsa-miR-708-5p

hsa-miR-200a-5p hsa-miR-1-3p

(Continued)
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TABLE 4 Continued

STC2 BIRC5 PDL1

hsa-miR-30d-5p hsa-miR-1343-3p

hsa-miR-324-5p hsa-miR-218-1-3p

hsa-miR-489-3p hsa-miR-26a-5p

hsa-miR-203a-3p hsa-miR-147a

hsa-miR-26b-5p hsa-miR-345-5p

hsa-miR-33a-5p hsa-miR-1296-5p

hsa-miR-33b-5p hsa-miR-335-5p

hsa-miR-1266-5p hsa-miR-128-3p

hsa-miR-181c-5p

hsa-miR-23a-3p

hsa-miR-25-3p

hsa-miR-326

hsa-miR-92b-3p

hsa-miR-30d-3p

hsa-miR-197-3p

hsa-miR-3620-3p

hsa-miR-340-3p

hsa-miR-4728-3p

hsa-miR-769-5p

hsa-let-7f-2-3p

hsa-miR-516b-5p

hsa-miR-185-5p

hsa-miR-182-3p

hsa-miR-340-5p

hsa-miR-23b-3p

hsa-miR-4709-5p

hsa-miR-148a-5p

hsa-miR-548e-3p

hsa-miR-454-5p

hsa-miR-4429

hsa-miR-143-3p

hsa-miR-30c-1-3p

hsa-miR-1225-5p

hsa-miR-3652

hsa-miR-1910-5p

hsa-miR-26a-5p

hsa-miR-3184-5p

hsa-miR-197-5p

(Continued)
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extent. The elevated expression of STC2 and BIRC5, can promote

the binding with those competed miRNA of PDL1, which in turn

upregulated the PDL1 expression. Simultaneously, the activation of

the PI3K/AKT pathway is known to promote PD-L1 expression

(71–73). Li and Zhu et al.’s research demonstrates that STC2 can

facilitate the activation of the PI3K/AKT pathway (74, 75).

Additionally, Shang et al.’s research have shown that BIRC5

expression is regulated by the PI3K/AKT pathway (76). Thus,

elevated BIRC5 expression may serve as an indicator of PI3K/

AKT pathway activation.

Further validation of the prognostic predictive ability of SIR-PS

on HCC tissues of our own center were taken out, and the

consistent results were collected. In addition, we creatively

combined SIR-PS with IHC, which is more extensively utilized

and offers greater convenience in clinical application in comparison

to RNA-Seq technology. HCC tissue chips were performed for IHC

staining and the results were scored. Utilizing these scores, we

employed the SIR-PS to calculate individual patient risk scores,

thereby evaluating the clinical utility of it. The SIR-PS exhibited a

high degree of accuracy in prognostically assessing the 1 and 3 year

survival for the HCC tissue chips’ patients, with the low-risk group

exhibiting a markedly more favorable prognosis than the high-risk

group. In comparison to other immunohistochemical indicators,

such as GPC3 and CK19, the SIR-PS demonstrates superior

predictive capabilities. This study has to some extent filled the

gap in clinical pathological work that lacks specific IHC prognostic

indicators for HCC. However, there are still limitation and

deficiency in our study. Firstly, due to the lack of immune

therapy results in tissue chips, we were unable to validate the
Frontiers in Immunology 18
predictive ability of this model for immune therapy efficacy in

tissue chips through IHC. Secondly, although the datasets we

included cover a wide range of ethnicities, they are still not

comprehensive. Finally, as the datasets only include samples from

patients who can undergo surgery, the applicability to samples from

patients who cannot undergo surgery is uncertain, especially in

clinical pathology work, where liver biopsy samples from non-

resectable patients may not be applicable.

Taken together, the present investigation identified a novel

prognostic model (SIR-PS) based on the KEGG pathway and

focused on immune related genes. This model demonstrates

potential as an effective tool for predicting prognosis of HCC and

for assessing the efficacy of immunotherapeutic interventions.

Utilizing the SIR-PS to calculate the risk score of each patient

with HCC has showed a favorable efficacy in the 1 and 3 year

survival rate prognostication. Given the absence of specific

biomarkers for the prognostic evaluation of HCC in clinical,

combination of SIR-PS with IHC promoted the clinical

application of prognostic models and broadening the approach of

prognostic models from databases to clinical practice.
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hsa-miR-378i

hsa-let-7d-3p

hsa-miR-103b

hsa-miR-320d

hsa-miR-455-5p

hsa-miR-30e-3p

hsa-miR-423-3p

hsa-miR-574-5p

hsa-miR-1271-5p

hsa-miR-21-3p

hsa-miR-27a-5p
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hsa-miR-494-3p

hsa-miR-941

hsa-miR-138-5p
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JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. (2011) 27:1739–40.
doi: 10.1093/bioinformatics/btr260

9. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci United States America. (2005)
102:15545–50. doi: 10.1073/pnas.0506580102

10. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with
confidence assessments and item tracking. Bioinformatics. (2010) 26:1572–3.
doi: 10.1093/bioinformatics/btq170

11. Chen D, Huang H, Zang L, Gao W, Zhu H, Yu X. Development and verification
of the hypoxia- and immune-associated prognostic signature for pancreatic ductal
adenocarcinoma. Front Immunol. (2021) 12:728062. doi: 10.3389/fimmu.2021.728062

12. Wang Z, Wang Y, Yang T, Xing H, Wang Y, Gao L, et al. Machine learning
revealed stemness features and a novel stemness-based classification with appealing
implications in discriminating the prognosis, immunotherapy and temozolomide
responses of 906 glioblastoma patients. Briefings Bioinf. (2021) 22:0–0. doi: 10.1093/
bib/bbab032

13. Guo C, Tang Y, Zhang Y, Li G. Mining TCGA data for key biomarkers related to
immune microenvironment in endometrial cancer by immune score and weighted
correlation network analysis. Front Mol Biosciences. (2021) 8:645388. doi: 10.3389/
fmolb.2021.645388

14. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res. (2015) 43:e47–7. doi: 10.1093/nar/gkv007

15. Yu G, Wang LG, Han Y, He Q-Y. clusterProfiler: an R package for comparing
biological themes among gene clusters. Omics A J Integr Biol. (2012) 16:284–7.
doi: 10.1089/omi.2011.0118
16. OMIM® database. Available online at: https://www.omim.org (Accessed 1 May, 2024).

17. ClinVar database. Available online at: https://www.ncbi.nlm.nih.gov/clinvar
(Accessed 1 May, 2024).

18. Gene Reference into Function. Available online at: https://www.ncbi.nlm.nih.
gov/gene/about-generif (Accessed 1 May, 2024).

19. Gu Z. Complex heatmap visualization. iMeta. (2022) 1(3):e43. doi: 10.1002/imt2.43

20. Li B, Li Y, Zhou H, Xu Y, Cao Y, Cheng C, et al. Multiomics identifies metabolic
subtypes based on fatty acid degradation allocating personalized treatment in
hepatocellular carcinoma. Hepatology. (2024) 79(2):289–306. doi: 10.1097/
hep.0000000000000553

21. Mayakonda A, Lin D, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome Res. (2018) 28:1747–56.
doi: 10.1101/gr.239244.118

22. Liu Y, Xun Z, Ma K-K, Liang S, Li X, Zhou S, et al. Identification of a tumor
immune barrier in the HCC microenvironment that determines the efficacy of
immunotherapy. J Hepatology. (2023) 78:770–82. doi: 10.1016/j.jhep.2023.01.011

23. Xu T, Dong M, Li H, Zhang R, Li X. Elevated mRNA expression levels of
DLGAP5 are associated with poor prognosis in breast cancer. Oncol Letters. (2020) 19
(6):4053–65. doi: 10.3892/ol.2020.11533

24. Subirana I, Sanz H, Vila J. Building bivariate tables: the compare Groups package
for R. J Stat Software. (2014) 57:1–16. doi: 10.18637/jss.v057.i12

25. Yang C, Lin Q-x, Xu Y, Qian F-j, Lin C-j, Zhao W-y, et al. An anoikis-related
gene signature predicts prognosis and reveals immune infiltration in hepatocellular
carcinoma. Front Oncol. (2023) 13:1158605. doi: 10.3389/fonc.2023.1158605

26. Chen Y, Xue W, Zhang Y, Gao Y, Wang Y. A novel disulfidptosis-related
immune checkpoint genes signature: forecasting the prognosis of hepatocellular
carcinoma. J Cancer Res Clin Oncol. (2023) 149:12843–54. doi: 10.1007/s00432-023-
05076-4

27. Chen Y, Zhang S-m, Zhao H, Zhang J-y, Lian L-r, Liu D, et al. Identification and
validation of immune and prognosis-related genes in hepatocellular carcinoma: A
review. Med (Baltimore). (2022) 101:e31814. doi: 10.1097/MD.0000000000031814

28. Ding X, Yao T, Liu X, Zheng F, Liu Y. A macropinocytosis-related gene signature
predicts the prognosis and immune microenvironment in hepatocellular carcinoma.
Front Oncol. (2023) 13:1143013. doi: 10.3389/fonc.2023.1143013

29. Ren M, Fan B, Cao G, Zong R, Feng L, Sun H. Exploration and validation of a
combined Hypoxia and m6A/m5C/m1A regulated gene signature for prognosis
prediction of liver cancer. BMC Genomics. (2023) 24:776. doi: 10.1186/s12864-023-
09876-3

30. Su D, Zhang Z, Xia F, Liang Q, Liu Y, Liu W, et al. ICD-related risk model
predicts the prognosis and immunotherapy response of patients with liver cancer. Front
Pharmacol. (2023) 14:1202823. doi: 10.3389/fphar.2023.1202823

31. Yan Q, Zheng W, Wang B, Ye B, Luo H, Yang X, et al. A prognostic model based
on seven immune-related genes predicts the overall survival of patients with
hepatocellular carcinoma. BioData Min. (2021) 14:29. doi: 10.1186/s13040-021-
00261-y

32. Yu X, Zhang H, Li J, Gu L, Cao L, Gong J, et al. Construction of a prognostic
prediction model in liver cancer based on genes involved in integrin cell surface
interactions pathway by multi-omics screening. Front Cell Dev Biol. (2024) 12:1237445.
doi: 10.3389/fcell.2024.1237445
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1481366/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1481366/full#supplementary-material
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/S0140-6736(18)30010-2
https://doi.org/10.1038/s41575-020-00395-0
https://doi.org/10.1038/s41575-020-00395-0
https://doi.org/10.3390/cells9061370
https://doi.org/10.1186/1471-2407-12-56
https://doi.org/10.1186/1471-2407-12-56
https://doi.org/10.1016/j.semcancer.2015.02.007
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.3389/fimmu.2021.728062
https://doi.org/10.1093/bib/bbab032
https://doi.org/10.1093/bib/bbab032
https://doi.org/10.3389/fmolb.2021.645388
https://doi.org/10.3389/fmolb.2021.645388
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1089/omi.2011.0118
https://www.omim.org
https://www.ncbi.nlm.nih.gov/clinvar
https://www.ncbi.nlm.nih.gov/gene/about-generif
https://www.ncbi.nlm.nih.gov/gene/about-generif
https://doi.org/10.1002/imt2.43
https://doi.org/10.1097/hep.0000000000000553
https://doi.org/10.1097/hep.0000000000000553
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1016/j.jhep.2023.01.011
https://doi.org/10.3892/ol.2020.11533
https://doi.org/10.18637/jss.v057.i12
https://doi.org/10.3389/fonc.2023.1158605
https://doi.org/10.1007/s00432-023-05076-4
https://doi.org/10.1007/s00432-023-05076-4
https://doi.org/10.1097/MD.0000000000031814
https://doi.org/10.3389/fonc.2023.1143013
https://doi.org/10.1186/s12864-023-09876-3
https://doi.org/10.1186/s12864-023-09876-3
https://doi.org/10.3389/fphar.2023.1202823
https://doi.org/10.1186/s13040-021-00261-y
https://doi.org/10.1186/s13040-021-00261-y
https://doi.org/10.3389/fcell.2024.1237445
https://doi.org/10.3389/fimmu.2025.1481366
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2025.1481366
33. Zhang G, Xiao Y, Zhang X, Fan W, Zhao Y, Wu Y, et al. Dissecting a hypoxia-
related angiogenic gene signature for predicting prognosis and immune status in
hepatocellular carcinoma. Front Oncol. (2022) 12:978050. doi: 10.3389/
fonc.2022.978050

34. Ding Z, Jin G-N, Wang W, Chen W, Wu Y, Ai X, et al. Reduced expression of
transcriptional intermediary factor 1 gamma promotes metastasis and indicates poor
prognosis of hepatocellular carcinoma. Hepatology. (2014) 60:1620–36. doi: 10.1002/
hep.27273

35. Park SJ, Jeong SY, Kim HJ. Y chromosome loss and other genomic alterations in
hepatocellular carcinoma cell lines analyzed by CGH and CGH array. Cancer Genet
cytogenetics. (2006) 166:56–64. doi: 10.1016/j.cancergencyto.2005.08.022

36. Afghahi A, Mitani A, Desai M, Yu PP, de Bruin M, Seto T, et al. Use of the 21-
gene recurrence score assay (RS) and chemotherapy (CT) across health care (HC)
systems. J Clin Oncol. (2014) 32:6580–0. doi: 10.1200/jco.2014.32.15_suppl.6580

37. Kalinsky K, Barlow WE, Gralow JR, Meric-Bernstam F, Albain KS, Hayes DF,
et al. 21-gene assay to inform chemotherapy benefit in node-positive breast cancer.New
Engl J Med. (2021) 385:2336–47. doi: 10.1056/nejmoa2108873

38. Wang Y, Wu J, Xu J, Lin SS. Clinical significance of high expression of
stanniocalcin-2 in hepatocellular carcinoma. Bioscience Rep. (2019) 39(4):
BSR20182057. doi: 10.1042/bsr20182057

39. Kim P-H, Na S-S, Lee B, Kim J, Cho J-Y. Stanniocalcin 2 enhances mesenchymal
stem cell survival by suppressing oxidative stress. J Biochem Mol Biol. (2015) 48:702–7.
doi: 10.5483/bmbrep.2015.48.12.158

40. Zhu H, Chen XP, Zhang WG, Luo SF, Zhang BX. Expression and significance of
new inhibitor of apoptosis protein surviving in hepatocellular carcinoma. World J
Gastroenterol. (2005) 11:3855–9. doi: 10.3748/wjg.v11.i25.3855

41. Wang L, Yan K, Zhou J, Zhang N, Wang M, Song J, et al. Relationship of liver
cancer with LRP1B or TP53 mutation and tumor mutation burden and survival. J Clin
Oncol. (2019) 37:1573–3. doi: 10.1200/jco.2019.37.15_suppl.1573

42. Thiem A, Hesbacher S, Kneitz H, di Primio T, Heppt MV, Hermanns H, et al.
IFN-gamma-induced PD-L1 expression in melanoma depends on p53 expression. J Exp
Clin Cancer Res. (2019) 38:397. doi: 10.1186/s13046-019-1403-9

43. Yoon KW, Byun S-S, Kwon E, Hwang SY, Chu KK, Hiraki M, et al. Control of
signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science.
(2015) 349:1261669. doi: 10.1126/science.1261669

44. Lu G, Lin J, Song G, Chen M. Prognostic significance of CTNNB1 mutation in
hepatocellular carcinoma: a systematic review and meta-analysis. Aging. (2023)
15:9759–78. doi: 10.18632/aging.205047

45. Wang Z, Sheng Y, Gao X, Wang C-Q, Wang X, Xu L, et al. b-catenin mutation is
correlated with a favorable prognosis in patients with hepatocellular carcinoma. Mol
Clin Oncol. (2015) 3:936–40. doi: 10.3892/mco.2015.569

46. Mou H, Yang Q, Yu L, Wang T, Liu K, Shen R, et al. Programmed cell death‐
ligand 1 expression in hepatocellular carcinoma and its correlation with
clinicopathological characteristics. J Gastroenterology Hepatology. (2021) 36:2601–9.
doi: 10.1111/jgh.15475

47. Lamberti G, Spurr LF, Li Y, Ricciuti B, Recondo G, Umeton R, et al.
Clinicopathological and genomic correlates of programmed cell death ligand 1 (PD-
L1) expression in nonsquamous non-small-cell lung cancer. Ann Oncol. (2020) 31:807–
14. doi: 10.1016/j.annonc.2020.02.017

48. RaskovH, Orhan A, Christensen JP, Gögenür I. Cytotoxic CD8+ T cells in cancer and
cancer immunotherapy. Br J Cancer. (2020) 124:359–67. doi: 10.1038/s41416-020-01048-4

49. Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins NB, Haining WN,
et al. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors
and inhibits CD8 T cell cytotoxicity. J Exp Med. (2017) 214:895–904. doi: 10.1084/
jem.20160801

50. Wang X, Lu L, Hong X, Wu L, Yang C, Wang Y, et al. Cell-intrinsic PD-L1
ablation sustains effector CD8+ T cell responses and promotes antitumor T cell
therapy. Cell Rep. (2024) 43:113712–2. doi: 10.1016/j.celrep.2024.113712

51. Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick H, Bürger MC, et al. Defining
CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature. (2016)
537:417–21. doi: 10.1038/nature19330

52. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison J, Sharpe A, et al. Restoring
function in exhausted CD8 T cells during chronic viral infection. Nature. (2006)
439:682–7. doi: 10.1038/nature04444

53. Audrito V, Serra S, Stingi A, Orso F, Gaudino F, Bologna C, et al. PD-L1 up-
regulation in melanoma increases disease aggressiveness and is mediated through miR-
17-5p. Oncotarget. (2017) 8:15894–911. doi: 10.18632/oncotarget.15213

54. Wang X, Li J, Dong K, Fang L, Long M, Ouyang Y, et al. Tumor suppressor miR-
34a targets PD-L1 and functions as a potential immunotherapeutic target in acute
myeloid leukemia. Cell Signal. (2015) 27:443–52. doi: 10.1016/j.cellsig.2014.12.003

55. Boldrini L, Giordano M, Niccoli C, Melfi F, Lucchi M, Mussi A, et al. Role of
microRNA-33a in regulating the expression of PD-1 in lung adenocarcinoma. Cancer
Cell Int. (2017) 17:105. doi: 10.1186/s12935-017-0474-y
Frontiers in Immunology 20
56. Cortez MA, Ivan C, Valdecanas DR, Wang X, Peltier HJ, Ye Y, et al. PDL1
regulation by p53 via miR-34. J Natl Cancer Inst. (2015) 108:djv303. doi: 10.1093/jnci/
djv303

57. Zhao L, Yu H, Yi S, Peng X, Su P, Xiao Z, et al. The tumor suppressor miR-138-
5p targets PD-L1 in colorectal cancer. Oncotarget. (2016) 7:45370–45384.
doi: 10.18632/oncotarget.v7i29

58. Xie WB, Liang L-H, Wu K-G, Wang L-X, He X, Song C, et al. MiR-140
expression regulates cell proliferation and targets PD-L1 in NSCLC. Cell Physiol
Biochem. (2018) 46:654–63. doi: 10.1159/000488634

59. Wang Y, Wang D, Xie G, Yin Y, Zhao E, Tao K, et al. MicroRNA-152 regulates
immune response via targeting B7-H1 in gastric carcinoma. Oncotarget. (2017)
8:28125–34. doi: 10.18632/oncotarget.15924

60. Yee D, Shah KM, Coles MC, Sharp TV, Lagos D. MicroRNA-155 induction via
TNF-alpha and IFN-gamma suppresses expression of programmed death ligand-1
(PD-L1) in human primary cells. J Biol Chem. (2017) 292:20683–20693. doi: 10.1074/
jbc.M117.809053

61. Fujita Y, Yagishita S, Hagiwara K, Yoshioka Y, Kosaka N, Takeshita F, et al. The
clinical relevance of the miR-197/CKS1B/STAT3-mediated PD-L1 network in
chemoresistant non-small-cell lung cancer. Mol Ther. (2015) 23:717–27.
doi: 10.1038/mt.2015.10

62. Ahn H, Yang JM, Kim H, Chung JH, Ahn S-H, JeongWJ, et al. Clinicopathologic
implications of the miR-197/PD-L1 axis in oral squamous cell carcinoma. Oncotarget.
(2017) 8:66178–94. doi: 10.18632/oncotarget.19842

63. Chen L, Gibbons D, Goswami S, Cortez MA, Ahn YH, Byers LA, et al. Metastasis
is regulated via microRNA-200/ZEB1 axis control of tumor cell PD-L1 expression and
intratumoral immunosuppression. Nat Commun. (2014) 5:5241. doi: 10.1038/
ncomms6241

64. Xu S, Tao Z, Hai B, Huagen L, Shi Y, Wang T, et al. miR-424(322) reverses
chemoresistance via T-cell immune response activation by blocking the PD-L1 immune
checkpoint. Nat Commun. (2016) 7:11406. doi: 10.1038/ncomms11406

65. Hamilton MP, Rajapakshe KI, Bader DA, Černe J-Ž, Smith E-A, Coarfa C, et al.
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