
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Pengpeng Zhang,
Nanjing Medical University, China

REVIEWED BY

Sangsu Bang,
Duke University, United States
Deron R. Herr,
Sanford Burnham Prebys Medical Discovery
Institute, United States

*CORRESPONDENCE

Yiyuan Zheng

iceroser@126.com

Yong Li

liyong@shutcm.edu.cn

†These authors have contributed equally to
this work

RECEIVED 18 August 2024
ACCEPTED 02 January 2025

PUBLISHED 21 January 2025

CITATION

Wang J, Ding N, Chen C, Gu S, Liu J, Wang Y,
Lin L, Zheng Y and Li Y (2025) Adropin: a
key player in immune cell homeostasis and
regulation of inflammation in several diseases.
Front. Immunol. 16:1482308.
doi: 10.3389/fimmu.2025.1482308

COPYRIGHT

© 2025 Wang, Ding, Chen, Gu, Liu, Wang, Lin,
Zheng and Li. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 21 January 2025

DOI 10.3389/fimmu.2025.1482308
Adropin: a key player in
immune cell homeostasis
and regulation of inflammation
in several diseases
Junmin Wang †, Ning Ding †, Chong Chen †, Simin Gu, Jing Liu,
Yanping Wang, Liubing Lin, Yiyuan Zheng* and Yong Li*

Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional
Chinese Medicine, Shanghai, China
Adropin is a secreted peptide encoded by the energy homeostasis-associated

gene (ENHO), located chromosome 9p13.3, with a conserved amino acid

sequence across humans and mice. Its expression is regulated by various

factors, including fat, LXRa, ERa, ROR, and STAT3. Adropin plays a critical role

in glucose and lipid metabolism, as well as insulin resistance, by modulating

multiple signaling pathways that contribute to the reduction of obesity and the

improvement of blood lipid and glucose homeostasis. Additionally, it influences

immune cells and inflammation, exerting anti-inflammatory effects across

various diseases. While extensive research has summarized the regulation of

cellular energy metabolism by adropin, limited studies have explored its role in

immune regulation and inflammation. To enhance the understanding of

adropin’s immune-modulating and anti-inflammatory mechanisms, this review

synthesizes recent findings on its effects in conditions such as atherosclerosis,

diabetes, fatty liver, non-alcoholic hepatitis, and inflammation. Furthermore, the

review discusses the current research limitations and outlines potential future

directions for adropin-related investigations. It is hoped that ongoing research

into adropin will contribute significantly to the advancement of medical

treatments for various diseases.
KEYWORDS
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1 Introduction

Adropin is a secreted peptide encoded by the energy homeostasis-associated gene

(ENHO), with expression detected in various tissues, including serum, plasma, liver,

kidney, heart, pancreas, small intestine, endothelial cells, and the brain (1–3). This peptide

plays a pivotal role in reducing obesity and improving blood lipid and glucose homeostasis

by regulating glucose and lipid metabolism, as well as insulin resistance (IR) (4–6). Its

mechanism of action involves influencing the insulin metabolic pathway, including
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activation of the glucose transporter protein (GLUT) receptor and

the phosphorylation of protein kinase B (AKT) (7). Additionally,

adropin modulates lipid metabolism by regulating the expression of

liver disease-related genes and peroxisome proliferator-activated

receptor gamma (PPARg), a key regulator of lipogenesis. Activation
of PPARg can reduce macrophage infiltration and inflammation in

adipose tissue (2, 8). As a membrane-bound protein, adropin also

regulates intercellular communication through molecular signaling.

It activates the PI3K-AKT and ERK1/2 pathways via vascular

endothelial growth factor 2 (VEGFR 2), upregulating endothelial

nitric oxide synthase (eNOS), enhancing nitric oxide (NO)

production, improving endothelial cell function, and decreasing

endothelial permeability, which subsequently reduces TNF-a-
related apoptosis (9). NO plays an essential immunomodulatory

role by inhibiting the adhesion of monocytes and leukocytes to

endothelial cells.

Although adropin’s role in regulating carbohydrate and lipid

metabolism has been well-established, recent studies highlight its

anti-inflammatory effects across multiple tissues (4, 10–12).

Adropin influences macrophage polarization by modulating their

cellular energy metabolism and protects Treg cells from reactive

oxygen species (ROS)-induced apoptosis through its antioxidant

properties (8). A deficiency in adropin can disrupt immune cell

function and inflammatory pathways, impairing the immune

system’s regulatory capacity and promoting inflammation (13).

Therefore, adropin preserves immune system homeostasis and

exerts anti-inflammatory effects in a variety of conditions,

including atherosclerosis (9), diabetes (14–16), non-alcoholic fatty
Abbreviations: AKT, protein kinase B; a-SMA, alpha-smooth muscle actin; AP-

ALI, acute pancreatitis-associated lung injury; AMPK, AMP-activated protein

kinase; BDNF, brain-derived neurotrophic factor; cAMP, cyclic adenosine

monophosphate; CREB, cyclic AMP response element-binding protein; eNOS,

endothelial nitric oxide synthase; ENHO, energy homeostasis-associated gene;

ERa, estrogen receptor alpha; GLUT, glucose transporter protein; GPR19, G-

protein coupled receptor 19; ERK, extracellular signal-regulated kinase; HUVEC,

human umbilical vein endothelial cells; HFD, high-fat diet; IP3, inositol

trisphosphate; JAK, Janus kinase; LPL, lipoprotein lipase; LXRa, liver X

receptor alpha; MPO-ANCA, myeloperoxidase antineutrophil cytoplasmic

autoantibodies; MCD, methionine choline deficiency; MEK, mitogen-activated

extracellular signal-regulated kinase; EndoMT, endothelial-mesenchymal

transition; MLC2, myosin light chain kinase; MCP-1, monocyte

chemoattractant protein-1; NASH, non-alcoholic hepatitis; NAFLD, non-

alcoholic fatty liver disease; NB3, contactin 6; Nrf2, nuclear factor erythroid 2-

related factor 2; PLC, phospholipase C; PI3K, phosphatidylinositol-3 kinase;

PDH, pyruvate dehydrogenase; PDK4, pyruvate dehydrogenase kinase 4; PTEN,

phosphatase and tensin homolog; PIP3, phosphatidylinositol 3,4,5-trisphosphate;

PKA, protein kinase A; PKC, protein kinase C; PGC-1a, peroxisome proliferator-

activated receptor-gamma coactivator-1alpha; PPARg, peroxisome proliferator-

activated receptor gamma; ROS, reactive oxygen species; ROR, regulator Of

reprogramming; Rock, Rho-associated coiled-coil containing protein kinase;

RhoA, ras homolog gene family member A; SIRT1, sirtuin 1; STAT3, signal

transducer and activator of transcription 3; TNF-a, tumor necrosis factor alpha;

TGF-b, transforming growth factor beta; VEGFR 2, vascular endothelial growth

factor 2; VSMC, vascular smooth muscle cell.
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liver disease (NAFLD) (6, 17), non-alcoholic steatohepatitis

(NASH) (10), and inflammatory bowel disease (18). As a

promising target for treating immune and inflammation-related

diseases, adropin holds significant therapeutic potential. This

review summarizes recent advancements in the understanding of

adropin’s role in inflammation and immune regulation in related

diseases, offering insights to guide future research in this field.
2 Structure and function of adropin

Adropin is a newly discovered 76-amino acid polypeptide

identified by Kumar et al. (2). The first 1-33 amino acids

constitute a secreted signal peptide (2), while the biologically

active region spans amino acids 34-76 (7). The N-terminal

(amino acids 1-9) is cytoplasmic, the middle region (amino acids

9-30) spans the membrane, and the C-terminal (amino acids 30-76)

is extracellular (19, 20). Adropin has a molecular weight of 4.499

kDa, and its encoding gene, ENHO, is linked to energy homeostasis

and lipid metabolism, which is why it was named ENHO (2). The

ENHO gene is located on chromosome 9p13.3 and consists of two

exons and one intron (2). Notably, the amino acid sequence of

adropin is 100% conserved across human, mouse, and rat

species (21).

Extensive research has explored the functional role of adropin,

particularly in mechanisms related to increased obesity, IR, and

glucose and lipid metabolism (5, 22, 23). Studies indicate that

adropin promotes glucose metabolism by enhancing glucose

utilization in mice, a process involving the regulation of the

insulin pathway (7). Furthermore, adropin is involved in lipid

metabolism, including the reduction of serum total cholesterol

(TC), triglycerides (TG), and low-density lipoprotein cholesterol

(LDLC) levels (4). As a membrane-bound protein, adropin also

regulates intercellular molecular communication and participates in

disease development. Additionally, adropin has been found to

influence immunity and inflammation, exert ing anti-

inflammatory effects across various tissues.
3 Regulation of adropin expression

Adropin is secreted and bound to cell membranes, where its

expression is regulated by factors such as fat, liver X receptor alpha

(LXRa), estrogen receptor alpha (ERa), and regulator of

reprogramming (ROR). Kumar et al. discovered that adropin

expression was significantly elevated in C57BL/6J mice on a high-

fat diet (HFD) compared to controls. Conversely, fasting reduced

adropin expression in these mice (2). Additionally, mice fed a high-

fat, low-carbohydrate diet exhibited elevated adropin levels, while

those on a low-fat and high-carbohydrate diet showed reduced

adropin levels (24). These observations suggest that adropin

expression is closely tied to dietary fat intake. LXR, a nuclear

receptor, serves as both and a blood lipid and blood glucose sensor

(25). Treatment with the LXRa agonist (GW3965) in diet-induced

obese mice led to a reduction in Enho mRNA expression in the liver,

indicating that liver ENHO activity is regulated by LXRa (2, 26).
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Another study highlighted that estrogen regulates liver adropin, with

ovariectomized (OVX) mice treated with estrogen showing increased

hepatic Enho expression, driven by estrogen-dependent binding of

ERa to Enho (27). Furthermore, research has shown that Enho

expression follows a rhythmic pattern in the liver of male mice,

peaking during the dark phase when food consumption is at its

highest. This expression is associated with the transcriptional

activation of the circadian clock genes, RORa/g (28).
4 Signaling pathways regulated
by adropin

Adropin, a membrane-bound protein, plays a significant role in

regulating intercellular communication (Figure 1). In the context of

glycolipid metabolism, studies have demonstrated that adropin

downregulates peroxisome proliferator-activated receptor gamma

coactivator-1 (PGC-1a) expression by inhibiting sirtuin 1, leading

to the suppression of carnitine-palmitoyl transferase 1b (CPT 1b) and

pyruvate dehydrogenase kinase 4 (PDK4). This cascade effectively

gatekeeps fatty acid oxidation and glucose oxidation (29–31).

In cardiomyocytes, adropin activates G-protein coupled receptor 19
Frontiers in Immunology 03
(GPR19), triggering MAPK-mediated phosphorylation, which in

turn downregulates the phosphorylation of PDK4 and pyruvate

dehydrogenase (PDH) (32). Gao et al. showed that adropin reduces

phosphatase and tensin homolog (PTEN) expression through the

Notch signaling pathway in muscle tissue, potentially elevating the

basal level of PIP3 (phosphatidylinositol 3,4,5-trisphosphate) and

enhancing insulin-induced Akt phosphorylation (7). On the other

hand, Chen et al. observed that adropin treatment in HFD mice

activates the AMPK pathway by inhibiting PP2A, thereby reducing

hepatic glucose production in the context of IR (22). Furthermore,

adropin stimulates lipoprotein lipase (LPL) gene expression in tilapia

liver cells through the activation of cAMP/PKA and PLC/IP3/PKC

cascades (33). In NASHmice, adropin was found to activate the Nrf2

signaling pathway, reducing ROS production in hepatocyte

mitochondria and thereby protecting against liver damage (10).

In addition to its role in metabolism, adropin also influences

vascular function. Research indicates that adropin reduces

endothelial cell permeability by inhibiting the ROCK-MLC2

signaling pathway (34). Sato et al. found that adropin inhibits the

proliferation of vascular smooth muscle cells (VSMCs) by

downregulating the c-Src/ERK1/2 pathway, while simultaneously

upregulating the PI3K-AKT pathway to enhance the expression of
FIGURE 1

Adropin regulates multiple signaling pathways. Adropin can upregulate the expression of eNOS through the VEGFR2/PI3K/AKT or VEGFR2/c-Src/
ERK1/2 pathway, increase the release of NO, and improve endothelial cell function. Adropin can also reduce endothelial cell permeability by
inhibiting the ROCK/MLC2 signaling pathway. Adropin can inhibit endothelial calcification by suppressing the JAK/STAT3 signaling pathway. Adropin
may alleviate atherosclerosis by inhibiting EndoMT through the TGF-b/Smad2/3 signaling pathway. Adropin downregulates PTEN through the Notch
signaling pathway and may increase the basal level of PI3K to increase insulin-induced AKT phosphorylation. Adropin can regulate the function of
brain cells by modulating the NB3/Notch1 and AKT/CREB/BDNF pathways. Adropin can improve liver function by activating the Nrf2 pathway to
reduce oxidative stress. Adropin also improves fat metabolism by regulating LPL via the cAMP/PKA and PLC/IP3/PKC pathways. In addition, Adropin
reduces the expression of PGC-1a by inhibiting SIRT1, thereby downregulating Cpt1b and Pdk4 to regulate glucose oxidation. AKT, protein kinase B;
a-SMA, alpha-smooth muscle actin; AMPK, AMP-activated protein kinase; BDNF, brain-derived neurotrophic factor; cAMP, cyclic adenosine
monophosphate; CREB, cyclic AMP response element-binding protein; eNOS, endothelial nitric oxide synthase; ERK, extracellular signal-regulated
kinase; EndoMT, endothelial-mesenchymal transition; GPR19, G-protein coupled receptor 19; IP3, inositol trisphosphate;JAK, Janus kinase; LPL,
lipoprotein lipase; MLC2, myosin light chain kinase; NB3, contactin 6;Nrf2,nuclear factor erythroid 2-related factor 2; PI3K, phosphatidylinositol-3
kinase; PDH, pyruvate dehydrogenase; PDK4, pyruvate dehydrogenase kinase 4; PKC, protein kinase C; PLC, phospholipase C; PTEN, phosphatase
and tensin homolog; PKA, protein kinase A; PGC-1a,peroxisome proliferator-activated receptor-gamma coactivator-1alpha; RhoA, ras homolog
gene family member A; SIRT1, sirtuin 1; STAT3,signal transducer and activator of transcription 3; TGF-b, transforming growth factor beta.
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fibronectin and elastin, thus stabilizing atherosclerotic plaques and

promoting vascular elasticity (8). Furthermore, adropin inhibits the

osteogenic differentiation of vascular smooth muscle cells VSMCs

and reduces vascular calcification by activating the JAK2/STAT3

signaling pathway (35). In ApoE–/–/Enho–/– mice, adropin

administration mitigated atherosclerosis, likely through the

suppression of endothelial-to-mesenchymal transition (EndMT)

via TGF-b/Smad2/3 signaling cascade (36). Adropin’s effects

extend to the central nervous system, where it functions as a

membrane-bound protein that influences body activity and

movement coordination via the NB3/Notch pathway. It plays a

critical role in cerebellar development in mice (20). Additionally,

adropin enhances spatial memory in rats by modulating the AKT/

CREB/BDNF signaling pathway (37). In diabetic rats, adropin

treatment reduces lung damage by inhibiting the RhoA/ROCK

pathway, thereby alleviating apoptosis, inflammation, oxidative

stress, and lung tissue fibrosis (38). These observations collectively

highlight adropin’s broad spectrum of molecular activities and its

essential role in both physiological and pathological processes

throughout the body.
5 Adropin regulates immunity
and inflammation

5.1 Adropin regulates immune cells

Macrophages, key components of the innate immune system, play

an essential role inmaintaining tissue homeostasis. Upon encountering

various stimuli, macrophages become activated and polarized into

distinct phenotypes with specific functions (39). M1 macrophages

promote and sustain inflammation by secreting pro-inflammatory

cytokines, while M2 macrophages have anti-inflammatory properties

and aid in tissue repair (40, 41). The metabolism of these cells,

particularly lipid metabolism, has a profound influence on their

function (42). Studies have shown that the visceral adipose tissue is

associated with macrophages in an inflammatory state, where pro-

inflammatory macrophages infiltrate adipose tissue, contributing to

inflammation and IR (43–45). Macrophages are key drivers of

increased expression of inflammatory cytokines in adipose tissue

(42), and the number of macrophages in this tissue positively

correlates with fat content. The removal of adipose tissue can reduce

whole-body inflammation (46, 47). The nuclear receptor PPARg is

more closely associated with lipogenesis and lipid storage, in contrast

to PPAR-a and PPAR-b/d, which primarily regulate fatty acid

oxidation (48, 49). Recent research has shown that adropin can

promote the repolarization of macrophages from the M1 phenotype

to theM2 phenotype, improving the lipid metabolism in macrophages.

This process is mediated by the activation of PPARg (8). In endothelial
cells, adropin reduces the inflammatory response of monocyte-derived

macrophages by upregulating PPAR-g expression (50). Dodd et al.

further demonstrated that adropin reduces endothelial cell monolayer

permeability and diminishes MCP-1-induced macrophage migration

following exposure to cell-free hemoglobin (51). Additionally, adropin

inhibits the differentiation of 3T3-L1 preadipocytes into mature
Frontiers in Immunology 04
adipocytes through the ERK1/2 and AKT pathways, reducing fat

accumulation and macrophage infiltration, ultimately mitigating

inflammation (Figure 2) (50). These findings suggest that adropin

modulates macrophage polarization and function by influencing

cellular energy metabolism pathways, particularly lipid metabolism.

Treg cells play a pivotal role in regulating the inflammatory

state of adipose tissue. In obesity, macrophage infiltration into

adipose tissue triggers chronic inflammation. Adipocytes release

cytokines such as TNF-a and MCP-1, which recruit both

macrophages and Tregs, exacerbating adipose inflammation

(52). Tregs are crucial for modulating immune-mediated

inflammation. Studies have demonstrated a significant reduction

in Treg numbers in adipose tissue, with immune dysregulation

contributing to adipose inflammation in obese mice. Thus, Tregs

are vital in maintaining metabolic homeostasis (53, 54). Gao et al.

reported that adropin gene knockout in C57BL/6J mice resulted in

reduced phosphorylation of eNOS (Ser1177) and Akt1 (Ser473)

and a loss of Treg cells (12). Similarly, Chen et al. found that

adropin deficiency aggravated Treg cell depletion and contributed

to the development of fatty pancreas (FP) and type 2 diabetes

mellitus (T2DM) in mice fed HFD (55). Additionally, studies

indicate that elevated oxidative stress in the fatty liver induces

Treg cell apoptosis, diminishing the liver’s Treg population and

impairing the suppression of inflammatory responses (17, 56).

Chen et al. demonstrated that adropin activates Nrf2 signaling in

NASH, reducing ROS production in liver mitochondria. This

mechanism likely protects mitochondrial function, mitigates

oxidative stress and apoptosis, and thereby prevents liver

damage and the progression of NASH (10). These observations

suggest that adropin can mitigate ROS-induced Treg cell

apoptosis by counteracting oxidative stress.

However, further research is needed to explore the regulatory

effects of adropin on other immune cell types through distinct

signaling pathways.
5.2 Adropin regulates inflammation

In addition to modulating inflammation through immune

regulation, adropin also influences the expression of

inflammatory factors, although the precise molecular mechanisms

remain unclear. Chen et al. observed that in the NASH mouse

model, adropin nuclear gene knockout led to increased expression

of inflammatory markers, including F4/80, CD45, MCP-1, TNF-a,
and IL-6, compared to wild-type mice (10). Furthermore, adropin

treatment promoted endothelial cell proliferation, migration,

capillary-like tube formation, reduced permeability, and mitigated

TNFa-induced apoptosis (9). In addition, adropin treatment

reduced the expression of pro-inflammatory cytokines IL-1b, IL-
6, and TNF-a in methionine-choline-deficiency (MCD) diet-

induced NASH mice (10). Other studies have demonstrated that

adropin significantly decreased the mRNA expression of TNF-a,
IL-6, and inducible NOS in the pancreatic tissue of diabetic rats

(15). Collectively, these findings suggest that adropin possesses anti-

inflammatory potential.
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6 Adropin regulates inflammation and
immune-related diseases

Adropin plays a significant role in the development of various

metabolic diseases by regulating glucose oxidation, lipid

metabolism, and IR. (6, 57). However, studies also indicate that

adropin-mediated immune and inflammatory regulation is

involved in the pathogenesis of several metabolic and non-

metabolic diseases, such as atherosclerosis (36), diabetes (58),

NAFLD (59), gastric ulcers (60), and inflammatory bowel disease

(18) (Table 1, Figure 3).
6.1 Atherosclerosis

In the cardiovascular system, atherosclerosis is a chronic

inflammatory condition of the arteries. Research has shown that

adropin can upregulate eNOS expression through the VEGFR2-

PI3K-AKT or VEGFR2-ERK1/2 pathways, facilitating NO release,

which improves endothelial cell function and promotes

neovascularization (9). NO exerts an immunomodulatory effect

by inhibiting the adhesion of monocytes and leukocytes to

endothelial cells (61, 62). Moreover, adropin inhibits TNFa-
induced THP-1 monocyte adhesion to human umbilical vein

endothelial cells (HUVECs) and suppresses the inflammatory

response in endothelial cells and monocytes/macrophages by

preventing their interaction (9). Notably, in animal models of

atherosclerosis, adropin was found to promote macrophage
Frontiers in Immunology 05
polarization from M1 to M2 by upregulating PPAR-g, thus

reducing monocyte/macrophage infiltration (8).
6.2 Acute pancreatitis-associated
lung injury

AP-ALI is a severe complication associated with acute

pancreatitis. Serum adropin levels are markedly reduced in the

patients with AP-ALI. Studies using animal models of AP-ALI have

shown that adropin gene knockout (Adro-KO) results in increased

macrophage infiltration, fibrosis, and apoptosis in lung tissue. More

importantly, adropin modulates the phosphorylation of PPARg in
lung macrophages, thereby promoting M2 polarization and

attenuating the severity of AP-ALI (63).
6.3 Inflammatory bowel disease

Decreased serum adropin levels have been observed in 55

patients with inflammatory bowel disease compared to healthy

controls (18). Adropin deficiency exacerbates the pathological

phenotype in TNBS-induced colitis. primarily by disrupting the

balance of macrophage phenotypic distribution within the colon

and mesenteric tissues. This disruption results in an increased

presence of M1 macrophages, contributing to the progression of

colitis. Intervention with adropin in macrophages, coupled with

RNA-seq and metabolomic analysis, revealed that adropin regulates
FIGURE 2

Adropin regulates adipocytes and thereby reduces inflammation and immune response. Adropin promotes the expression of PPAR-g by activating
the ERK1/2 and AKT pathways, stimulating the proliferation of 3T3-L1 preadipocytes and inhibiting their differentiation into mature adipocytes.
Excessive accumulation of mature adipocytes will secrete large amounts of TNF-a, MCP-1 and other cytokines, recruit macrophages, Tregs cells,
cause immune cell infiltration and ultimately cause fat inflammation. AKT, protein kinase B; ERK1/2, extracellular regulated kinase 1/2; MCP-1,
monocyte chemoattractant protein-1; PPAR-g, peroxisome proliferator-activated receptor gamma; TNF-a, tumor necrosis factor alpha.
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FIGURE 3

Adropin exerts anti-inflammatory effects in a variety of tissues. Adropin affects macrophage polarization by regulating cellular energy metabolism
and inhibits ROS-induced apoptosis of Tregs cells by resisting oxidative stress. Therefore, it can maintain the negative regulation of the immune
system and exert anti-inflammatory effects in atherosclerosis, fatty inflammation, non-alcoholic hepatitis, lung injury, inflammatory bowel disease,
chronic renal failure, etc. IL-10, interleukin-10; IL-12, interleukin-12; NASH, non-alcoholic hepatitis; TGF-b, transforming growth factor beta; TNF-a,
tumor necrosis factor alpha.
TABLE 1 The specific molecular mechanisms of Adropin regulating different diseases.

Disease Mechanism Impact Ref

Atherosclerosis Adropin→VEGFR2/PI3K/AKT, VEGFR2/ERK1/2↑→ eNOS↑→ NO↑→Improve endothelial function
and promote angiogenesis;
Adropin→TNF-a↓→Mononuclear/macrophage inflammatory response↓;
Adropin→PPAR-g↑→Macrophage M1 polarizes toward M2↑→Inflammation↓;

Alleviate (9, 61, 62)

AP-ALI Adropin→PPAR-g↑→Macrophage infiltration↑→Inflammation↓; Alleviate (63)

Inflammatory
bowel disease

Adropin→PPAR-g↑→Macrophage infiltration↑→Inflammation↓; Alleviate (64)

MPO-ANCA-related
lung injury

Adropin↓→eNOS, AKT1, Tregs↓→Inflammation↑; Aggravate (12)

Colon cancer Adropin(low dose)→glucose utilization↑→Anti-tumor↑;
Adropin(high dose)→CPT1a↑→Anti-tumor↓;

Alleviate/
Aggravate

(65, 65)

NASH/NAFLD Adropin→IL-1b, IL-6, TNF-a↓→Inflammation↓;
Adropin→Nrf2↑→Gclc, Gclm, Gpx1, GSH↑ → ROS↓ → Inflammation↓;

Alleviate (10, 10, 66)

Complications of diabetes Adropin→RhoA/Rock, IL-6, TNF-a, ROS↓→Inflammation↓;
Adropin→SEBP-1, ADRP↓→Lipid deposition↓

Alleviate (38, 67)

Chronic renal failure Adropin→G-CSF, IFN-g, IL-4, IL-5, IL-10, IL-12, IL-17A, and GRO-a, TIMP-1, MMP-2/3↓
→Inflammation and fibrosis↓;

Alleviate (68, 69)

Obstructive sleep apnea patient serum Adropin↓→sVAP-1, IL-6, TNF-a and CRP↑; Alleviate (70)

PCOS patient serum Adropin↓→TNF-a↑; Alleviate (71)

Multiple sclerosis patient serum Adropin↓→unclear Alleviate (72, 73)
F
rontiers in Immunology
 06
NASH, non-alcoholic hepatitis; NAFLD, non-alcoholic fatty liver disease; ROS, reactive oxygen species; PPARg, peroxisome proliferator-activated receptor gamma; VEGFR 2, vascular
endothelial growth factor 2; TNF-a, tumour necrosis factor alpha; PI3K, phosphatidylinositol-3 kinase; Nrf2, nuclear factor erythroid 2-related factor 2; eNOS, endothelial nitric oxide synthase;
MCP-1, monocyte chemoattractant protein-1; CPT1a, carnitine Palmitoyltransferase 1; CRP, C-reactive protein; CREB, cyclic AMP response element-binding protein; Rock, Rho-associated
coiled-coil containing protein kinase; RhoA, ras homolog gene family member A; AP-ALI, acute pancreatitis-associated lung injury; MPO-ANCA, myeloperoxidase antineutrophil cytoplasmic
autoantibodies.→, promote; ↑, upregulate; ↓, downregulate.
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the macrophage lipid metabolism via PPARg, thereby promoting

the repolarization of macrophages from M1 to M2 (64).
6.4 MPO-ANCA-related lung injury

Myeloperoxidase (MPO)-antineutrophil cytoplasmic

autoantibodies (ANCA)-associated vasculitis often leads to life-

threatening alveolar hemorrhage or fibrosis. In patients with

MPO-ANCA-related lung injury, serum adropin levels were

significantly lower than those in healthy controls. Investigation of

the underlying mechanisms in animal models demonstrated that

adropin knockout mice exhibited reduced phosphorylation of

eNOS and AKT1, alongside a loss of Treg cells (12).
6.5 Colon cancer

Adropin also plays a role in cancer development. A recent study

demonstrated that transfection of the ENHO gene into colon cancer

(MC38) cells suppressed tumor growth in vivo while promoting an

increase in M1 macrophages. Treatment with low- -dose adropin in

isolated macrophages enhanced mitochondrial ROS-mediated

inflammasome activation (65). Notably, while low doses of

adropin stimulated macrophage antitumor activity, high doses

had the opposite effect. This differential response may be

attributed to low-dose adropin promoting glucose utilization,

while high-dose adropin upregulates CPT1a expression in

macrophages. Thus, varying concentrations of adropin within

macrophages in cancer cells or tumor tissues may modulate CRC

progression through distinct mechanisms (65).
6.6 NASH/NAFLD

Adropin treatment has been shown to mitigate liver cell damage

in NASH and NAFLD by reducing inflammation and oxidative stress

(10). For instance, Chen et al. reported that, in addition to decreasing

liver lipid content, adropin treatment reduced the expression of pro-

inflammatory cytokines, including IL-1b, IL-6, and TNF-a, in MCD

diet-induced NASH mice (10), indicating its anti-inflammatory

effects in NASH. Furthermore, adropin knockout (AdrKO)

exacerbated hepatic steatosis, inflammation, and fibrosis, while

adropin treatment alleviated these conditions by promoting the

expression of Gclc, Gclm, and Gpx1, as well as increasing

glutathione (GSH) levels in an Nrf2-dependent manner, thereby

preventing NASH progression in mice (10). This suggests that

adropin also contributes to the reduction of ROS production in

liver mitochondria. Excessive ROS production has been shown to

drive inflammation (74), and the activation of the NLRP3

inflammasome through ROS plays a key role in the progression of

NASH (75, 76). Yang et al. demonstrated that exercise significantly

reduced the expression of NLRP3 inflammasome components in
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NASH mice, decreased caspase-1 activity, normalized IL-1b
production, and inhibited ROS overproduction, a process linked to

adropin induction (66). Additionally, elevated oxidative stress levels

in fatty liver can induce Treg cell apoptosis and reduce the number of

Tregs in the liver, thereby diminishing their anti-inflammatory effects

(17, 56). Thus, controlling oxidative stress can also mitigate

inflammation. Notably, serum adropin levels were found to be

reduced in patients with NAFLD (77), suggesting that adropin may

also be involved in the development of NAFLD. Consistent with its

action in NASH, adropin overexpression or treatment in NAFLD

animal models has been shown to alleviate palmitic acid-induced

oxidative stress in hepatocytes (78). Interestingly, Meda et al.

observed that under HFD conditions, hepatic adropin induction

was negatively correlated with the expression of lipogenic genes

and fatty liver in female mice, with this effect being dependent on

hepatic ERa (79). More importantly, female-specific induction of

adropin under HFD enhances the liver’s response to oxidative stress,

helping to counteract ROS production and the inflammatory

processes that promote NAFLD progression (79).
6.7 Complications of diabetes

In the context of diabetic complications, Rizk et al.

demonstrated that adropin treatment can inhibit the RhoA/

ROCK pathway, apoptosis, inflammatory responses (IL-6, TNF-

a), oxidative stress (malondialdehyde, 8-oxo-20 -deoxyguanosine,

reduced glutathione, superoxide dismutase), and lung tissue

fibrosis, thereby mitigating diabetic lung injury (38). This

positions adropin as promising therapeutic agent for managing

diabetes-related injuries. Additionally, Yu et al. found that adropin

encapsulated in ROS-responsive nanocapsules improved renal

lipotoxicity in diabetic mice, primarily by effectively controlling

blood glucose and lipid levels. It also downregulated lipogenic

proteins SEBP-1 and ADRP in diabetic nephropathy models,

alleviating lipid deposition in renal tissue. Concurrently, adropin

inhibited excessive ROS production, protecting mitochondria from

damage and improving renal function (67). These observations

underscore the critical role of adropin in modulating oxidative

stress and its potential impact on the progression of diabetes.
6.8 Chronic renal failure

In rats with adenine-induced chronic renal failure, adropin

treatment was shown to reduce the expression of several pro-

inflammatory cytokines, including G-CSF (granulocyte colony-

stimulating factor), IFN-g, IL-4, IL-5, IL-10, IL-12, IL-17A, and
GRO-a (growth-related oncogene-alpha) (68). Another study

revealed that adropin treatment in chronic renal failure rat

models also decreased renal damage markers such as NGAL

(neutrophil gelatinase-associated lipocalin), TIMP-1, IL-17A, IL-

33, MMP-2, and MMP-3, while increasing MMP-13 levels (69).
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6.9 Obstructive sleep apnea

Notably, serum adropin levels were significantly reduced in

individuals with obstructive sleep apnea, accompanied by elevated

levels of soluble vascular adhesion protein-1 (sVAP-1)

inflammatory markers (IL-6, TNF-a and high-sensitivity C-

reactive protein), which were negatively correlated with

epinephrine levels (70). However, the exact underlying

mechanism remains to be fully elucidated.
6.10 Polycystic ovary syndrome

In patients with PCOS, adropin levels were found to be lower

compared to controls, with serum adropin concentrations showing

a significant negative correlation with TNF-a levels (71). This

suggests that adropin may exert a protective effect against

inflammation and the progression of chronic kidney injury

in PCOS.
6.11 Others

Alterations in adropin levels have also been observed in several

immune- and inflammation-related diseases. In multiple sclerosis, a

chronic autoimmune disorder, serum adropin levels were markedly

reduced (80). Similarly, in patients with rheumatoid arthritis and

systemic lupus erythematosus, serum Adropin concentrations were

significantly lower than those of healthy controls (72, 73). While the

specific mechanisms remain unclear, these findings suggest that

adropin could serve as a novel therapeutic target for autoimmune

and inflammatory diseases.
7 Conclusion and future

Research on the physiological functions of adropin has been

ongoing, revealing that adropin levels fluctuate in various

physiological and pathological conditions. As a product of the

ENHO gene, adropin plays a pivotal role in regulating energy

metabolism, particularly in glucose and fatty acid homeostasis

(28, 81). Furthermore, adropin has been implicated in cell

communication and disease progression by modulating multiple

molecular pathways, including NB-3/Notch (20), AKT/CREB/

BDNF (37), and VEGFR2/PI3K/AKT (62). In addition, adropin

contributes to the pathogenesis of several disorders by influencing

immune function, inflammatory responses, and oxidative stress,

primarily through the regulation of macrophage metabolism and

the modulation of inflammatory cytokine expression. Insufficient

adropin levels may lead to immune cell imbalances and elevated

pro-inflammatory cytokines, which can impair the immune

system’s negative feedback mechanisms, thereby facilitating the

initiation of inflammatory processes (Zhang et al., 2020).

However, the precise mechanisms underlying these effects remain

incompletely understood.
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As a relatively recent discovery among regulatory peptides, adropin

presents fascinating potential, but both basic and clinical research still

face numerous challenges. First, the pharmacokinetics of adropin in

circulation remain largely unknown, and the efficacy of peptide

hormone administration may be hindered by protein degradation.

Furthermore, several aspects of adropin physiology remain unexplored.

Second, while adropin expression is influenced by adiposity and

various molecules, the specific regulatory mechanisms governing this

relationship have yet to be defined. Third, emerging evidence

underscores the close association between adropin and various

inflammatory diseases, suggesting its involvement in the

inflammatory processes of these conditions. Beyond promoting the

secretion of inflammatory cytokines, adropin also appears to indirectly

regulate the phenotype and biological behavior of immune cells.

However, current research mainly focuses on its role in macrophages

and Tregs, with insufficient details on the specific mechanisms

involved, and little is known about its regulatory effects on other

immune cell types. Fourth, clinical studies on adropin have largely been

observational, showing correlations between plasma adropin levels and

factors such as diet, disease presence, and metabolic parameters (e.g.,

obesity, coronary heart disease risk, and sex). However, the underlying

mechanisms remain unclear. Finally, given that reduced plasma

adropin levels are associated with several diseases, including diabetes,

atherosclerosis, polycystic ovary syndrome, and multiple sclerosis, and

correlate with disease progression, many researchers propose that

adropin could serve as a serum biomarker. However, the clinical

relevance of any new biomarker must be thoroughly assessed,

ensuring that it is suitable for answering key clinical questions.

Therefore, large-scale prospective studies involving well-defined

populations are essential to establish adropin as a reliable biomarker

for various diseases.

In future studies, the pharmacokinetics of adropin in the

circulation needs to be further investigated, and the underlying

regulatory mechanisms of adropin by molecules such as fat, LXRa,
ERa, ROR, and STAT3 need to be further explored. Moreover,

research on adropin’s role in regulating inflammation and

immunity needs to be increased in order to further explore the

mechanism. Clinical research must not only study the mechanism

in depth, but also consider whether the therapeutic effect of adropin

can be transferred to clinical research. Besides, future research

should continue to explore other possible underlying functions of

adropin and its analogs, and it is also very meaningful to further

study its mechanism of action. Adropin-based treatments may

become a new way to treat a variety of diseases.
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