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therapeutic applications
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Colorectal cancer is one of the most lethal tumors, posing a financial and

healthcare burden. This study investigates how helminths and pre-existing

diseases such as colitis, obesity, diabetes, and gut microbiota issues influence

colon cancer development and prognosis. The immune system’s protective

immunosuppressive response to helminth invasion minimizes inflammation-

induced cell damage and DNA mutations, lowering the risk of colorectal

cancer precursor lesions. Helminth infection-mediated immunosuppression

can hasten colorectal cancer growth and metastasis, which is detrimental to

patient outcomes. Some helminth derivatives can activate immune cells to attack

cancer cells, making them potentially useful as colorectal cancer vaccines or

therapies. This review also covers gene editing approaches. We discovered that

using CRISPR/Cas9 to inhibit live helminths modulates miRNA, which limits

tumor growth. We propose more multicenter studies into helminth therapy’s

long-term effects and immune regulation pathways. We hope to treat colorectal

cancer patients with helminth therapy and conventional cancer treatments in an

integrative setting.
KEYWORDS

colorectal cancer, precursors of colorectal cancer, helminth therapy, helminth-derived
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GRAPHICAL ABSTRACT

Graphical summary. The “Helminth infection” section demonstrates that the presence of helminths in the host's body leads to activating a sequence
of immunological responses. This encompasses an elevation in pro-inflammatory molecules (IFN-a, IL-1b, IL-12) and the control of anti-inflamma-
tory molecules (TGF-b, IFN-10). A well-regulated immune response can decrease cellular harm and DNA alterations resulting from inflammation, di-
minishing the likelihood of developing colorectal cancer precursor lesions. Nevertheless, the helminth infection's immunosuppressive environment
may also facilitate the growth and spread of cancer, adversely affecting patient outcomes. The "Parasite antigens" section illustrates the mechanisms
by which dendritic cells (DCs) internalize and digest parasite antigens, presenting them to CD8+ T lymphocytes. Activated T cells secrete cytotoxic
chemicals such as PFN and GzmB, as well as cytokines like IFN-g and TNF-a, which cause cancer cells to die. This approach proposes that antigens
produced from helminths have the potential to be utilized as vaccines or therapies for colorectal cancer. This would include utilizing the immune
system to specifically target and eliminate cancer cells. The section on “CRISPR/Cas9 gene editing helminth” focuses on the progress made in gene
editing technologies, specifically CRISPR/Cas9, that enable accurate alterations to the helminth genome. Researchers can reduce the harmfulness of
live helminths by selectively focusing on particular sequences in the genomic DNA. These genetically altered parasitic helminths can be employed to
control the levels of microRNA, decrease the expression of cancer-promoting microRNAs, and stabilize the messenger RNA of tumor suppressor
genes, so effectively impeding the formation of tumors.
1 Introduction

Poor hygienic conditions mainly cause helminth infections,

particularly in less developed socioeconomic and industrialized

areas (1). A common feature of these helminths is their ability to

survive long-term within the host (2). This requires helminths to

possess efficient strategies to evade the host’s immune system

attacks. Regardless of the type of helminth, they are rapidly

detected by the immune system, triggering responses from

stromal cells such as epithelial cells and keratinocytes, which

secrete alarm protein molecules such as thymic stromal

lymphopoietin, IL-25, and IL-33 (3). These proteins impact type

2 innate lymphoid cells (ILCs), which release cytokines including

IL-5 and IL-13. In particular, IL-13 can interact with dendritic cells

(DCs) to assist them in polarizing naïve T cells into a Th2

phenotype (4), suppressing pro-inflammatory reactions.
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Colorectal cancer (CRC) is one of the leading tumors worldwide

and, along with lung cancer, prostate cancer, and breast cancer, is

considered a major human killer (5). According to the World

Health Organization, there were 1.8 million new CRC cases

diagnosed globally in 2018, with 862,000 deaths attributed to

CRC (6). The public health concerns associated with CRC are

more serious due to its growing prevalence worldwide. This

underscores the pressing need to enhance preventive, early

detection, and therapeutic approaches to mitigate their adverse

impact on global health and socioeconomic circumstances (7).

However, conventional treatments for CRC have demonstrated

slight effectiveness, underscoring the pressing need for novel

therapeutic strategies.

Some species of helminths have been proposed as potential

treatments for diseases such as inflammatory bowel disease, celiac

disease, atherosclerosis, non-alcoholic fatty liver disease, and
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multiple sclerosis (8–12). Many studies have also indicated that

helminths can potentially treat cancer (13–17). This review aims to

investigate the potential of helminths to enhance risk factors

associated with the development of CRC, prevent the occurrence

of CRC, and analyze the correlation between helminths and the

development and prognosis of CRC.
2 Factors associated with colorectal
cancer

2.1 Precursors of colorectal cancer

Specific genetic mutations in oncogenes, tumor suppressor

genes, and genes associated with DNA repair pathways are the

cause of CRC. It starts from polyps and abnormal crypts, progresses
Frontiers in Immunology 03
to early adenomas, then to advanced adenomas (Figure 1A), and

eventually results in CRC. About 70% of CRC cases follow this

mutation sequence. While genetic and environmental factors both

influence CRC development, most cases are sporadic, with only

around 25% having a family history, indicating that acquired factors

are key contributors (18).

Obesity and diabetes significantly increase CRC risk. Obesity,

linked to leptin production by adipose tissue, activates macrophage

growth, migration, and cytokine production and stimulates

multiple signaling pathways such as JAKs/STATs and PI3K/AKT,

which promote cancer cell proliferation and metastasis (Figure 1B)

(19, 20). Similarly, diabetes accelerates CRC development via

insulin resistance and IGF system alterations, with elevated IGF-I

levels promoting cell proliferation and cancer growth (21).

Patients with IBD have a 2–6 times higher CRC risk due to

complex carcinogenic mechanisms (22). Inflammation causes
FIGURE 1

Mechanisms of intestinal inflammation, metabolic dysfunction, and CRC development. (A) Progression from normal epithelium to CRC, including
hyperplasia, formation of small and large adenomatous polyps, progression to severe dysplasia, adenocarcinoma, and ultimately cancer. (B) Role of
metabolic dysfunction in CRC. Adipose tissue releases leptin and insulin, activating the PI3K/AKT/mTOR signaling pathway in intestinal cells. This
activation promotes tumor cell survival and proliferation, leading to CRC development. (C) Impact of inflammatory bowel disease (IBD) on CRC
incidence. Inflammation induces activation of p53 and other key genes related to polyp formation. Chronic inflammation disrupts the balance
between proinflammatory and anti-inflammatory substances, promoting DNA damage and resistance to apoptosis. (D) Changes in gut microbiota
associated with IBD and metabolic diseases. IBD is associated with increased Bacteroides and Proteobacteria, while metabolic diseases like obesity
and diabetes are linked to changes in Firmicutes, Bacteroides, Roseburia, and Faecalibacterium populations. These changes enhance pro-
inflammatory conditions, reduce butyrate production, and facilitate the formation of a cancer-prone environment.
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oxidative stress and DNA damage, triggering a sequence from

inflammation to dysplasia to cancer (Figure 1C) (23, 24). This

process activates oncogenes and deactivates tumor suppressor genes

like p53 (25, 26). IBD also induces chromosomal instability and

disrupts intestinal ecology, promoting CRC through the production

of carcinogens and the breakdown of epithelial barriers (27, 28).

The indirect carcinogenic pathway involves cytokines released by

inflammatory and epithelial cells, with IL-6 playing a crucial role in

CRC pathogenesis through JAK-STAT3 activation. Tumor-

associated macrophages and leukocytes further drive chronic

inflammation and carcinogenesis (29, 30). In IBD patients, these

mechanisms significantly increase CRC risk, highlighting the

importance of early diagnosis and effective treatment to reduce

the risk of progression.

Alterations in gut microbiota composition also contribute to

CRC risk. IBD and metabolic diseases disrupt the microbial balance,

increasing CRC incidence. IBD patients have a lower microbial gene

count, with Bacteroides and Proteobacteria increased, while healthy

individuals predominantly have Actinobacteria and Verrucomicrobia

(Figure 1D) (31). In obese patients, Firmicutes increase, while

Bacteroides decrease, leading to increased intestinal permeability

and inflammation. This dysbiosis promotes the transition from

adenoma to invasive cancer. The loss of butyrate-producing

bacteria in obesity and type 2 diabetes further promotes

inflammation and tumorigenesis (32, 33).

Moreover, reduced microbial diversity is strongly linked to CRC

development, as it activates NF-kB signaling and triggers inflammatory

processes, which contribute to carcinogenesis (34, 35). Therefore,

regulating microbial composition may offer a promising approach to

CRC prevention and treatment.
2.2 The role of cytokines in the
development and prognosis of colorectal
cancer

Specific cytokines, such as FOXP3, TNF-a, and IFN-g, regulate
tumor immunity, often with elevated expression in CRC. FOXP3

activation in cancer cells leads to cytokine secretion (TGF-b, IL-10),
suppressing immunity, and is linked to poor prognosis (36–38).

TNF-a, produced by macrophages, promotes epithelial-

mesenchymal transition, aiding metastasis; high TNF-a
expression predicts tumor deterioration (39, 40). IFN-g activates

macrophages, with its deficiency promoting CRC development. In

contrast, specific IFN-g expression enhances innate immunity and

suppresses tumors, correlating with better prognosis (41–43).

Several interleukins contribute to CRC progression. IL-1b, a
pro-inflammatory cytokine, boosts cell proliferation and increases

CRC risk (44, 45). IL-17 from CD4+ T cells supports tumor

development and angiogenesis by stimulating VEGF production

in cancer cells (46, 47). Elevated levels of IFN-g, IL-12, IL-15, and
IL-18 are linked to favorable CRC outcomes, while IL-4, IL-6, IL-17,

TNF, TGF-b, and VEGF indicate tumor progression (48–52).
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3 Anticancer mechanisms of
helminths

The intricate and significant subject of helminth infection’s

influence on tumor growth. Some helminth infections are indeed

associated with cancer, such as clonorchiasis and Opisthorchis

viverrini (pathogens of cholangiocarcinoma) and Schistosoma

japonicum (a risk factor for liver and CRC) (53, 54). The regulation

of immune responses by parasitic infections is also an important aspect.

For instance, the generated Th1 immune response can suppress tumor

growth and be essential in the early stages of Eimeria granulosa

infection to eliminate cancer cells (55, 56); however, as the infection

progresses, the activation of the Th2 immune response may promote

tumor progression and metastasis. This phase-dependent change in

immune response requires further research to understand its impact on

tumor development (57, 58). Additionally, the anti-cancer activity

induced by parasitic infection is limited by the virulence of the live

parasite and the morbidity induced. Although attempts to use live

vaccination strategies have garnered significant attention, their

effectiveness is not perfect. Therefore, consideration is being given to

using parasite-derived products as new therapeutic agents (59–61).
3.1 Helminth-mediated immune cells and
immune factors

Helminth infections often mediate immune responses that lean

towards immunosuppression. For example, through a TGF-b-
dependent mechanism, the excretory/secretory (E/S) products of

Echinococcus multilocularis (E. multilocularis) larvae induce the

transformation of CD4(+) T cells into Foxp3(+) Tregs in vitro.

When T cells come into contact with E/S products, they release

more of the immunosuppressive cytokine IL-10 (62). Helminth-

generated extracellular vesicles (EVs), similar to exosomes, also play

a crucial role in parasite-host interactions. For example, EVs from

Nippostrongylus brasiliensis protect mice from intestinal

inflammation when administered via a single intraperitoneal

injection. Important inflammatory cytokines linked to colitis

pathophysiology, including IL-6, IL-1b, IFNg, and IL-17a, were

markedly suppressed in the colon tissues of mice given EVs (63).

CD4+ T cell subsets play a key role in the host’s protective

response against expelling helminths while also regulating many

inflammation and immune parameters associated with parasite

expulsion (64) Th1 cells facilitate the control of intracellular

infections by generating cytokines such as IFN-g, IL-2, and IL-12.

However, in most cases, the host’s immune response to helminth

infections is primarily driven by Th2-like T helper cell responses,

significantly producing IL-4, IL-5, IL-10, IL-13, IL-25, and IL-31

(65–68), to facilitate protective settlement against helminths (69).

Epithelial cells are among the first cell types to encounter intestinal

helminths (70). Therefore, when stimulated, damaged, or dying,

they release cytokines, including IL-25 and IL-33, which are crucial

in inducing innate immune responses and promoting type 2
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inflammation processes (71). The interaction of these immune

factors leads to the further development of immune responses,

including the recruitment of eosinophils, B cells, and M2

macrophage activation (72); helminth infections can also increase

mucus production by intestinal goblet cells, promoting beneficial

bacterial growth; inhibiting harmful bacteria, and exerting anti-

inflammatory effects (Figure 2) (73, 74).
3.2 Helminth-derived compounds

3.2.1 Antigen activation targeted immunotherapy
Current cancer immunotherapy strategies aim to stimulate host

immune cells to target tumor-associated antigens (TAAs), either

directly or indirectly, to attack cancer cells (75). Vaccination

remains a promising and significant approach to cancer

immunotherapy. However, clinical barriers, such as immune

tolerance to TAAs, limited immunogenicity of TAAs, and active

immune evasion mechanisms employed by advanced cancers,

hinder its success (76). Overcoming these barriers may require
Frontiers in Immunology 05
non-toxic immune modulators or adjuvants to boost both innate

and adaptive tumor-specific immune responses, forming the basis

for successful vaccine formulations (77).Parasite - derived antigens

may hold the key to overcoming these obstacles and improving the

effectiveness of cancer vaccines.

Although a variety of tumor-specific antigens have been

identified and utilized, most do not trigger strong and appropriate

immune responses (78). Tumor - associated glycoproteins, such as

sialyl - Tn, TF, and Tn, are often used in cancer diagnostics and

prognosis and are mainly found on cancer cells (79). These

glycoproteins have also been found in the adult and larval stages

of Schistosoma mansoni and in patients with cystic echinococcosis

(CE) (80). There is evidence that hydatid cyst antigens have

anticancer effects against various types of cancer in vitro and

mouse models, including CRC (81–84). Some anti-parasitic drugs

can inhibit tumor growth, suggesting that there may be shared

antigenic epitopes between certain parasites and cancer cells (85).

Given the presence of these antigens in both parasites and cancer

cells, it is not surprising that there is an immunological cross-

reactivity between the two. Tn and sTn antigens linked to cancer
FIGURE 2

Intestinal immune response process induced by parasitic infection. Recognition and dissemination: (A) Parasitic antigens are recognized and
captured by antigen-presenting cells (APCs) in the lamina propria. (B) Induction: APCs activate T cells in the mesenteric lymph nodes. TGF-b and IL-
10 promote the differentiation of regulatory T cells (Tregs), while IL-4 promotes the differentiation of Th2 cells. Th2 cells secrete IL-4 and IL-13,
further stimulating plasma cells to produce IgA, IgM, and IgE antibodies. Meanwhile, Th17 and Th1 cell responses are inhibited, reducing the
production of IFN-g and TNF-a. (C) Clearance and resolution: In the lamina propria, ILC2 cells secrete IL-4, IL-13, and IL-22, recruiting and activating
eosinophils and M2 macrophages to promote anti-parasitic immune responses. Monocytes also participate in the resolution of inflammation under
the influence of IL-10 and TGF-b. Through multiple pathways, the inflammatory response is regulated, restoring intestinal homeostasis.
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have been identified in both the larval and adult stages of

E.granulosus (80), as well as TF antigens linked to CRC (86). It

has been confirmed that there is immunological cross-reactivity

between the sera of cancer patients and parasite antigens (87),

which means that the host immune system can recognize these

common antigens and attack them. While antigens from cancer

cells usually have weak immunogenicity, those from microbes often

have strong immunogenicity (88, 89). Therefore, parasite - derived

antigens offer a way to overcome the immunogenicity limitations of

cancer antigens and may enhance immune responses against cancer

cells (81). Immunizing with parasite antigens could change the

immunosuppressive tumor microenvironment into an immune-

supportive one, amplifying anticancer immune responses and

opening up new possibilities for CRC treatments.

In the exploration of prospective vaccine targets, numerous

significant antigens/proteins from helminths have demonstrated

considerable promise. Heligmosomoides polygyrus antigens

modulate macrophage activities, enhancing immune regulation

within the tumor microenvironment and inhibiting breast cancer

cell growth (90). Likewise, the E. granulosus antigen B component

promotes M1/M2 macrophage polarization, hence augmenting

inflammation and facilitating pathogen clearance (91). Specific

glycans generated from parasites, including IL-33 modulators,

enhance the activation of antigen-presenting cells such as

dendritic cells , highlighting their potential in cancer

immunotherapy (92). E. granulosus antigens, in both crude

hydatid cyst forms and Tn-like peptides, elicit significant IFN-g
production in immunized mice, signifying Th1 polarization (93).

Antigens from Trypanosoma cruzi, employed in CRC-specific

anticancer vaccines, have demonstrated considerable efficacy in

inhibiting tumor growth in the colon in many investigations (13,

15). Additionally, a new recombinant protein from Toxoplasma

gondii, rGRA6Nt, has demonstrated the ability to limit tumor

growth in murine colorectal cancer models while simultaneously

tripling the density of CD8+ T cells within the tumors (94). These

findings highlight the revolutionary potential of parasite antigens in

the advancement of successful cancer immunotherapies.

Parasite antigens, sharing immunomodulatory pathways with

viral antigens, have demonstrated the ability to upregulate immune-

activating genes and enhance T cell activity in HTLV-1 virus models,

echoing mechanisms observed in tumor immunotherapy (95). These

antigens also exhibit potential in managing immune toxicities, such as

CAR-T therapy-related neurotoxic syndromes (96). Their broad

immunological and biological activities position them as valuable

tools for the next generation of cancer immunotherapy.
4 CRC treatment strategies

4.1 Adverse outcomes of live helminth
strategies

The regulation of CRC immune factors by helminth infections is

a complex process worthy of in-depth exploration. Changes in
Frontiers in Immunology 06
cytokines can reflect the impact of helminth infections on the

immune system, where pro-carcinogenic factors such as IL-10,

TGF-b, and IL-35 show an increased risk, while anti-carcinogenic

factors like IL-6, IL-1b, IFNg, and IL-17a exhibit a downward trend.

This phenomenon suggests that helminth infections may primarily

promote carcinogenesis. The International Agency for Research on

Cancer has categorized Schistosoma haematobium (S. haematobium)

as a Group 1 carcinogen (97), closely associated with the incidence of

bladder squamous cell carcinoma. S. mansoni, on the other hand, is

classified as Group 3, with insufficient evidence currently confirming

its carcinogenicity in humans. Nonetheless, new findings from

studies using cell cultures and animal models indicate that S.

haematobium may promote the development of liver and CRC

(98). Recent studies also indicate that certain parasitic infections

can lead to downregulation of tumor suppressor genes; for instance,

Theileria annulata infection promotes p53 suppression and genomic

instability (99). Similarly, Toxocara canis (T. canis)infection may

create an immunosuppressive tumor microenvironment, increasing

tumor size and weight and potentially increasing the risk of breast

cancer by reducing P53 gene expression (100–102). The evidence

linking helminth infections to carcinogenesis is substantial (Table 1),

suggesting that despite various interacting factors contributing to

CRC, direct use of live helminth infections as a therapeutic agent for

CRC is not advisable. Without sufficient clinical trial support, we

cannot definitively determine how helminth infections affect immune

responses. Therefore, a more profound understanding of the

mechanisms of helminth infections is needed to develop more

effective strategies for CRC prevention and treatment.
4.2 Relieve precursors

When exploring the impact of helminth infections on immune

regulation in CRC, it is essential to consider the risk factors in

epidemiology and think about how to mitigate them to prevent

CRC. Inflammation is a common characteristic among these risk

factors. Therefore, controlling inflammatory immune responses

becomes a key strategy in reducing risk.

Helminth infections positively impact the treatment of IBD

(118, 119). Research primarily focuses on two regulatory factors: IL-

10 and TGF-b (120–122) IL-10 and TGF-b can inhibit the

production of inflammatory mediators. Engineered lactobacilli

expressing IL-10 successfully prevented the development of

colitis, showing potential as a treatment for IBD (123, 124).

Studies have confirmed that Heligmosomoides polygyrus (H.

polygyrus) can relieve colitis symptoms in animals lacking IL-10

(125) and that schistosome eggs protect mice against colitis

produced by TNBS (126). Increasing TGF-b activity has also

shown potential value in treating inflammatory bowel disease

(127, 128). Helminth infections can induce the production of the

Th2 cytokine IL-4, further activating and driving the output of

TGF-b (129, 130). This plays a key role in inhibiting the

autoreactive Th1 and Th17 responses that mediate autoimmune

diseases (131).
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A meta-analysis showed that some parasitic infections benefit

human metabolism, such as lowering fasting blood glucose and

HbA1c levels and reducing the prevalence of metabolic syndrome

and type 2 diabetes (132). In managing obesity and diabetes, studies

have found that various parasitic helminths positively impact the

immune response to obesity or malnutrition by regulating Th2

immune responses (133). Helminth infections significantly reduced

insulin resistance, liver fat accumulation, and fatty acid synthase

gene expression in mice, possibly due to the upregulation of Th2

factors promoting the production of alternatively activated
Frontiers in Immunology 07
macrophages, which secrete IL-10 to inhibit inflammation (134).

Research also indicates that Omega-1, a substance from

Schistosoma mansoni(S. mansoni) eggs, effectively induces Th2

cell responses in mice and improves obesity caused by a high-fat

diet (135–137). Studies have found that various soil-transmitted

helminths, such as Ascaris spp and Ancylostoma duodenale, can

improve BMI, enhance tissue insulin sensitivity, and reduce the risk

of metabolic syndrome (138). Additionally, mice infected with H.

polygyrus and their offspring showed significantly reduced weight

gain on a high-fat diet, possibly due to changes in gut microbiota
TABLE 1 Exacerbation of cancer due to helminth and protozoan parasite infections.

Parasite Type
Scientific
Name

Immunity
Conclusion Ref

Increase Decrease

Protozoan Parasite
Toxoplasma gondii

(T. gondii)
ND ND

T. gondii is a significant factor in primary
intraocular B-cell lymphoma.

(103)

Helminth
Echinococcus
granulosus

(E. granulosus)

CD25+ T cells
CD4+ T cells

Th1 cells
The presence of E. granulosus infection and

breast tumors can significantly increase the risk
of cancer metastasis.

(104)

Protozoan Parasite
Cryptosporidium

Parvum
(C. parvum)

CD4+ T cells
CD8+ T cells

ND

Immunosuppressive conditions can lead to
cancer development and metastasis by
promoting chronic inflammation and

overexpression of cyclin D1.

(105, 106)

Protozoan Parasite C. parvum
P53tumor
suppressor
labelings

ND
Cryptosporidium has been linked to the
development of gastrointestinal cancers.

(107)

Helminth
Strongyloides
stercoralis

Neutrophils,
eosinophils

ND
Strongyloides stercoralis infection is comorbid
with gastric adenocarcinoma, with larvae

present in abnormal glands.
(108)

Helminth Fasciola gigantica
TNF-a
IL-1b
IL-6

ND

The carcinogenic process induced by Fasciola
gigantica infection is significantly influenced by
oxidative stress and free radicals produced by

inflammatory cells.

(109)

Protozoan Parasite
Plasmodium
falciparun

ND ND
Burkitt lymphoma is linked to prolonged and

severe malaria exposure.
(110)

Protozoan Parasite Theileria ROS ND

The parasite's transformation involves
reprogramming glucose metabolism and redox
signaling, revealing its molecular strategies for
causing cancer-like phenotypes in host cells.

(111, 112)

Protozoan Parasite
Trichomonas
vaginalis

IL-8 ND

The release of TvMIF during Trichomonas
vaginalis infection has been linked to the

potential promotion of prostate
cancer progression.

(113)

Helminth
Heligmosomoides

polygyrus

IL-10
IL-4
IL-13

ND

Intestinal helminth infections can lead to the
development and progression of colitis-

associated CRC by affecting the
immune response.

(114)

Helminth Trichuris muris
IL-10,

Treg cells
ND

The intestine experiences enhanced tumor
alterations and progression.

(115)

Helminth Blastocystis sp. ND ND
CRC patients exhibited a significantly higher

prevalence of Blastocystis sp. than the
control group.

(116)

Helminth Clonorchis sinensis
TNF-a
IL-1b
IL-6

ND

Clonorchis sinensis infection causes DNA
damage in the biliary epithelium, disrupting
homeostatic mechanisms and leading to

malignant transformation.

(117)
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and increased short-chain fatty acid levels (139). These results

suggest that helminth infections not only inhibit obesity but also

potentially positively affect the treatment of diabetes (140).

The preservation of human health depends on gut bacteria

(141). The interaction between parasites and the gut microbiota also

significantly impacts host health (142). The gut microbiome’s

diversity and abundance change when helminths are present

(143). According to studies, mice infected with nematodes that

resemble hookworms had far lower fasting blood glucose levels,

with a marked increase in Lactobacillus in their gut microbiota

(144), a genus known for its benefits in T2D (145). Research has

also found that helminth infections can indirectly regulate NE

concentration to inhibit obesity by altering the gut microbiota

(146). Because the gut microbiotas of mice and humans differ

significantly, more research is required to determine the precise

effects of helminths on the gut microbiota, even though these

findings highlight the positive impact of helminths on the host

gut microbiota, particularly in improving metabolic health and

resisting metabolic-related diseases.
4.3 Helminth-derived compounds may
become therapies for colorectal cancer:
increasing evidence supports this

Although helminth infections may promote cancer

development, certain derivatives of these helminths show

anticancer potential. For example, high-pressure sterilized

S.mansoni antigens have exhibited anticancer protective effects in

DMH-induced Colorectal cancer mice (147). Similarly, antigens

from T.canis can stimulate immune responses and suppress cancer

cells at high concentrations (148). It has been demonstrated that

T.canis extracts stimulate human leukocytes to produce Th1 and

regulatory cytokines. Their secreted proteins are highly similar to

anticancer drugs in computer analyses (148). Additionally, antigens

from E.granulosus have demonstrated anticancer effects in vitro and

animal models; for instance, EgKI-1 can induce anticancer effects in

tumor tissues, suggesting potential development as a cancer vaccine

(78). Recent studies have further shown that molecules derived

from the helminth Taenia crassiceps (T. crassiceps) can enhance the

effectiveness of the chemotherapeutic agent 5-fluorouracil (5FU) in

treating CRC. T. crassiceps modulates inflammatory cytokines,

alters the tumor microenvironment, and promotes the

recruitment of immune cells such as NK cells and CD8+ T cells,

thereby increasing tumor cell apoptosis and reducing tumor

growth (149).

Research on helminth-derived compounds for anticancer

purposes is not limited to these examples alone. Many in vitro

and animal experiments have shown that helminth derivatives have

inhibitory effects on cancer, including studies on CRC (Table 2).

These findings provide new perspectives on the complex

relationship between helminth infections and cancer and open

new possibilities for developing therapeutic strategies based on

helminth-derived compounds.
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5 Future directions

5.1 Combination therapy of helminth
therapy with conventional treatments

Helminth therapy may become an option for the prevention and

treatment of CRC. Despite some helminths having carcinogenic

potential, antigens derived from helminths are being studied for

their potent anti-cancer activity while minimizing side effects as

much as possible (93). To generate helminth antigens at high

concentrations, researchers should concentrate on creating

standardized and controlled helminth antigen compounds by

carefully identifying and extracting crucial immunogenic

components (158). Antigen composition and structure can be

precisely manipulated to increase antigen safety and effectiveness.

Engineered recombinant antigens allow for fusion and modification

to achieve maximum anti-cancer efficacy. These antigen

characteristics include enhancing immunity, reducing side effects,

or improving tissue targeting (159). When used in combination with

conventional therapies, helminth therapy may produce unexpected

results. Immune system-focused treatments, including immune

checkpoint inhibitors or adoptive cell therapy, may benefit more

from helminth-induced immune regulation (Figure 3A) (160).

Depending on the stage of cancer, for inflammatory cancers,

helminth therapy can enhance the regulatory and anti-

inflammatory milieu it induces, hence improving immune

responses to malignancies (161). Additionally, helminth therapy

may sensitize cancer cells to chemotherapy, making them more

susceptible to the cytotoxic effects of chemotherapy. Helminth

therapy can reduce the amount of time and dose required for

treatment while increasing the effectiveness of chemotherapy by

altering the tumor microenvironment and boosting immune

responses (162).
5.2 Gene editing reduces the toxicity of the
helminth

Live parasitic infections may exacerbate symptoms of CRC and

other cancers; hence, utilizing gene editing technology is a

promising approach when considering live vaccines. With the

rapid advancement of biotechnology, next-generation CRISPR

gene editing technologies such as CRISPR-Cas13 (163) can be

employed to engineer parasites with specific traits: short lifecycle,

inability to proliferate, or sensitivity to particular drugs. Recent

genetic engineering tools like CRISPR/Cas9 allow for gene

knockout/deletion in parasitic helminths, with potential for future

exploration in gene knock-in/insertion within parasite genomes

(Figure 3B) (164). Current research indicates that CRISPR/Cas9

gene editing can enhance the safety of parasite eggs (165),

particularly those of blood flukes, affirming the feasibility of

developing and applying S. mansoni, a carcinogenic parasite, for

CRC therapy. CRISPR and CRISPR-based alternative technologies
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TABLE 2 Potential of helminth and protozoan-derived products in cancer treatment.

Parasite
Type

Scientific
Name

Antigen/pr
otein
names

Trial
Category

Target
cancer

Result Conclusion Ref

Protozoan
Parasite

Toxoplasma
gondii

(T. gondii)
ATV

Animal
experiment

Ehrlich solid
carcinoma
(ESC)

Tumor Metrics: 13.3% of the incidence of ESC
was inhibited by ATV. A marked decrease in
the volume and weight of the tumors in mice

given the ATV vaccination.
Immunological Response: In ESC, there are
more CD8+ T cells and fewer FOXP3+ Treg
cells, which have a considerable antiangiogenic
function and an elevated CD8+/Treg ratio.

Toxoplasma
vaccination
significantly

prevented ESC.

(150)

Protozoan
Parasite

T. gondii CPS
Animal

experiment
B16F10

melanoma

Tumor Metrics: Within 12 days, all of the
treated mice's tumors had stopped growing and
had swiftly shrunk, becoming undetectable. The

mice received CPS treatment.
Immunological Response: Tumor-specific CD8

+ T cells and IFN-g production increased
significantly as a result of the treatment,
suggesting a robust immune response.

Attenuated T. gondii
induced strong
anticancer

immune responses.

(151)

Protozoan
Parasite

T. gondii CP
Animal

experiment
ESC

Tumor Inhibition: According to the study,
when compared to the ESC control group, all
treatments caused noticeably higher necrosis in

the tumor cells.
Immunological Response: According to

immunohistochemistry analysis, CP therapy
increased the number of CD8+ T cells and

decreased the number of Treg cells, raising the
CD8+/Treg cell ratio surrounding the tumor.

Inactivated T. gondii
vaccine suppressed
ESC growth through
immune modulation.

(152)

Protozoan
Parasite

T. gondii
Radiation-
attenuated
vaccine

Animal
experiment

Ehrlich
ascites

carcinoma

Immunological Response: By inducing long-
lasting immunity, activating interferon g, and
downregulating transforming growth factor b,
the vaccination effectively inhibited the growth
of tumors. Additionally, it markedly reduced
the content of nitric oxide, angiogenic factors
(VEGF-A, integrin, MMP-2, and MMP-9), and
tumor-promoting inflammatory markers (TNF-

a and STAT-3).

Effective in immune
activation and
tumor targeting,

usable as a
preventive
or adjunct

to chemotherapy.

(153)

Protozoan
Parasite

Trypanos
oma cruzi
(T. cruzi)

Epimastigo
te lysates

Animal
experiment

CRC, breast
cancer

Tumor Metrics: Colon and breast cancer
models showed a substantial reduction in tumor

growth following vaccination with T. cruzi
epimastigote lysates.

Immunological Response: Both CD4+ and
CD8+ T cells were activated in immunized rats,
and their spleens responded more cytotoxically

to tumors than did the controls.

Dramatically
suppressed tumor

growth in rat models
of colon and breast
cancer by inducing
strong antitumor
responses (cellular

and
humoral immunity).

(13)

Protozoan
Parasite

T. cruzi rTcCalr In vitro breast cancer

Tumor Inhibition: rTcCalr binds to scavenger
receptors, reducing the formation of new blood
vessels in the tumor, thereby decreasing the
supply of nutrients and oxygen essential for

tumor growth and metastasis.
Immunological Response: rTcCalr increases
the expression of MHC I while decreasing the
expression of MHC II, which helps enhance the
recognition and attack of tumor cells by CD8+

T cells.

Inhibited tumor
growth and
enhanced

immunogenicity in
vitro, suggesting

potential as a novel
cancer therapeutic by

modulating
membrane
molecules.

(154)

Protozoan
Parasite

T. cruzi gp82 In vitro
melanoma

cells

Tumor Metrics: According to in-vivo studies,
C57BL/6 mice treated with J18 at the site of

tumor cell inoculation and inoculated with Tm5
cells formed tumors smaller than those
developed by mice treated with GST or
phosphate-buffered saline, and they also

lived longer.

Induced apoptosis in
melanoma cells.

(155)

(Continued)
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will continue to thrive, potentially aiding the development of new

strategies involving parasite antigens to tame indigenous parasitic

helminths (166), thereby integrating more carcinogenic parasites

into helminth therapy shortly.
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5.3 Regulating oncomiRs therapy

A class of molecules known as small non-coding RNAs

(miRNAs) that regulate gene expression (167) is thought to be
TABLE 2 Continued

Parasite
Type

Scientific
Name

Antigen/pr
otein
names

Trial
Category

Target
cancer

Result Conclusion Ref

Protozoan
Parasite

T. cruzi rP21 In vitro

triple-
negative
breast
cancer

Tumor Metrics: Treatment with rP21 inhibited
the expression of CXCR4, a receptor that is
overexpressed in breast cancer cells and other

tumor cells, and caused the receptor
to internalize.

Inhibited invasion,
migration, and
proliferation of

triple-negative breast
cancer cells by
downregulating

MMP-9 and CXCR4,
implying use in
treating invasive
breast cancer.

(14)

Protozoan
Parasite

T. cruzi
Epimastigo
te lysates

Animal
experiment

CRC, breast
cancer

Tumor Inhibition: Rats immunized with T.
cruzi epimastigote lysate showed significant
suppression of tumor growth in models of

colon and breast cancer
Immunological Response: Both CD4+ and

CD8+ T cells were activated in immunized rats,
and their spleens responded more cytotoxically

to tumors than did the controls.

Elicited potent
antitumor immune

responses by
stimulating cellular

and humoral
components,

suggesting potential
for innovative
anticancer
treatments.

(15)

Helminth
Trichinell
a spiralis
(T.spirali)

TPD52 In vitro Osteosarcoma

Tumor Inhibition: Both in vivo and in vitro,
osteosarcoma cells were driven to undergo

apoptosis by anti-TPD52 antiserum.
Immunological Response It was shown that

injecting anti-TPD52 antiserum into nude mice
increased their serum levels of TNF-a, IL-12,

and IFN-g using an enzyme-linked
immunosorbent assay.

Induced apoptosis
without

histopathological
damage, showing

anti-
osteosarcoma effects.

(16)

Helminth T.spiralis ML ESPs In vitro Lung cancer

Tumor Inhibition: The expression of pro-
apoptosis genes Bax, Cyt-C, Apaf-1, caspase-9,
and caspase-3 was increased when comparing
the Western blotting results to the negative
control group, while the expression of anti-

apoptosis genes Bcl-2 and Livin was decreased.

Caused H446 cells to
undergo apoptosis
via a mitochondrial
pathway, indicating a

potential
antineoplastic
mechanism.

(17)

Helminth T.spiralis ESP
Animal

experiment
H22 tumor

cells

Tumor Inhibition: ESP has the potential to
inhibit H22 cell division and initiate apoptosis
through the mitochondrial pathway, both in

vitro and in vivo
.Immunological Response Th1 cytokine levels

rose significantly early in the T. spiralis
infection and had antitumor effects; Th2

cytokines increased later than Th1 cytokines.

Directly triggered
tumor cell death and
indirectly suppressed
proliferation through

the host
immune system.

(156,
157)

Helminth
S.mansoni
T.spiralis

Autoclaved
antigen

Animal
experiment

CRC

Tumor Inhibition: Only the harmful effects of
DMH-induced colon carcinogenesis were
protected against by S.mansoni antigen

administration, which also resulted in a notable
reduction in the average lesion size and number

of neoplasias per animal.
Immunological Response: a noteworthy drop
in serum IL-17, a noteworthy rise in serum IL-
10, and a notable proportion of intestinal FoxP3

+ Treg cells and splenic CD4+T cells.

Autoclaved antigen
reduced lesion size

and neoplasia
number, protecting
against DMH-

induced
colon carcinogenesis.

(147)
frontier
sin.org

https://doi.org/10.3389/fimmu.2025.1484686
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1484686
important for cancer treatment. They participate in tumorigenesis

by modulating signaling pathways critical for processes such as

proliferation, apoptosis, and migration of cancer cells (168–170).

Genome analysis studies have revealed dysregulation of multiple

miRNAs in cancer, with those overexpressed targeting tumor

suppressor genes and stimulating cell proliferation, angiogenesis,

and metastasis termed as oncomiRs (171). miR-21 is a widely

reported oncomiR, upregulated in CRC (172, 173), suggesting

that modulating its expression levels could be a therapeutic

approach to inhibit tumor development.

Parasites also manipulate host immune responses by releasing

miRNAs to establish chronic infections (174–176). Some parasites

release exosomes containing miRNAs that can be absorbed by host

cells and affect gene expression (177), especially taken up by

immune cells such as dendritic, macrophage, and monocytes

(178). Subsequent enzymatic and protein interaction cascades

mediate gene expression in eukaryotes (179). According to related

studies, after infection with attenuated Leishmania donovani,

expression of miR-21 significantly decreases in macrophages and
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DCs. In contrast, cells infected with wild-type parasites show higher

miR-21 expression (Figure 3B). We observe that attenuated

parasites demonstrate anticancer potential in this regard, whereas

untreated parasites not only lack anticancer effects but further

promote oncomiR upregulation (180). Therefore, using live

attenuated parasite vaccines or other therapeutic approaches may

contribute to cancer treatment.
5.4 Helminth delivery system

Wildan Mubarok and colleagues have developed an innovative

method for cancer treatment using Anisakis simplex. These

helminths are immersed in a phenol polymer, forming a

hydrophilic coating that protects them from the immune system.

In vitro experiments have demonstrated successful drug delivery

and cytotoxicity (Figure 3C). This technique is not limited to

Anisakis simplex; it can also be applied to other nematode species,

with functional molecules being replaceable as needed. In the
FIGURE 3

Overview of helminth-based colorectal cancer (CRC) therapy approaches. (A) Combination Therapy: Integration of helminth therapy with conventional
cancer treatments (chemotherapy, hormone therapy, and targeted therapy) enhances therapeutic outcomes. Helminth therapy modulates the tumor
microenvironment, improves immune responses, and increases the sensitivity of cancer cells to cytotoxic treatments. (B) CRISPR/Cas9 Gene Editing and
miRNA Modulation: Engineering helminths via CRISPR/Cas9 enables precise genetic modifications, such as reducing carcinogenic risks and tailoring parasites
for therapeutic purposes. This technology enhances the safety of live vaccines and improves their anti-cancer effects. Additionally, helminth-derived
molecules and attenuated parasites can regulate host miRNAs, particularly oncomiRs like miR-21, restoring tumor suppressor gene expression and reducing
tumor progression. (C) Helminth Delivery System: Nematodes, such as Anisakis simplex, are coated with hydrophilic polymers to bypass immune detection,
enabling targeted delivery of therapeutic molecules to tumors. This novel delivery system shows promise for improving drug precision and effectiveness.
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future, nematodes could be used to deliver functional “cargo” to a

range of specific targets, playing a significant role in cancer

treatment. Utilizing a helminth delivery system for cancer therapy

is an innovative and promising research direction (181).

By protecting nematodes from immune system attacks and

leveraging their natural affinity for cancer cells and delivery

capabilities, this method shows significant potential for improving

the precision and effectiveness of anticancer drug delivery (181).

However, the hydrogel sheath cannot completely maintain internal

pH levels against external influences, meaning that the activity of

enzymes and nematodes is still affected by pH fluctuations.

Applying this technology to colorectal cancer (CRC) treatment

remains a challenge. With further research and multicenter trials,

this technique could potentially be used in clinical settings, offering

new treatment options for cancer patients.
6 Challenges

6.1 Clinical safety

As a potential therapeutic approach, helminth therapy shows

promise in treating conditions like inflammatory bowel disease.

However, its safety concerns also warrant attention. Implanting

attenuated live helminth vaccines may pose various safety risks,

such as direct induction of CRC, uncontrolled infections, organ

migration, and potential adverse reactions. Comprehensive

assessment and analysis are necessary when selecting helminths

to understand their infectivity and potential side effects on human

health, ensuring treatment safety and efficacy (182). Currently, the

lack of standardized treatment protocols for helminth therapy

increases uncertainty in the treatment process. Establishing

standardized treatment protocols is crucial to safeguard the safety

and effectiveness of treatment (183). Preclinical research and

limited clinical trials are essential for evaluating the safety and

efficacy of helminth therapy. Sufficient experimentation and

validation are needed to advance helminth therapy development

and ensure its safety.

With the advancement of modern medicine and information

technology, research on parasitic therapy is gradually deepening. We

can utilize modern detection techniques to monitor the real-time

effects of live vaccines in patients, such as the Helminth Egg

AutoDetection (HEAD) system (184)、Kato-Katz method (185)、

Mini-FLOTAC technique (186)、qPCR (187) and other latest

monitoring technologies. These enable patients to monitor parasite

quantity and activity, ensuring infections remain manageable.
6.2 Therapeutic effectiveness

Translating these discoveries from murine models to clinical

applications is a formidable undertaking. A significant problem

stems from the variety of parasitic worm species and the intricacy of
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their life cycles. This raises issues regarding safety and tolerance, as

the introduction of live helminths or their components may elicit

unforeseen side effects, including heightened vulnerability to

additional infections (188, 189). Moreover, the optimal dosage or

duration of parasite infections required to provide protection in

humans remains largely unclear, and apprehensions about the

possible adverse effects of these infections have impeded clinical

research. The analysis of clinical data on experimental helminth

infections is further complicated by significant immunological

heterogeneity among diverse genetic backgrounds. Indeed, not all

research has shown an effect of helminth infections or deworming

on allergic inflammation (190, 191), aligning with the absence of

therapeutic benefits of helminth infections in human autoimmune

allergic inflammation (192–194).

Consequently, the selection of suitable helminth species and the

determination of the ideal therapy dosage and duration continue to

be important unresolved issues in scientific research and clinical

practice. While proteins produced from helminths exhibit potential

in modifying immune responses and mitigating inflammation in

conditions such as inflammatory bowel disease and asthma, the exact

mechanisms of their actions remain inadequately elucidated (195,

196). The control of pro-inflammatory cytokines and the activation

of anti-inflammatory responses have been noted; however, these

effects are typically localized and lack consistent replication at the

systemic level (196, 197). Moreover, elements such as host genetics,

food, and environmental variables influence variability in treatment

responses, complicating the uniformity of therapy regimens (61).

Species-specific variations among helminths and the development of

suitable dosage regimens are critical elements that necessitate more

research to enhance treatment results. Similar to other biological

therapies, helminthic treatments also pose the danger of resistance

development, as the host immune system may progressively establish

tolerance, hence diminishing therapeutic efficacy over time (198). The

clinical efficacy of helminth therapy may be considerably influenced

by the formulation and storage conditions of the therapeutic

helminths. Experimental investigations indicate that inappropriate

pH levels during storage can diminish the therapeutic efficacy of

Trichuris suis eggs (199). The advancement of helminth-derived

biopharmaceuticals encounters additional obstacles concerning the

pharmacokinetics and molecular characteristics of these

substances (200).
6.3 Public cognizance and endorsement

The notion of employing parasites as a therapeutic strategy

frequently encounters skepticism and apprehension from the

public, which constitutes a significant obstacle to the acceptance

and implementation of helminth therapy (201). Moreover, cultural

and societal conceptions of helminths vary considerably. In

Western societies, where personal hygiene and environmental

sanitation are emphasized, the concept of putting helminths into

the human body is especially difficult to comprehend. This cultural
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1484686
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1484686
aversion may hinder the acceptability of helminth therapy and its

incorporation into conventional medical practice (11, 202).
6.4 Regulatory and economic challenges

Helminth therapy encounters substantial regulatory obstacles

owing to the intricate and rigorous approval processes for biological

therapeutics. Moreover, comprehensive clinical trials are necessary

to establish both safety and efficacy, which can be costly and time-

consuming (203). Moreover, the economic obstacles linked to the

development and commercialization of helminth-based medicines

introduce an additional level of complexity. The expenses associated

with research, development, and regulatory approval might be too

costly, especially for small enterprises or research groups (203).
7 Conclusion

CRC continues to be a significant global health concern,

requiring the investigation of novel treatment approaches. This

review examines multiple facets of helminths in relation to

colorectal cancer. Helminth therapy has considerable potential for

treating precursor illnesses of colorectal cancer, such as colitis,

obesity, diabetes, and changes in gut flora. By inhibiting the

immune system’s reaction to helminth invasion, it is possible to

decrease cell damage resulting from inflammation and DNA

changes, thereby reducing the likelihood of developing

precancerous lesions. However, the possible hazards and

therapeutic benefits of helminths are highlighted. Helminth

infections can exacerbate cancer progression by weakening the

immune system, which is a notable risk factor. On the other

hand, antigens derived from helminths exhibit encouraging anti-

cancer characteristics and have the potential to be employed as

novel constituents in vaccines or therapeutic agents.

Gene editing tools, like CRISPR/Cas9, can mitigate the adverse

consequences of live helminth infections while preserving their

beneficial therapeutic benefits. One potential approach is to explore

the use of helminths to modulate oncomiRs associated with

colorectal cancer, to mitigate the abnormal expression of tumor

suppressor genes. In addition, helminth delivery systems provide a

promising therapeutic strategy by utilizing helminths to transport

anticancer medications to specific locations in the colon for more

efficient treatment of colorectal cancer.

Future research should give priority to the advancement of

standardized helminth antigen compounds, with a particular focus

on enhancing their immunogenicity and ensuring their safety.

Utilizing helminth antigens to stimulate anticancer immune

responses can result in immunotargeted therapy, which, when

paired with conventional cancer treatments, can yield remarkably

potent outcomes. It is essential to develop uniform standards and

monitoring systems for the clinical use of helminth treatment.

Using sophisticated detection methods to control helminth

infections in controlled situations can improve the safety of

helminth therapy. We anticipate that future studies will yield
Frontiers in Immunology 13
additional evidence substantiating the clinical effectiveness of this

therapy, thereby providing a cost-effective and efficient treatment

alternative for CRC patients globally.
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149. Mendoza-Rodrıǵuez MG, Medina-Reyes D, Sánchez-Barrera CA, Fernández-
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