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Atherosclerosis is a chronic inflammatory disease characterized by the

accumulation of lipids, fibrous elements, and cellular debris in the blood

vessels. The response-to-retention hypothesis, the leading theory on the

pathogenesis of this cardiovascular disease, describes the initial event in

atherosclerosis as when Apolipoprotein B-containing lipoproteins, including

endogenous and dietary-derived lipoproteins, bind to the inner arterial wall,

the tunica intima. The subsequent lipoprotein modifications trigger an immune

response that promotes atherosclerotic plaque formation. Despite the

prevalence of atherosclerosis globally, and its vascular nature, therapies

directed to the artery wall are limited. Immunotherapies, most notably

monoclonal antibodies (mAbs), are of special interest due to their high

specificity, reliability and proven success in a variety of diseases. However,

current mAbs for atherosclerosis tend to target disease risk factors, notably

inflammation and circulating lipoprotein levels, rather than address the root

cause of atherosclerosis. These treatments result in a phenomenon known as

residual risk, defined by the occurrence of severe cardiovascular events,

including myocardial infarction, during treatment. Per the “response to

retention” hypothesis, a plausible strategy for atherosclerosis would be

blocking cholesterol retention per se at the arterial extracellular matrix level to

complement lipid-lowering therapies. One such immunotherapy is the chP3R99

mAb, which can bind to pro-atherogenic proteoglycan sugar branches, thus

competitively inhibiting lipid retention at these sites. The aim of this review is

twofold: 1) To provide a summary of mAbs and other therapies used for

atherosclerosis treatment, focusing on anti-inflammatory and lipid-lowering

therapies, and 2) To review data on the structural characteristics, theory, and

therapeutic effect of the chP3R99 mAb.
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1 Introduction

Atherosclerosis involves the gradual accumulation of

cholesterol and the development of fat-rich fibrous plaques within

the tunica intima, the innermost layer of the arterial wall. A crucial

feature of atherosclerosis is the presence of low-grade chronic

inflammation, which occurs as a protective response to

proatherogenic lipoproteins infiltrating the arterial wall (1–3).

The response-to-retention hypothesis of atherosclerosis states that

atherogenesis is triggered by the subendothelial retention of

Apolipoprotein B (ApoB)-containing lipoproteins such as low-

density lipoprotein (LDL), lipoprotein (a) (Lp(a)), and,

triglyceride-rich lipoproteins, including the dietary-derived

chylomicron remnants (1, 4, 5). As the plaque develops, it

calcifies, and the fibrous cap is degraded, significantly increasing

the risk of rupture or thrombosis. This, in turn, can cause ischemia,

myocardial infarction, and death (6). Despite the prevalence of

atherosclerosis, there are relatively few effective therapies, most of

which are focused on modulating risk factors rather than targeting

the artery wall. Immunotherapies are becoming increasingly

popular research avenues for atherosclerosis. Monoclonal

antibodies (mAbs) are of specific interest due to their high

specificity and sensitivity, relatively low side effects, and, history

of therapeutic success (7). Currently, commercially available mAbs

for atherosclerosis fall into the category of anti-inflammatory or

lipid-lowering therapies. Anti-inflammatory mAbs decrease

inflammation, thus reducing the burden on the blood vessels and

limiting plaque formation. The CANTOS study was a landmark

clinical trial that used canakinumab to reduce the levels of

interleukin-1b (IL-1b), a critical pro-inflammatory cytokine in

atherosclerosis (8–11). However, while inflammation and

cardiovascular disease (CVD) incidence were reduced in the

treatment group compared to the placebo, there were no

significant changes in participant mortality. This phenomenon of

life-threatening CVD events during treatment is known as residual

risk, which indicates the persistent need for complementary

treatments for atherosclerosis (8). Lipid-lowering mAbs function

by targeting cholesterol synthesis mediators and LDL directly.

However, similar to anti-inflammatory agents, they have

encountered challenges in reducing all cardiovascular event

incidences across patients (12). Research on mAbs targeting

extracellular matrix (ECM) components has attracted significant

attention due to the role of the ECM in the early stages of

atherogenesis (13, 14). One such example is the chP3R99 mAb,

which can bind to proteoglycan side chains and interfere with

lipoprotein binding. Through competitive inhibition, the chP3R99

mAb inhibits lipoprotein retention and the subsequent formation of

an atherosclerotic plaque, thus acting as a potential new therapy for

atherosclerosis (15). Despite strong preclinical evidence supporting

the efficacy of chP3R99 mAb in atherosclerosis management,

information integrating its structural characteristics, functional

basis, challenges, and future prospects are limited in existing

literature. Here, we raise essential context and discuss the

theoretical underpinnings of the chP3R99 mAb and its potential

as an immunotherapy.
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2 Pathogenesis and evolution of
atherosclerosis

Atherosclerosis is the predominant form of CVD globally (16).

Atherogenesis begins in childhood, as lipids and fibrous elements

accumulate in medium and large-caliber arteries (17). Atherosclerosis

progresses silently for decades until causing clinical events that can be

fatal (18, 19). Globally, imaging-based studies estimate that

approximately 50% of individuals over the age of 40 exhibit

subclinical carotid atherosclerosis, with prevalence rates rising

steadily (20). Economic development, rapid urbanization and

globalization have promoted atherosclerosis by facilitating

dangerous lifestyle choices, such as diets rich in saturated fat or

reduced physical activity (21). Several non-modifiable risk factors are

linked to atherosclerosis development, such as age, family history,

and sex (22). Conversely, modifiable risk factors include

hypercholesterolemia, obesity, hypertension, smoking, diabetes, and

certain pathogen-related infections such as chlamydia (23). Of these

factors, hypercholesterolemia plays a dominant role in the onset and

progression of atherosclerosis, the risk of which increases with

proatherogenic lipoprotein levels (24, 25).

One of the historical hypotheses describing the pathogenesis

of atherosclerosis is the response-to-injury hypothesis (26).

According to this theory, atherosclerosis results from

endothelial damage caused by higher shear stress at arterial

bends and bifurcations, leading to higher permeability to

lipoproteins. While endothelial damage and lipoprotein levels

are proven to be considerable risk factors for atherosclerosis

progression, inconsistent evidence supports this theory. Notably,

the lack of atherosclerotic remodeling in areas of endothelial

damage and the presence of remodeling in areas void of

endothelial damage challenges the response-to-injury

hypothesis. Due to these observations, the response-to-retention

theory has been established as the most probable mechanism to

describe the pathogenesis of atherosclerosis, providing a more

active role for the ECM in atherosclerosis onset (1, 27). Thus, the

key initiating event of atherosclerosis is the subendothelial

retention of LDL and other ApoB-containing lipoproteins like

Lp(a) and remnant lipoproteins (1, 28).

ApoB-containing lipoproteins primarily traverse the arterial

endothelium via transcytosis, a process governed by particle size

and receptor interactions. Seminal studies by Simionescu and

colleagues established that particles ≤70 nm in diameter—

including LDL, Lp(a), and smaller triglyceride-rich lipoproteins—

cross the endothelial barrier into the intima, while larger particles

like very-low-density lipoproteins (VLDL) and chylomicrons are

excluded due to size constraints (29, 30). Under physiological

conditions, LDL (18-25nm) transcytosis occurs through LDL

receptor (LDLR)-dependent pathways and caveolae-mediated

transport. More recently it was demonstrated that the latter

mechanism is facilitated by the activin receptor-like kinase 1 and

the scavenger receptor B1 (31–34). Similarly, triglyceride-rich

lipoprotein remnants [such as VLDL remnants (35–50 nm),

chylomicron remnants (30–80 nm), and intermediate-density

lipoproteins (25–35 nm)], can access the intima via scavenger
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receptor-mediated active transcytosis and updated to include

particles of size ≤80nm (35–38). Notably, while Lp(a) (25–70 nm)

particles fall within this size range and share structural similarities

with LDL, these particles exhibit a weaker binding to LDLR.

Therefore, Lp(a) trans-endothelial transport mechanisms remain

poorly understood and their interaction with plasminogen

receptors and scavenger receptors may play a more significant

role in this process (39).

In pathological states, like sustained hypercholesterolemia and

inflammation, the endothelial permeability is increased and

transcytosis of ApoB-containing lipoproteins other than LDL is

enhanced (40). A novel mechanism for triglyceride-rich

lipoproteins arterial delivery mediated by the induction of lipid

droplet formation in the endothelium has been described recently

(41–43). Thus, while LDL dominates intimal delivery, smaller

remnants, and particularly the infiltration of chylomicron

remnants in metabolic disorders and the postprandial state,

further contribute to arterial lipid accumulation (35, 38, 44–46).

Although these mechanisms occur without prior endothelial

damage, permissive conditions like endothelial dysfunction,

inflammation, and structural alterations, such as the absence of a

confluent luminal elastin sheet, and exposure of arterial

proteoglycans, not only increase ApoB-containing lipoproteins

delivery in the intima but also accelerate the subendothelial

deposition of lipids and contribute to the onset and progression

of atherosclerosis (40, 45, 47, 48).

Lipoprotein retention in the arterial intima is a hallmark of early

atherogenesis, driven by electrostatic interactions between

glycosaminoglycan (GAGs) chains on proteoglycans and basic
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residues (arginine/lysine) within ApoB (49–51). This molecule

exists as two isoforms: ApoB100 (4536 amino acids) and ApoB48

(N-terminal 2152 amino acids), both of which contribute to

atherogenicity despite structural differences (44, 52–55). Although

the carboxyl-terminal Site B (residues 3359–3369) of ApoB100 is

the primary proteoglycan-binding domain, ApoB48 compensates

for the absence of this region via an alternative binding site (Site B-

Ib) located at the amino-terminal region (56, 57). In ApoB100, Site

B-Ib is masked by the carboxyl terminus, whereas truncation in

ApoB48 exposes this region, facilitating proteoglycan binding. This

mechanism supports the response-to-retention hypothesis for

different classes of lipoproteins, explaining why both isoforms are

(at least) equally atherogenic and contribute to lipid accumulation

and vascular disease progression (40, 44, 57, 58).

Once retained in the arterial wall, lipoproteins undergo different

modifications, including oxidation, enzymatic modifications, and

aggregation (1). Oxidized lipoproteins release bioactive molecules,

such as oxidized phospholipids, which directly activate endothelial

cells (2, 59). Arterial tissue-resident macrophages, derived from

embryonic CX3CR1+ precursors, are crucial for detecting modified

lipids and maintaining vascular homeostasis. This population is

established in the vascular wall during mid-gestational development

and possess self-renewing capacity through local proliferation (60).

They initiate an inflammatory response when exposed to persistent

stimuli, such as oxidized lipids (61, 62) (Figure 1). Macrophages

internalize modified lipoproteins via scavenger receptors (e.g., CD36,

scavenger receptor-A), leading to intracellular cholesterol accumulation

and their transformation into foam cells, a hallmark of atherosclerosis

across all stages of the pathology (63). Due to their limited self-
FIGURE 1

Key steps in the pathogenesis of atherosclerosis. The schematic illustrates the major molecular and cellular events involved in the development of
atherosclerosis within the artery wall. (1) As per the response to the retention hypothesis, the process begins with the retention of ApoB-containing
lipoproteins in the tunica intima, facilitated by interactions with arterial proteoglycans. (2) Once trapped, these lipoproteins undergo structural
modifications, such as oxidation and aggregation. (3) Subsequently, these modifications trigger endothelial activation, leading to (4) the recruitment
of monocytes into the intima. Monocyte recruitment is mediated by factors like macrophage-colony stimulating factor, released by endothelial cells.
Within the intima, monocytes differentiate into macrophages, (5) which then engulf modified lipoproteins, (6) transforming into lipid-laden foam
cells. The effector mechanisms of macrophages contribute to oxidative stress within the vasculature, which in turn (7) promotes the migration of
vascular smooth muscle cells (VSMC) from the tunica media to the intima. In the intima, VSMC proliferate and contribute to plaque development by
contributing to foam cell formation. (8) Increased size and sulfation of glycosaminoglycans chains within arterial proteoglycans produced by VSMC
further enhance ApoB-containing lipoprotein retention accelerating plaque progression.
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renewing capacity, tissue-resident macrophages cannot sustain plaque

expansion during disease progression (64). Consequently, activated

endothelial cells upregulate adhesion molecules and chemotactic

factors, recruiting monocytes and lymphocytes from the bloodstream

into the arterial intima (65). Within the artery wall, infiltrating

monocytes differentiate into macrophages under the influence of

growth factors secreted by endothelial cells and resident

macrophages. This differentiation amplifies the expression of pattern

recognition receptors, particularly scavenger receptors and toll-like

receptors (TLRs), further perpetuating lipid uptake and

inflammatory signaling (66, 67).

Vascular smooth muscle cells (VSMCs) are also key players in

atherosclerosis. Several growth factors and cytokines produced by

macrophages, mainly the platelet-derived growth factor, contribute

to the migration of VSMCs and subsequent differentiation in the

tunica intima. Hence, VSMCs acquire a synthetic phenotype with

increased production of collagen, elastic fibers and fibrous tissue

(68). Proliferating VSMCs, along with the production of ECM,

generate a fibrous layer that covers the developing atherosclerotic

plaque, surrounding the lesion and preventing its rupture (69).

However, these cells also produce pro-atherogenic proteoglycans,

almost exclusively made up of chondroitin sulfate (CS),

characterized by elongated GAGs chains, changes in their

sulfation pattern, and increased content of sulfate groups,

altogether increasing their affinity and retention to lipoproteins

(70, 71). VSMCs also acquire the ability to internalize

modified lipoproteins through the expression of several scavenger

receptors, accounting for the majority of foam cells in the atheroma

(72, 73). Furthermore, VSMCs of the intima express major

histocompatibility complex II (MHC-II) molecules and, therefore,

can also behave as antigen-presenting cells (APCs) (74). The final

development of the atherosclerotic lesion involves the production of

several degradative enzymes, which make the fibrous layer prone to

rupture due to the destruction of the ECM and lead to the formation

of a life-threatening thrombus (19, 75).
2.1 Innate and adaptive immunity

2.1.1 Innate immunity as a key player in
atherogenesis

Subendothelial lipid accumulation and the subsequent oxidative

and enzymatic modifications further stimulate tissue-resident

macrophages and endothelial cells to generate inflammatory

mediators like cytokines, chemokines, growth factors, and reactive

oxygen/nitrogen species, contributing to the initial steps of

atherogenesis (76). These changes increase endothelial damage

along with the expression of adhesion molecules (77). As

mentioned, the activation of the endothelium leads to the

extravasation of monocytes to the intima, which then differentiate

into macrophages activated by the monocyte colony-stimulating

factor. Macrophages exhibit robust phagocytic activity, secrete a

wide range of soluble factors, and are involved in ECM remodeling,

actions which are central to their role in atherosclerosis progression.

Large numbers of macrophages are found in atherosclerotic
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plaques, especially at the shoulders of lesions, expressing an

inflammatory M1 phenotype (78). Activated macrophages

phagocytose modified lipoproteins, as well as large and aggregated

particles, in an unregulated manner, leading to the accumulation of

cholesterol in its cytoplasm to form the foam cells that characterize

this pathology (61, 79).

Additionally, macrophages can internalize modified LDL through

receptor-mediated phagocytosis and pinocytosis, among other

mechanisms, both actin-dependent and independent (80).

Macrophages can also express TLRs that can recognize and

internalize oxidized LDL (oxLDL) and, in turn, trigger signaling

cascades that activate macrophages themselves (81). Oxidized

lipoproteins act as damage-associated molecular patterns, stimulating

TLRs in macrophages, which aggravates inflammation in the plaque

(82). Macrophages recognize and internalize oxLDL via an array of

scavenger receptors, which, unlike LDLR, are not inhibited by high

intracellular cholesterol concentrations (83). Cholesterol crystals inside

macrophages are the trigger for the assembly and activation of the

NOD-like receptor P3 (NLRP3) inflammasome, responsible for

activating proinflammatory cytokines such as IL-1b and IL-18 (84).

Macrophages account for an essential source of vasoactive molecules,

endothelin and various eicosanoids that promote the recruitment of

leukocytes to the arterial wall and contribute to inflammation (85). The

main soluble factors produced by macrophages include macrophage

colony-stimulating factor, platelet-derived growth factor, transforming

growth factor-b (TGF-b), tumour necrosis factor-a (TNF-a), and
interleukins (IL), IL-1b, IL-6, and IL-8 (86). Likewise, in the presence of
interferon-gamma (IFN-g), macrophages produce other mediators

such as monocyte chemoattractant protein-1, IL-12, and IL-18.

Together, these molecules recruit and activate more leukocytes,

contributing to local inflammation and apoptosis that characterize

advanced lesions’ lipid core. Lastly, macrophages secrete ECM-

degrading enzymes such as matrix metalloproteinases, lysosomal

proteases including cathepsins F and S, collagenases, heparinases,

and sulfatases. The production of these enzymes further contributes

to the pathophysiology of atherosclerosis by releasing cytokines and

growth factors inactively sequestered in the extracellular space (87).

2.1.2 Contribution of adaptive immunity to the
development of atherosclerosis

The role of adaptive immunity in atherosclerosis has been

extensively studied in animal models and humans, with a particular

emphasis on immune responses directed to oxidation-specific epitopes

derived from oxLDL (88). The transition to adaptive immunity in the

vasculature is initiated when retained or modified lipoproteins are

internalized by professional APCs, such as dendritic cells (DCs) and

macrophages. Following antigen uptake, DCs migrate to secondary

lymphoid organs—including draining lymph nodes and the spleen—

where they prime naïve T cells (Figure 2) (89). Vascular antigens are

processed by these APCs and the resulting peptides are presented in the

context of MHC-I and MHC-II molecules to CD8+ and CD4+ T cell,

respectively (90–93). Under homeostatic conditions, DCs in healthy

arteries may present self-antigens in the absence of co-stimulatory

signals, promoting T cell tolerance or anergy (94). This aligns with

studies showing that T cells activated by non-professional APCs fail to
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upregulate co-stimulatory molecules like CD80/CD86, leading to

functional unresponsiveness upon re-stimulation (94). In

atherosclerotic plaques, however, DCs undergo maturation triggered

by pro-inflammatory mediators such as TLR agonists, danger-

associated molecular patterns, and cytokines (e.g., IFN-g, TNF-a).
Mature DCs upregulate MHC-II, co-stimulatory molecules (CD80,

CD86, CD83), and chemokine receptors (e.g., CCR7) (95–97). In

advanced lesions, the number of DCs is increased compared to early

lesions where they accumulate in rupture-prone regions, forming

clusters with T cells (98).

While the precise antigen epitopes driving adaptive T-cell

responses in atherosclerosis remain under investigation, growing

evidence highlights native and oxidized ApoB-derived epitopes as
Frontiers in Immunology 05
critical contributors (99–101). Oxidation-specific epitopes, such as

malondialdehyde and 4-hydroxynonenal-adducted lysine residues

on ApoB, have been proposed as key players in T-cell activation

across experimental and human studies (88, 91, 102–104).

However, recent advances based on peptide-specific tetramer

staining and single-cell transcriptomics have identified CD4+ T

cells reactive to native ApoB in murine and human atherosclerosis,

challenging the exclusivity of modified ApoB in this process (105,

106). Notably, T-cell epitopes shared by ApoB100 and ApoB48 have

been identified (107, 108) demonstrating that T-cell activation in

atherosclerosis is not restricted to ApoB100-derived antigens (109).

In atherosclerotic plaques, most CD4+ T lymphocytes express

ab T-cell receptors and exhibit an effector memory phenotype,
FIGURE 2

Simplified model of key immune events in atherosclerosis development. ApoB-containing lipoproteins retained in the intimal layer of the artery wall
are modified and subsequently taken up by antigen-presenting cells (APCs), including dendritic cells and macrophages. These APCs then migrate to
lymphoid organs, including draining lymph nodes. Within the lymph node, APCs present processed lipoprotein-derived peptides to T cells via MHC-
TCR interaction, along with costimulatory signals (CD80/CD86 - CD28), leading to T cell activation and differentiation into effector T cells (Teff) and
regulatory T cells (Treg). Following activation, T cells can differentiate into CD4+ T helper subsets, including pro-inflammatory phenotypes like Th1
and Th17 cells, or cytotoxic CD8+ T lymphocytes that contribute to the pathogenesis of atherosclerosis. Also, CD4+ follicular helper T cells interact
with B cells (via CD40L-CD40 and TCR-MHC), promoting their activation and antibody production. Anti-lipoprotein antibodies, effector T cells,
regulatory T cells and acute-phase inflammatory proteins are recruited to the plaque. Within the plaque, interactions between activated T cells that
have homed back to the lesion with APCs create a pro-inflammatory feedback loop, amplifying local inflammation and lesion progression.
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although subpopulations expressing gd T-cell receptors are also

present in smaller numbers (110, 111). Upon antigenic stimulation,

CD4+ T lymphocytes differentiate into various T-helper (Th)

subsets, each with distinct functional characteristics. These

subsets include pro-inflammatory phenotypes such as Th1, Th2,

and Th17 cells, as well as follicular helper T (Tfh) cells and

regulatory T cells (Tregs) (112). The different Th subsets

influence the progression of atherosclerosis through various

mechanisms. Notably, Tfh cells promote immune activation by

supporting B-cell maturation and high-affinity IgG antibody

production within germinal centers (100). In the plaque, a

predominant Th1 phenotype is observed, characterized by the

secretion of IFN-g and TNF-a, which drives plaque progression

and instability, as demonstrated in mouse models and human

studies (113–116). In contrast, Tregs suppress inflammation via

IL-10 and TGF-b, though their frequency declines as lesions

advance (117, 118). The roles of Th2 (IL-4/IL-5) and Th17 (IL-

17) cells remain controversial, with evidence supporting both pro-

and anti-atherogenic effects (119, 120). Additionally, natural killer

T cells, activated by lipid antigens presented via CD1 molecules,

further amplify pro-inflammatory cascades (119, 121).

On the other hand, studies in ApoE−/−mice that depleted CD8+

cytotoxic T lymphocytes (CTLs) found reduced lesion area, lipid

content, macrophage infiltration, and necrotic core size (122). This

suggests that CTLs also contribute to atherosclerosis progression by

promoting necrotic core formation through the induction of

apoptosis in macrophages, VSMCs, and endothelial cells (123,

124). Mechanistically, lesional CTLs express perforin and

granzyme B, which colocalize with apoptotic vascular cells.

Genetic deletion of these cytotoxic molecules further confirmed

their role in necrotic core expansion (122). Interestingly, these

molecules may also attenuate atherogenesis by suppressing APCs

and other effector T cells, a regulatory effect that appears more

prominent in the early stages of the disease (124). Beyond direct

cytotoxicity, CD8+ T cells exacerbate plaque inflammation by

secreting TNF-a (125) and amplifying systemic monocytosis via

IFN-g-mediated bone marrow activation (122). While some lesional

CD8+ T cells recognize ApoB-derived peptides, the specific antigen

driving their activation remains elusive, as is the case for CD4+ T

cells (123, 126). Collectively, these findings underscore CD8+ T cells

as central mediators of plaque vulnerability, linking adaptive

immune responses to impaired efferocytosis, sustained

inflammation, and necrotic core progression (122).

B cells are scarce within atherosclerotic plaques but accumulate

in periadventitial lymphoid infiltrates near advanced lesions,

indicating localized adaptive immune responses (127, 128). B cell

subsets exhibit opposing effects on atherosclerosis progression. B1

cells secrete natural IgM antibodies targeting oxidation-specific

epitopes, such as phosphocholine on oxLDL, which reduce

inflammation and inhibit foam cell formation (91, 129, 130).

Notably, approximately 30% of natural IgM antibodies are

directed against those epitopes, which are shared by apoptotic

cells, bacterial pathogens, and oxidized lipoproteins (131).

Conversely, B2 cells have been shown to promote atherosclerosis

through proinflammatory IgG production and T cell activation
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(122, 132, 133). While there is a consensus that anti-oxLDL IgM

antibodies are atheroprotective, the role of IgG subclasses remains

ambiguous, with studies implicating both pathogenic and protective

effects (129, 134–137). Recent work emphasizes the critical role of

T-cell–B-cell interactions in modulating the nature of humoral

responses in atherosclerosis. CD4+ Tfh cells play a pivotal role by

facilitating B cell maturation and antibody class-switching.

Depending on the context, these interactions within germinal

centers or tertiary lymphoid structures can drive the production

of either pro-atherogenic or atheroprotective antibodies,

highlighting their dual role in plaque formation (100).

Following activation in secondary lymphoid organs, T cells

enter systemic circulation and home to atherosclerotic plaques

through mechanisms described for monocyte extravasation (112,

138). In this case, the process involves interactions of adhesion

molecules from the inflamed endothelium like selectins (E- and P-

selectins) and integrins (e. g. Vascular Cell Adhesion Molecule-1)

with their counterparts expressed in activated T cells (e.g. Very Late

Antigen-4) (138). After transmigrating into the lesion, T cells are

reactivated by local APCs, which in turn trigger cytokine secretion

by CD4+ Th cells, enhance pro-inflammatory macrophage activity,

and promote cytotoxic activity by CTLs (139).

It is proposed that antibodies (~12nm) can be recruited to the

sub-endothelium by similar pathways that are active for lipoprotein

permeability (<80nm). We have shown recently that antibodies can

be detected in the vasculature within minutes of infusion using

different model species (140–142). As plaques advance, sustained

inflammatory signaling disrupts endothelial integrity by opening

intercellular junctions and creating transient gaps leading to

increased vascular permeability (143, 144). This enables the

leakage of large molecules into the atheroma, including

antibodies, acute-phase proteins (e.g. C-reactive protein),

complement components, and larger lipoprotein particles (145,

146). The influx of these mediators, combined with the ongoing

recruitment of immune cells, creates a self-perpetuating cycle of

lipid accumulation, inflammation, and plaque destabilization (147).

In summary, adaptive immunity in atherosclerosis is a complex

process. T cells, particularly CD4+ and CD8+ subsets, play varied

roles, from promoting inflammation to inducing cytotoxicity. B

cells and antibodies also exert both pro- and anti-atherogenic

effects. A deeper understanding of these mechanisms is crucial for

developing targeted therapeutic strategies.

2.1.3 Immune checkpoints as mediating factors in
atherosclerosis

Co-stimulatory molecules and immune checkpoint proteins

have been reported to be pivotal in modulating atherogenesis

(148). Immune checkpoints found on APCs and T cells regulate

the immune response and prevent overstimulation of the immune

system. The role of immune checkpoints in managing an immune

response’s regulation, inhibition, severity, and length has been well

documented. As mentioned, T cells become activated through

interactions with APCs (149). However, a second signal is needed

for T cell activation in addition to antigen presentation. This second

signal can occur through the co-stimulation of receptors on T cells
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and stimulatory molecules on APCs (149), such as the co-

stimulation of the CD28 receptor on T cells binding to CD80/86

on APCs. This signal is necessary for the downstream activation of

signaling pathways, specifically the PI3K/Akt pathway (149, 150).

Activating the PI3K/Akt pathway further stimulates T cells’

differentiation, proliferation and survival, which can have critical

effects during atherosclerosis.

Moreover, cytotoxic T-lymphocyte antigen (CTLA)-4 inhibits

this co-stimulation, providing another avenue for immune

regulation (150). Conversely, the interaction between

programmed cell death protein 1 (PD-1) on T cells and the

programmed death ligands 1 and 2 (PD-L1, PD-L2) on blood

cells and phagocytes, respectively, acts as a significant immune

checkpoint that reduces T cell activity (149). This process occurs

through dephosphorylation and subsequent inhibition of the PI3K-

Akt pathway (149).
3 Therapeutic strategies targeting
atherosclerosis

3.1 Anti-inflammatory therapies and
monoclonal antibodies

The CANTOS trial was a large-scale clinical trial that described

the use of canakinumab, a mAb inhibitor of the pro-inflammatory

cytokine IL-1b. Canakinumab directly binds to IL-1b, thereby
preventing Il-1b mediated inflammation and reduced the risk of

recurrent cardiovascular events (151). The CANTOS trial used a

comprehensive randomized, blinded, placebo-controlled study

design to follow 10,061 patients across 39 nations with previous

reports of myocardial infarction and increased high-sensitivity C-

reactive protein (hsCRP) levels from 2011 to 2017 (151, 152). The

study found that over 3.7 years, the placebo group experienced 4.50

events per 100 person-years, while the 300 mg canakinumab

treatment group experienced 3.90 events per 100 person-years

(151). Thus, 300 mg canakinumab administration reduced

recurrent major adverse cardiovascular events (MACE) by 0.60

per 100 person-years compared to the placebo cohort (151).

Interestingly, however, the canakinumab treatment group

reported higher neutropenia cases than the placebo group.

Similarly, the canakinumab group also exhibited higher rates of

infection or sepsis-related deaths relative to the placebo group.

Specifically, the canakinumab group experienced an incidence rate

of 0.31 of sepsis and infection-related deaths per 100 person-years

versus 0.18 events per 100 person-years for the placebo group (151).

Additionally, thrombocytopenia was more frequent among those

receiving canakinumab than the placebo group, but there were no

notable differences in the incidence of hemorrhages (151). As such,

commercial approval for canakinumab and other notable IL-1b
therapies, such as gevokizumab and mavrilimumab, has yet to be

approved. Similarly, preliminary studies using infliximab and

certolizumab anti-TNF-a therapies found reduced monocyte and

neutrophil activity and improved endothelial and arterial wall

function (153). Moreover, various pro-inflammatory cytokine
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therapies target the NLRP3 inflammasome, indirectly inhibiting

IL-1b and TNF-a activity. A notable example is the synthetic

NLRP3 inhibitor, MCC950, described by Coll et al. in 2015 (154).

MCC950 works by binding to the NLRP3 protein, thereby

preventing inflammasome assembly (154). This interaction

suppresses IL-1b activation by inhibiting caspase-1 and caspase-

11 pathways (155). A 2021 study by Zeng et al. described the use of

MCC950 in atherosclerosis using ApoE-/-mice (156). Following

MCC950 administration, the group found evidence of decreases

in atherosclerotic plaque size, macrophage levels, and pro-

inflammatory cytokines, specifically IL-1b and IL-18 (153).

Another prominent NLR3P inflammasome inhibitor, the ketone

b-hydroxybutyrate, prevents potassium (K+) efflux, thereby

inhibiting apoptosis-associated speck-like protein with a caspase

recruitment domain oligomerization, which is necessary for

caspase-1 activation. A 2015 investigation reported that b-
hydroxybutyrate use in mice with NLRP3-related disorders

significantly reduced pro-inflammatory cytokines, specifically

ILs (157).

However, anti-inflammatory cytokine therapies are not the only

anti-inflammatory therapies for atherosclerosis and CVD

management. Similar to the CANTOS trial, the LoDoCo trial was

a first-of-its-kind prospective, observer-blinded clinical trial

involving 532 participants diagnosed with coronary disease

randomized to either a low-dose colchicine of 0.5 mg per day or

non-colchicine group with a minimum two-year follow-up (158).

However, unlike the CANTOS trial, which used a selective inhibitor

of IL-1b, colchicine has broad-scale anti-inflammatory properties,

most notably inhibiting neutrophil function (158). Of the LoDoCo

participants, 93% were taking aspirin and clopidogrel, and 95%

were taking statins. 282 participants were assigned to the colchicine

group, while 250 were assigned to the non-colchicine group (158).

Overall, the colchicine group had 10.7 percentage points fewer

combined occurrences of acute coronary syndrome, out-of-hospital

cardiac arrest, or non-cardioembolic ischemic stroke (primary

outcomes) compared to the non-colchicine group (158). 15 of the

282 participants in the colchicine group experienced a primary

outcome (5.3%) compared to 40 of the 250 patients in the non-

colchicine group (16%) (158). However, this trial was open-labelled

and moderate-scale, so these results needed further assessment

(158). Following the LoDoCo trial, the COLCOT trial was

conducted as a large-scale, randomized, parallel-arm, double-

blind clinical trial involving 4,745 participants with an average

follow-up period of 1.88 years (22.6 months) (159). The COLCOT

trial recruited patients who had experienced myocardial infarction

within the last 30 days. Of the 4,745 participants, 2,366 received 0.5

mg of colchicine daily, while 2,379 received a placebo. They assessed

incidences of cardiovascular-related deaths, instances of

resuscitated cardiac arrest, myocardial infarction strokes, and

severe angina that ultimately required hospitalization (159).

Overall, the colchicine group experienced 1.6 percentage points

less of these cardiovascular outcomes than the placebo group. Of the

2,366 participants in the colchicine group, 5.5% experienced a

cardiovascular outcome compared to the 7.1% in the placebo

group (159).
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Lastly, immune checkpoint inhibitors (ICI) are common mAbs

used as anti-inflammatory therapies. As expanded on in section 1.2,

immune checkpoints act as regulators of the immune response

through T cell inhibition and activation. However, despite the

success of ICI mAbs in cancer treatment, studies have found a

significant link between ICI therapies and atherosclerosis (149).

Interestingly, while cancer and atherosclerosis share similarities in

their inflammatory-dependent pathophysiology, ICI mAbs,

specifically CTLA-4 and PD-1–PD-L1 blocking antibodies, have

been shown to increase cardiovascular events associated with

atherosclerosis (160). Although, a 2013 study that increased

CTLA-4 activity using abatacept in APOE 3-leiden mice found a

reduction in the severity of atherosclerosis through a dramatic

78.1% decrease in arterial thickening (161), thus offering a

different avenue for ICI therapy in atherosclerosis treatment.

However, it is critical to recognize that these anti-inflammatory

therapies have negligible effects on circulating lipoproteins, a major

contributor to atherogenesis.
3.2 Lipid-lowering therapies and mAbs

Statin therapy has served as the pinnacle of lipid-lowering

treatments in Western medicine for over four decades. Statins

function by inhibiting the enzyme HMG-CoA reductase in the

cholesterol biosynthesis pathway, thereby inducing the synthesis of

LDLRs, which can then capture and reduce levels of circulating LDL

(162). A plethora of research on statin application has

demonstrated its success in LDL reduction. A 2010 meta-analysis

including 26 randomized controlled trials with 169,138 participants

revealed that a 39 mg/dL reduction in LDL resulted in a 22% decline

in MACE over half a decade, independent of initial LDL levels and a

10% reduction in all-cause mortality across diverse clinical cohorts

(163). Despite the well-documented lipid profile management of

statins, cardiovascular events continue to occur in treated patients

(164). This has been largely attributed to the contribution of

dietary-derived remnant lipoproteins and Lp(a) to atherogenesis

(165). In fact, the impact of statins in reducing Lp(a) remains

controversial (166). A meta-analysis of several clinical trials

demonstrated that they significantly increased plasma levels of

this lipoprotein (167).

On the other hand, proprotein convertase subtilisin/kexin type

9 (PCSK9) inhibitors, which are lipid clearance agents that inhibit

PCSK9-mediated degradation of LDLR, have been linked to

reductions in circulating LDL, reduced myocardial infarction risk

and overall decreases in mortality in some populations (13, 168).

Prominent PCSK9 inhibitors include mAbs such as evolocumab,

bococizumab, and alirocumab (169). Administration of solely

evolocumab resulted in a 53% reduction in plasma LDL levels

(168) with similar outcomes reported for bococizumab and

alirocumab (151). When administered with statins, PCSK9

inhibitors have shown a pronounced reduction in LDL levels

relative to statin monotherapy. The GLAGOV and ODYSSEY

trials, large-scale randomized, double-blind clinical control

studies, assessed the efficacy of evolocumab and alirocumab (with
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statins) in managing cardiovascular events (13, 169). The GLAGOV

trial reported evolocumab therapy mediated plaque progression,

and the combined regimen of evolocumab and statins induced

regression of the proliferating atheroma (169). In the ODYSSEY

trial, 80-88% of patients underwent statin treatment. The

ODYSSEY trial found that combining alirocumab and statins

reduced MACEs by 1.6 percentage points (9.5% for alirocumab vs

11.1% for placebo) and all-cause mortality by 0.6percentage points

(3.5% for alirocumab vs 4.1% for placebo) compared to the placebo

+ statin treatment (169). A distinct randomized control trial by

Pradhan et al. evaluated the combined regimen of bococizumab and

statin therapy, involving 9,738 patients, and assessed on-treatment

LDL levels 14 weeks post-intervention. The group reported a 60.5%

reduction in LDL (170). However, they also acknowledged a

significant correlation between patients with high hsCRP levels

(>3 mg/L) and MACE. Moreover, even 14 weeks post-treatment,

patients experienced residual risk associated with chronic

inflammation (170). Pradhan et al. thus concluded that while

PCSK9 and statin therapy reduce LDL levels and some MACE,

they have minimal effects on inflammation (170).

Anti-PCSK9 mAbs can also reduce Lp(a) levels by 25~30%, at a

2:1 ratio relative to LDL (171). This effect appears to be mediated by

a dual mechanism. When these drugs are administered as

monotherapy, the decrease in the serum concentration of Lp(a) is

associated with the inhibition of its synthesis while it has been

suggested that, in combination with statins, anti-PCSK9 causes

accelerated Lp(a) lipoprotein catabolism, potentially through

increased LDLR activity (172). However, since statins (which

increases the abundance of the hepatic LDLR), have limited

impact on Lp(a) (167, 172), the exact role of LDLR in Lp(a)

catabolism remains a matter of debate (172–174). A direct clinical

benefit from the reduction in Lp(a) levels by anti-PCSK9 therapy

has not yet been demonstrated (175).

Overall, lipid-lowering therapies, similar to anti-inflammatory

approaches, are insufficient in fully modulating CVD risk among all

populations, highlighting the need for emerging immunotherapies,

including those directed at the arterial ECM.
3.3 Atherogenic lipoproteins and the need
for combination therapies

Fasting LDL levels are often used as indicators and targets in the

treatment and management of CVD, particularly atherosclerosis

(176, 177). Fasting LDL levels are commonly measured in patients

to determine their risk of overall CVD and prevent the onset of CVD.

Interestingly, however, many patients continue to experience MACE

despite reductions in LDL, known as residual risk. Additionally, non-

fasting lipid levels have been proven to be an equal indicator of CVD

risk compared to fasting lipid levels (178, 179). Non-fasting

measurements are generally more representative of a patient’s lipid

composition as most of the day is spent in the non-fasting state

compared to the fasting state (38, 179–181). Due to the limitations

regarding fasting LDL as both a target and assessment tool for CVD,

research has shifted towards adopting more overarching approaches
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for CVD treatment. Recent advancements in our understanding of

atherosclerosis have highlighted the critical role of remnant

cholesterol in combination with LDL (177, 178, 182). Remnant

cholesterol includes the cholesterol contained within remnant

lipoproteins. These remnant lipoproteins come from triglyceride-

rich lipoproteins such as liver-derived VLDL and intestinal

chylomicron remnants (38, 180). Importantly, these remnant

lipoproteins have been shown to play a critical role in

atherogenesis. During the early stages of atherogenesis, both

remnant lipoproteins and LDL infiltrate the inner tunica intima of

the arterial wall, where they are digested by phagocytes, contributing

to foam cell formation (38). Three extensive Copenhagen cohort

studies previously illustrated the link between non-fasting remnant

lipoprotein cholesterol and CVD (178, 183, 184).

Similarly, the Alberta tomorrow project (ATP) was a 2000

Canadian longitudinal cohort study that collected blood samples

and health-related data. An analysis by Weaver et al. in 2023 using

ATP data determined whether non-fasting remnant lipoprotein

cholesterol could serve as a suitable indicator of CVD and future

cardiovascular events, particularly in individuals with underlying

health conditions like diabetes mellitus (177, 182). The group

reported that non-fasting remnant lipoprotein cholesterol levels

were significantly increased in individuals with CVD compared to

the control group. However, this trend was not consistent for the

group with diabetes and CVD (182). The diabetes + CVD group and

the diabetes alone group had similar LDL levels. Furthermore, in

2023, a comprehensive large-scale investigation conducted by

Navarese et al. used Mendelian randomization analysis techniques

to determine the relationship between remnant lipoprotein
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cholesterol and the development of atherosclerosis-related CVD,

specifically coronary artery disease, myocardial infarction, and

stroke (185). The study used single nucleotide polymorphism

associated with remnant lipoprotein cholesterol and LDL found

on publicly available genome databases as representative variables

for remnant cholesterol and LDL. The group additionally used data

from various databases to create a participant pool of 958,434

people (185). Using the single nucleotide polymorphism for

remnant cholesterol, the study found evidence of a strong

relationship between remnant lipoprotein cholesterol levels and

CVD risk. Each remnant lipoprotein cholesterol standard deviation

(SD) increase was assigned a corresponding risk level expressed as

an odds ratio (OR). For coronary artery disease, the group found

that one SD increase in remnant lipoprotein cholesterol resulted in

an OR of 1.51; for myocardial infarction, one SD increase resulted in

an OR of 1.57; and for stroke, one SD increase resulted in an OR of

1.23 (185). Notably, this relationship between remnant lipoprotein

cholesterol, coronary artery disease, myocardial infarction, and

stroke was independent of LDL levels.

4 ChP3R99 mAb: emerging strategy
for ApoB-containing lipoprotein
retention

Advances in the understanding of atherogenesis have

broadened the focus of mAbs for CVD, shifting beyond just

targeting LDL and inflammatory cytokines to also include key

vascular components (Figure 3) (186, 187). A notable example is
FIGURE 3

Mechanisms of immune-based therapies for atherosclerosis. The schematic illustrates current therapeutic approaches targeting inflammation (e.g.
pro-inflammatory cytokines, immune checkpoints) and lipid lowering (e.g., HMG-CoA reductase and PCSK9 inhibition). The figure introduces
emerging anti-extracellular matrix therapies aimed at reducing lipoprotein retention, chiefly the chP3R99 mAb, which targets sugar chains of
arterial proteoglycans.
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the mAb chP3R99, which has emerged as a complementary

approach to address ApoB-containing lipoprotein retention in the

arterial wall (15). By binding to sulfated GAGs chains of arterial

proteoglycans, chP3R99 is designed to interfere with lipoprotein

retention, thereby mitigating subsequent oxidative stress,

inflammation, and other processes central to plaque formation.

Extensive preclinical studies using chP3R99 mAb have shown

promising results in animal models of the disease, supporting its

potential in preventing the early stages of atherosclerosis or halting

its progression. Importantly, the therapeutic potential of chP3R99

extends beyond its passive blocking properties, offering a dual

mechanism of action (1): as a passive therapy to acutely disrupt

lipoprotein retention through direct binding to sulfated GAGs

(Figure 4), and (2) as an idiotypic vaccine capable of inducing

long-term protection via an anti-idiotypic cascade of antibodies

induced in the host (Figure 5).
4.1 A historical perspective of the chP3R99
mAb’s development

The chP3R99 mAb was developed by the Centre for Molecular

Immunology (CIM) in Havana, Cuba. This is a mouse-to-human

chimeric antibody engineered to target the early stages of

atherosclerosis within the arterial ECM (15). This antibody originated

from the murine P3 mAb, an IgM first described by Vazquez et al.

(1995), which was generated using the conventional hybridoma

technique. Originally, P3 was intended to target N-glycolyl (NeuGc)–

containing gangliosides as a potential tumor-specific immunotherapy

(188). However, detailed characterization of its specificity revealed a

strong reactivity toward sulfatides, demonstrating its ability to bind

negatively charged epitopes on sugar moieties (188, 189). Notably, the

polar head group of these glycolipids, composed of sulfated galactose,

was identified as a critical structural element for this interaction.
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Further immunogenetic studies provided initial insights into P3’s

binding specificity, suggesting that several basic aminoacidic residues

in the variable regions, particularly those within the hypervariable

loops, were important for antigen recognition (190).

To enhance its therapeutic potential, P3 was engineered into chP3,

a chimeric mAb combining murine variable and human IgG1 constant

regions (denoted by the prefix “ch”) that retained the specificity and

main immunological properties of the parental mAb (191).

Subsequently, site-specific single mutations of arginine residues at

heavy chain complementarity determining regions 1 and 3 (HCDR1,

HCDR3) of chP3 completely abolished antigen binding, confirming

that these regions were crucial for the specificity of the mAb (192, 193).

Afterwards, a mutant with a higher affinity for negatively charged

sulfated glycolipids was designed. This chP3 mutant, termed chP3R99,

was engineered by replacing the glutamic acid residue with an arginine

at the 99th position of the immunoglobulin HCDR3 (194). To further

refine its therapeutic safety, the Fc region of chP3R99 was engineered

with LALA mutations (L234A/L235A), disrupting Fcg receptor and

complement bindings to prevent undesired inflammatory activation

while preserving its specificity (15). The current chP3R99-LALA

variant is stably expressed in NS0 murine myeloma cells following

transfection by electroporation (15, 194). In summary, chP3R99 mAb

chimeric design retains the murine-derived variable regions (idiotype),

critical for antigen recognition, while incorporating a human IgG1-

LALA Fc portion (Figure 4).
4.2 Passive anti-atherogenic mechanism of
the chP3R99 mAb

The rationale for evaluating chP3R99 mAb as a blocking agent

in atherosclerosis emerged from two structural insights. First, the

arginine-rich domains in its HCDRs mimic Site B of ApoB100,

which mediates LDL retention via electrostatic interactions with
FIGURE 4

Structural and functional features of the chP3R99 mAb. The chP3R99 mAb is a mouse-to-human chimeric antibody designed to target sulfated
glycosaminoglycans in the arterial extracellular matrix. It combines murine variable regions (VH and VL), essential for antigen recognition, with
human IgG1 constant regions engineered with LALA mutations (L234A/L235A) to minimize inflammatory activation.
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arterial proteoglycans (190, 195). Second, sulfated N-acetyl

galactosamine residues in CS-GAGs—critical for lipoprotein

retention—share structural homology with the sulfated galactose

head groups of sulfatides. Those similarities prompted the

hypothesis that chP3R99 mAb could also recognize CS-GAGs.

Hence, this engineered P3 mAb variant optimized for sulfated

sugar epitope binding, could potentially compete with ApoB-

containing lipoproteins for CS binding sites on arterial

proteoglycans, thereby preventing subendothelial retention.

To test this hypothesis, Soto et al. (2012) characterized the

reactivity of chP3R99 mAb to various GAGs. The study found that

chP3R99 exhibited higher binding affinity to sulfated GAGs compared

to the parental chP3 mAb, with preferential recognition to CS over

other GAGs (15). Next, the team evaluated chP3R99’s efficacy in

blocking LDL binding to CS. Solid-phase competition assays

indicated that chP3R99 inhibited approximately ~70% of LDL

binding to this GAG and further reduced ~80% of the LDL

oxidation that is potentiated by LDL-CS interaction (15). In vivo,

intravenous administration of chP3R99 in Sprague Dawley rats

revealed a specific accumulation of the mAb within the aortic wall,

associated with a significant decrease in LDL retention and subsequent

oxidation 24 hours after LDL inoculation (15).

We have recently extended these findings to the arterial retention

of both chylomicron remnants and LDL (the former being mediated by

the Site B-Ib motif of ApoB48) (57, 140). In vitro, chP3R99 recognized

CS and exhibited dose-dependent binding to ECM derived from rat

VSMC. Solid-phase blocking experiments with equivalent

concentrations of chP3R99 and ApoB48 demonstrated ~70%

reduction of remnant binding to both CS and ECM. For LDL,

comparable inhibition was observed for CS binding, while ~50%

blocking was achieved for ECM interaction (140). The study further

evaluated chP3R99 in obese insulin-resistant JCR: LA-cp rats, a model

of vascular remodeling with increased production of CS proteoglycans

and enhanced lipoprotein retention (45). Sequential perfusion of

carotids from those rats at a physiological rate—first with chP3R99,

followed by fluorescently labeled chylomicron remnants—

demonstrated dose-dependent inhibition of remnant retention in

situ. Notably, these particles displaced only ~35% of the chP3R99

bound to carotid tissue, while cholesterol deposition in the arterial wall

was drastically reduced by the treatment by ~80%, underscoring the

mAb’s efficacy for chylomicron remnants (140).

In a separate competitive perfusion experiment, carotid arteries

were exposed to a preparation containing equivalent particle

numbers of LDL and remnants (normalized by ApoB100/

ApoB48). Here, insulin-resistant rats exhibited 3.6-fold higher

LDL retention and 2.8-fold higher remnant retention compared

to lean controls. Despite remnants’ lower particle retention, their

cholesterol deposition was 6-fold greater than LDL, aligned with

their larger size and a higher cholesterol content per particle. In this

setting, chP3R99 reduced LDL retention more effectively by particle

count while its overall proportional impact on cholesterol

deposition was markedly greater for remnants, highlighting the

relevance of targeting both classes of lipoproteins (140).

While chP3R99’s efficacy against Lp(a) has not been tested yet, its

specificity for sulfated GAGs suggests potential to reduce ApoB100-
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mediated retention of Lp(a) by CS proteoglycans (196). However, Lp(a)

retention also comprises Apo(a)-specific mechanisms involving other

ECM components, including binding to fibronectin (197). These

additional mechanisms could limit chP3R99’s efficacy against Lp(a)

compared to other ApoB-containing lipoproteins whose retention

relies solely on proteoglycan interactions. Definitive evaluation

requires competitive binding assays with purified Lp(a) and in vivo

validation in LPA-transgenic models to dissect chP3R99’s therapeutic

potential for this high-risk lipoprotein.

The previous findings support chP3R99 as a passive therapy for

atherosclerosis, relying on direct binding to arterial proteoglycans over

secondary immune mechanisms. This strategy is particularly relevant

for secondary prevention in patients with advanced plaques requiring

acute stabilization, enabled by its Fc-silenced design to minimize

inflammatory risks (198). However, its potential in primary

prevention—such as high-risk populations with familial

hypercholesterolemia or elevated Lp(a)—requires further exploration,

given its mechanistic focus on lipoprotein retention. Unlike

immunization, which induces long-term protection, passive

administration provides immediate, transient blockade at high dose.
4.3 Vaccine-like effects of the chP3R99
mAb

In addition to its blocking properties, chP3R99 exhibits vaccine-

like effects mediated by its unique idiotype, which stimulates a robust

anti-idiotypic antibody cascade across species (15, 140, 142). This

immunogenic trait is inherited from P3, a murine antibody that

paradoxically demonstrated high intrinsic immunogenicity in

syngeneic BALB/c mice, even without adjuvants or carrier proteins

(199). The immunodominance of P3’s idiotype is driven by germline-

encoded T-cell epitopes within its murine variable regions, enabling

MHC class II presentation by APCs and ultimately the induction of an

anti-idiotypic cascade (190, 200). Remarkably, this immunodominance

persists in chP3 (191, 192) and chP3R99 (142) despite their chimeric

design, where the murine idiotype represents only ~30% of the

antibody’s structure, whereas the human IgG1 Fc portion is expected

to be immunodominant in mice (15).

This phenomenon aligns with the principles of Jerne’s idiotypic

network theory (1974) (201), wherein an antibody (Ab1) induces

anti-idiotypic antibodies (Ab2) specific for its idiotype. A subset of

these Ab2 (termed Ab2b) structurally mimics the antigen

recognized by Ab1, acting as an “internal image” of the antigen—

in this case, the sulfated sugar epitopes targeted by chP3R99. This

cascade is further amplified through the production of Ab3 (anti-

Ab2), which recapitulate the specificity of the original Ab1, thereby

enhancing therapeutic efficacy (Figure 5). As a result, both chP3R99

and the induced Ab3 recognize CS, preventing lipoprotein retention

and subsequent plaque formation (140, 142).

The vaccine-like effects of chP3R99 mAb are further characterized

by dose-dependent immunogenicity and broad applicability across age

and gender (202). This response typically reaches a plateau after four

mAb administrations (140, 202). Preclinical studies in ApoE mice

demonstrated that subcutaneous administration of the mAb induces
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anti-CS IgG1 antibodies, a Th2-associated subclass in mice, targeting

lipoprotein retention without eliciting proinflammatory responses, a

critical safety feature for atherosclerosis therapy (202). Notably, mice

exhibited comparable anti-CS antibody titers after immunization,

regardless of age or sex. A 4-fold increase in chP3R99 dose enhanced

both the magnitude and kinetics of the idiotypic cascade, generating

significantly higher Ab2 and Ab3 responses while reducing reactivity to

the human Fc domain (202).

While chP3R99’s murine idiotype drives robust responses in mice,

its immunogenicity in other animal models is subjected to cross-species

compatibility of T-cell epitopes and MHC binding affinity. Therefore,

original T-cell epitopes may lose immunogenicity in non-murine

systems, or model-specific epitopes may emerge (203). However, the

idiotype’s foreign nature ensures sustained immunogenicity across

diverse animal models, though the human constant regions could

potentially shift immunodominance toward the Fc portion. To date,

chP3R99 has consistently demonstrated immunogenicity in mice, rats,

and rabbits, inducing anti-CS antibodies capable of blocking

lipoprotein retention in all tested models (15, 140, 142). Unpublished

results have further validated its immunogenicity and idiotype

immunodominance in outbred NMRI mice and Landrace pigs,

underscoring its efficacy in genetically diverse populations.

On the other hand, translating chP3R99’s immunogenicity into

humans requires careful consideration of three factors (1): the HLA

polymorphism (204), (2) the need of T-cell epitopes to enable APC
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antigen presentation (203)—in this case solely restricted to the idiotype,

and (3) antibody engineering trade-offs (205). Indeed, the murine

idiotype of chP3R99 provides structural diversity for T-cell epitopes,

increasing the likelihood of compatibility with different HLA alleles to

ensure antigen presentation (204, 206). Although a fully murine format

may enhance its immunogenicity, there is a risk of shifting

immunodominance toward the Fc region, promoting anti-isotype

responses over idiotype-specific immunity critical for vaccination.

Conversely, full humanization may alter or disrupt T-cell epitopes

within the variable region abolishing anti-idiotype responses (203).

Therefore, chP3R99’s chimeric design aims to circumvent these

drawbacks: the murine idiotype likely retains its immunogenicity in

humans (via preserved T-cell epitopes) (205, 207) while the human

IgG1-LALA Fc improve safety, extends half-life for passive

immunotherapy, and avoids Fc-driven inflammation (15, 194).
4.4 Preclinical evidence of anti-
atherogenic effects of chP3R99 mAb

The chP3R99 mAb has shown compelling anti-atherogenic effects

in preclinical models, targeting both early and advanced stages of

atherosclerosis. Proof-of-concept was first established in an acute

atherosclerosis model using NZW rabbits, where the disease was

induced via 8-day intravenous Lipofundin 20% lipid emulsion (208).
FIGURE 5

Illustration of the idiotypic cascade in response to chP3R99 mAb. Immunization with the chP3R99 mAb (Ab1) elicits an idiotypic cascade of
endogenous antibodies in the host. The host produces anti-idiotypic antibodies (Ab2b) specific for the antigen-binding region of the Ab1.
Subsequently, anti-anti-idiotypic antibodies (Ab3) are generated, which mimic Ab1 by binding chondroitin sulfate GAGs.
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Prophylactic immunization with chP3R99 (100 µg SC weekly, 3 total

doses) prevented atheromatous lesions in 57% of animals, with the

remaining rabbits exhibiting only minor intimal thickening (15).

Notably, immunization with the parental chP3 mAb lacked this

protective effect. Treated rabbits also showed reduced lipid

peroxidation and preserved endothelial nitric oxide bioavailability,

demonstrating the vaccination capacity to mitigate oxidative stress

and vascular dysfunction (15). This preventative effect was further

validated in a chronic atherosclerosis model using ApoE−/− mice fed a

high-fat, high-cholesterol diet. Biweekly/weekly chP3R99

immunization (50 µg SC, 6 doses), starting at 6 weeks of age,

reduced aortic lesion area by 40–43% by week 18 (142). In both

models, the protection was associated with host-derived anti-CS

antibodies (Ab3) that blocked LDL-CS binding in vitro, supporting

the hypothesis of the induction of a protective idiotypic cascade. No

lipid-lowering effects were observed in those studies, emphasizing that

the mechanism of action relies on antibody-mediated inhibition of

LDL retention rather than lipid metabolic modulation (15, 142).

Subsequent studies investigated the therapeutic effects of

chP3R99 in established atherosclerosis using the preclinical models

described above. In rabbits, weekly subcutaneous administration of

chP3R99 (100 µg, 5 weeks) following Lipofundin-induced lesion

formation reduced atherosclerotic plaque burden, characterized by

a significantly decreased intimal thickening (209). In a parallel study,

18-week-old ApoE−/− mice were placed on a high-fat, high-

cholesterol diet for 14 weeks before vaccination and maintained on

this atherogenic diet throughout the experiment. In this model,

weekly subcutaneous administration of 50 µg of the vaccine over

six weeks effectively halted atherosclerotic lesion progression, even in

the presence of persistent hyperlipidemia (210). In both models,

chP3R99 vaccination reduced aortic oxidative stress, evidenced by

decreased levels of malondialdehyde and advanced oxidation protein

products, while enhancing antioxidant capacity and nitric oxide

bioavailability (209, 210).

Importantly, both male and female ApoE mice fed a

hypercholesterolemic diet exhibited comparable reductions in

atherosclerotic lesions (~35–40%) when immunized with

chP3R99 (202). Further dose-escalation studies in this model

revealed that higher doses of chP3R99 (200 µg/week) significantly

improved efficacy, achieving a 62% reduction in atherosclerotic

lesions compared to a 40% reduction at the dose of 50 µg/week

(202). At higher doses, it is plausible that the combined passive

effect of the mAb and the induction of anti-CS antibodies operate

synergistically to enhance the overall antiatherogenic effect.

Supporting this hypothesis, Brito et al. (2017) demonstrated that

chP3R99 conjugated to FITC preferentially accumulated within

aortic lesions in ApoE mice in vivo (211), while arterial

accumulation was similarly observed in rats (15, 140).

Additionally, recent studies in insulin-resistant JCR: LA-cp rats

fed a lipid-balanced hypercholesterolemic diet showed that anti-CS

antibodies induced by immunization specifically accumulated in

arterial regions, leading to reduced retention of LDL and

chylomicron remnants in carotid arteries (140). In ApoE mice
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with stablished plaques (11 weeks of disease progression),

chP3R99 limited lesion expansion at the aortic level and reduced

inflammatory infiltrates highlighting its therapeutic potential. These

findings support further investigation into chP3R99’s role in

mitigating advanced disease progression and its promise as a

candidate for secondary prevention strategies in high-risk

patients. Its ability to reduce advanced disease progression

positions chP3R99 as a promising candidate for secondary

prevention strategies in high-risk patients.

Beyond its therapeutic applications, chP3R99 also exhibits

significant diagnostic potential. In rabbits with early atherosclerosis

lesions induced by Lipofundin 20%, immunoscintigraphy using

radiolabeled 99mTc-chP3R99 demonstrated specific accumulation

within carotid lesions compared to healthy vessels (141).

Histological studies and biodistribution analyses further confirmed

a six-fold higher accumulation in atherosclerosis-prone regions of the

aorta in diseased animals compared to controls (141). Similarly, in

vivo immunofluorescence studies in ApoE mice demonstrated that

FITC-labeled chP3R99 preferentially accumulated in atherosclerotic

lesions within the aorta compared to a control mAb (142). These

findings highlight the ability of chP3R99 to specifically target

atherosclerotic lesions, supporting its potential for non-invasive

plaque imaging or site-specific therapeutic delivery.

While sulfated GAGs are physiologically relevant and widely

expressed across various tissues, chP3R99 has demonstrated high

vascular specificity, a crucial attribute for minimizing off-target

effects. Biodistribution studies support that chP3R99 exhibits high

selectivity for proteoglycans derived from VSMCs within

atherosclerotic lesions (140), with limited accumulation in non-

vascular tissues (141). Preclinical evaluations in mice, rats, and

rabbits revealed no adverse effects on lipoprotein metabolism or

signs of toxicity (15, 140–142). Specifically, in insulin-resistant and

wild-type rats, neither passive administration of chP3R99 nor

immunization with this mAb affected lipid or glucose

metabolism, hepatic or renal function, or blood cell indices (140).

Importantly, the Fc-silenced chP3R99-LALA variant further

eliminated Fc-mediated risks, reinforcing its safety profile and

translational potential for clinical applications (198, 212).

In summary, chP3R99 offers a multifaceted therapeutic

approach with potential applications in both primary and

secondary prevention of atherosclerotic disease. For primary

prevention, particularly in high-risk populations such as those

with familial hypercholesterolemia or elevated Lp(a),

immunization strategies may offer long-term protection by

inducing a sustained anti-atherogenic antibody response (213).

Conversely, in secondary prevention scenarios involving patients

with advanced plaques requiring acute intervention (214), passive

administration of chP3R99 could provide immediate benefits by

directly blocking lipoprotein retention. Future clinical trials should

prioritize cohorts with high atherogenic burden and those

unresponsive to conventional treatments to evaluate chP3R99´s

efficacy in addressing refractory lipoprotein retention and its

potential to improve outcomes in patients with established CVD.
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5 Conclusion

Despite advancements in lipid-lowering and anti-inflammatory

therapies, residual cardiovascular risk persists in atherosclerosis.

Existing therapies for CVD, while effective at reducing LDL

cholesterol, exhibit limited efficacy against Lp(a) and dietary-

derived remnant lipoproteins, the latter contributing significantly

to atherogenesis in chronic disease(s). Crucially, most interventions

prioritize systemic risk factors over targeting the arterial ECM,

where ApoB-containing lipoproteins bind sulfated GAGs chains on

proteoglycans, triggering oxidative stress and inflammation.

Therefore, the chP3R99 mAb represents a transformative shift in

the therapeutic landscape. By targeting arterial lipoprotein

retention, it disrupts atherogenesis through dual mechanisms (1):

direct blockade of ApoB-GAGs interactions (passive therapy) and

(2) induction of anti-idiotypic antibodies that sustain long-term

protection against proteoglycan-mediated retention (idiotypic

vaccine). Preclinical studies demonstrate that chP3R99 prevents

atherosclerosis initiation, arrests disease progression, and exerts

efficacy even in advanced lesions, consolidating sulfated GAGs as

pivotal mediators across all stages of atherogenesis and highlighting

the mAb’s broad therapeutic applicability. While translational

validation in humans and efficacy against Lp(a) remain essential,

this ECM-centric approach bridges a critical gap in current

therapies, offering a strategy to reduce residual risk and redefine

atherosclerosis management.
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