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Identification and validation of
mitophagy-related genes in
acute myocardial infarction and
ischemic cardiomyopathy and
study of immune mechanisms
across different risk groups
Ying Hao1,2, RuiLin Li1,2, ChengHui Fan1,2, Yang Gao1, Xia Hou1,
Wei wen1* and YunLi Shen1*

1Department of Cardiovascular Medicine, State Key Laboratory of Cardiovascular Diseases and
Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University,
Shanghai, China, 2Department of Cardiovascular Medicine, Shanghai East Hospital Ji’an Hospital, Ji’an,
Jiangxi, China
Introduction: Acute myocardial infarction (AMI) is a critical condition that can

lead to ischemic cardiomyopathy (ICM), a subsequent heart failure state

characterized by compromised cardiac function.

Methods: This study investigates the role of mitophagy in the transition from AMI

to ICM. We analyzed AMI and ICM datasets from GEO, identifying mitophagy-

related differentially expressed genes (MRDEGs) through databases like

GeneCards and Molecular Signatures Database, followed by functional

enrichment and Protein-Protein Interaction analyses. Logistic regression,

Support Vector Machine, and LASSO (Least Absolute Shrinkage and Selection

Operator) were employed to pinpoint key MRDEGs and develop diagnostic

models, with risk stratification performed using LASSO scores. Subgroup

analyses included functional enrichment and immune infiltration analysis, along

with protein domain predictions and the integration of regulatory networks

involving Transcription Factors, miRNAs, and RNA-Binding Proteins, leading to

drug target identification.

Results: The TGFb pathway showed significant differences between high- and

low-risk groups in AMI and ICM. Notably, in the AMI low-risk group, MRDEGs

correlated positively with activated CD4+ T cells and negatively with Type 17 T

helper cells, while in the AMI high-risk group, RPS11 showed a positive correlation

with natural killer cells. In ICM, MRPS5 demonstrated a negative correlation with

activated CD4+ T cells in the low-risk group and with memory B cells, mast cells,

and dendritic cells in the high-risk group. The diagnostic accuracy of RPS11 was

validated with an area under the curve (AUC) of 0.794 across diverse

experimental approaches including blood samples, animal models, and

myocardial hypoxia/reoxygenation models.
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Conclusions: This study underscores the critical role of mitophagy in the

transition from AMI to ICM, highlighting RPS11 as a highly significant biomarker

with promising diagnostic potential and therapeutic implications.
KEYWORDS

mitophagy, acute myocardial infarction, ischemic cardiomyopathy, machine learning,
diagnostic model
1 Introduction
Acute Myocardial Infarction (AMI), a severe form of coronary

heart disease, results from sudden coronary artery occlusion, leading to

myocardial ischemia and necrosis (1). Annually, it accounts for about 7

million new cases and roughly half of cardiovascular deaths globally.

Ischemic Cardiomyopathy (ICM), often following AMI or reflecting

advanced coronary disease, involves myocardial fibrosis from

prolonged ischemia, severely affecting heart function and causing

about 70% of heart failure cases (2).

Despite improved AMI management increasing survival, ICM’s

prevalence is rising. InWestern countries, ICM’s one-year mortality

rate is around 16%, with a five-year rate near 40%. Outcomes for

AMI-induced ICM patients are generally worse, with an increased

risk of severe cardiac events, compared to those with non-ischemic

cardiomyopathy (3).To improve the treatment of AMI and reduce

the incidence of subsequent ICM, it is crucial to explore the

pathophysiological mechanisms of post-myocardial infarction,

identify novel biomarkers for risk stratification, recognize high-

risk patients, and discover potential therapeutic targets.

Mitochondria play a pivotal role in several cellular processes

including signal transduction, redox balance, and energy

conversion. Cardiomyocytes, which are among the cells with the

highest mitochondrial content, can undergo mitophagy in

response to various stressors such as nutrient deficiency,

hypoxia, DNA damage, inflammation, or mitochondrial

membrane depolarization (4, 5). This process selectively removes

damaged mitochondria to maintain cellular homeostasis (6, 7).

During ischemia-reperfusion (I/R) injury, mitophagy is beneficial

as it clears defective mitochondria. Evidence indicates that mice

deficient in Drp1(dynamin - related protein 1) or Parkin manifest

impaired mitophagy and exhibit an enlarged myocardial

infarction area subsequent to I/R injury (8, 9). Conversely,

stress-induced activation of mitophagy can lead to excessive

clearance of mitochondria, resulting in inadequate ATP

(Adenosine Triphosphate) synthesis and ultimately precipitating

cardiomyocyte apoptosis. In experimental models, inhibition of

mitochondrial fission and mitophagy by knocking down Drp1 or

Mff (mitochondrial fiss ion factor) has led to dilated

cardiomyopathy (10, 11). These findings highlight the necessity

of mitophagy for normal heart function and suggest that excessive

mitochondrial division may be detrimental to cardiac health. The
02
pathophysiological mechanisms of mitophagy in AMI and ICM are

still unclear, and it remains uncertain whether the extent of

mitophagy affects the prognosis of these diseases. Further

investigation of its regulatory mechanisms is of significant

importance for the treatment of these diseases.

Machine learning algorithms are increasingly employed in

bioinformatics analysis, capable of managing dynamic,

voluminous, and complex datasets. These algorithms can detect

trends and patterns potentially overlooked by human analysis,

thereby significantly enhancing the reliability of diagnostic

systems. Previous studies have applied machine learning to

analyze and identify mechanisms and biomarkers for the

development of ischemic heart failure following acute myocardial

infarction (12). However, these studies often provide broad

conclusions and do not specifically address mitophagy. In

research conducted by ZhiKai Yang and colleagues, various

machine learning algorithms were utilized to study differences in

mitophagy between patient groups with acute myocardial infarction

and stable coronary artery disease (13). While this research

underscored the significant role of mitophagy in coronary artery

disease, it did not address the subset of patients with the worst

prognosis who progress from myocardial infarction to

ischemic cardiomyopathy.

This study conceptualized AMI and ICM as stages of a single

pathological process, using bioinformatics and machine learning to

explore mitophagy’s role (Figure 1). We identified key mitophagy

genes and signaling pathways influencing the transition from AMI

to ICM, revealing potential biomarkers for diagnosis, risk

stratification, and new insights into the treatment and prognosis

of these cardiovascular conditions.
2 Materials and methods

2.1 Data collection and processing

Using the R package GEOquery (14), we downloaded two

datasets each for AMI [GSE48060 (15) and GSE29532 (16)] and

ICM [GSE116250 (17) and GSE46224 (18)] from the GEO (19)

database (https://www.ncbi.nlm.nih.gov/geo/). Comprehensive

details are available in Supplementary Tables S1, S2. The R

package sva (20) was utilized for batch correction and integration,

producing the consolidated GEO datasets for AMI and ICM. The R
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package limma (21) facilitated normalization and standardization,

followed by principal component analysis (22). Mitophagy-related

genes (MRGs) were sourced from the GeneCards database (23)

(https://www.genecards.org/) and the Molecular Signatures

Database (MSigDB) (24) (https://www.gsea-msigdb.org/gsea/

msigdb), yielding a total of 1633 unique MRGs (mitophagy-

related genes) after merging and deduplication, as detailed in

Supplementary Table S3.
2.2 Differentially expressed genes between
AMI and ICM

The analysis of differential gene expression was carried out for

both AMI and ICM using the limma package in R. After reviewing

literature (25, 26) and testing various thresholds, we chose |logFC| > 0
Frontiers in Immunology 03
and P < 0.05 to ensure robust results while maximizing the inclusion

of as many biologically significant differentially expressed genes as

possible. Genes with logFC above 0 and a p-value below 0.05 were

categorized as up-regulated, whereas those with logFC below 0 and

the same p-value threshold were categorized as down-regulated.

Venn diagrams were employed to depict the overlap between up-

regulated and down-regulated genes, and further intersections with

MRGs (mitophagy-related genes) were analyzed to pinpoint

MRDEGs (mitophagy-related differentially expressed genes).
2.3 Protein-protein interaction network
construction and hub gene selection

The STRING database (27) (https://string-db.org/) facilitated

the construction of a PPI network based on MRDEGs(mitophagy-
FIGURE 1

Flow chart for the comprehensive analysis of MRDEGs. AMI, Acute Myocardial Infarction; ICM, Ischemic Cardiomyopathy; DEGs, Differentially
Expressed Genes; MRGs, Mitophagy-Related Genes. MRDEGs, Mitophagy-Related Differentially Expressed Genes; SVM, Support Vector Machines;
LASSO, Least Absolute Shrinkage and Selection Operator; ROC, Receiver Operating Characteristic; GSEA, Gene Set Enrichment Analysis; GSVA, Gene
Set Variation Analysis, PPI Network, Protein-Protein Interaction Network. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;
TF, Transcription Factor; RBP, RNA-Binding Protein.
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related differentially expressed genes), employing a minimum

interaction confidence score of 0.400(medium confidence).

Interactions with a confidence score above this threshold are

considered to be sufficiently supported by evidence, thereby

filtering out potential false-positive results. The CytoHubba (28)

plugin within Cytoscape (29) software applied five algorithms—

Maximum Neighborhood Component (MNC), Maximal Clique

Centrality (MCC), Edge Percolated Component (EPC), Degree,

Closeness (30)—to compute scores for MRDEGs, selecting the

top 20 MRDEGs. The intersection of results from these

algorithms identified hub genes related to AMI and ICM. By

performing multi-analysis screening using the STRING database

and five algorithms in Cytoscape, the reliability of the results was

enhanced, and errors that might arise from relying on a single

algorithm were minimized.
2.4 Protein domain prediction and
regulatory network construction

AlphaFoldDB (31) (https://alphafold.com) predicted and

visually displayed the protein structures of hub genes, assessed by

a Predicted Local Distance Difference Test (pLDDT) score ranging

from 0 to 100. The regulatory network between the mRNA of 9 hub

genes and 48 transcription factors (TFs) was predicted using the

ChIPBase (32) database (http://rna.sysu.edu.cn/chipbase/).

Potential interactions between mRNA and miRNAs, as well

as mRNA and RNA-binding proteins (RBPs) (33), were screened

using the StarBase v3.0 database (34) (https://starbase.sysu.edu.cn/),

and the networks were visualized using Cytoscape software. This

analysis included 4 hub genes and 27 miRNAs, as well as 10 hub

genes and 43 RBPs. Furthermore, the Comparative Toxicogenomics

Database(CTD) (35) (https://ctdbase.org/) was employed to identify

potential drugs or molecular compounds associated with the hub

genes. The mRNA-Drug regulatory network was constructed and

subsequently visualized using Cytoscape software, comprising 8

hub genes and 15 drugs or molecular proteins.
2.5 Hub gene expression difference and
correlation analysis

Expression levels of MRDEGs(mitophagy-related differentially

expressed genes) in the Combined Datasets were compared using

group comparison graphs. The Spearman algorithm analyzed the

correlation of hub gene expressions, with the R packages igraph (36)

and ggraph illustrating correlations and chord diagrams. Scatter

plots by the ggplot2 R package displayed the strongest correlated

hub genes.
2.6 Functional enrichment analysis
of MRDEGs

Gene Ontology(GO) (37) and Kyoto Encyclopedia of Genes and

Genomes(KEGG) (38) enrichment analysis of hub genes was
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performed using the R package clusterProfiler (39), electing

results based on an adjusted p-value < 0.05. The Pathview R

package (40) visualized the pathway enrichment analysis results.
2.7 GSEA and GSVA analysis

GSEA (41) (Gene Set Enrichment Analysis)analysis was

executed on the combined datasets for AMI and ICM using the

clusterProfiler package in R, with the following settings: seed value

at 2023, a gene set size range from 10 to 500, and the gene set

c2.cp.all.v2022.1.Hs.symbols.gmt [All Canonical Pathways]. The

threshold for significance was set at a p-value below 0.05.

Additionally, GSVA (42) (Gene Set Variation Analysis)was

applied to all genes within the combined datasets of AMI and

ICM, utilizing gene sets fromMSigDB (24), adhering to the same p-

value criterion for selection.
2.8 Diagnostic model construction

We utilized multiple machine learning algorithms, including

Logistic Regression, Support Vector Machine (SVM) (43), and Least

Absolute Shrinkage and Selection Operator (LASSO) regression

analysis, to identify key genes for constructing diagnostic models for

AMI and ICM. This approach is grounded in several studies of

significant scientific value in the field of bioinformatics (44, 45). The

models were implemented using the R package glmnet, with

parameters set.seed (500) and family=‘binomial’ (46).The key

genes chosen from AMI and ICM to determine the RiskScore,

employing coefficients obtained from LASSO regression analysis.

RiskScore  =  oiCoefficient (genei) ∗mRNA Expression (genei)
2.9 Diagnostic model validation and key
gene ROC curve analysis

ROC(Receiver Operating Characteristic) curves were plotted for

the diagnostic models of AMI Key Genes and ICM Key Genes using

the pROC package in R. Additionally, nomograms (47) illustrating

the relationships between Key Genes were generated with the rms

package in R. Calibration analysis was conducted to evaluate the

precision and discriminatory capacity of the diagnostic models for

AMI and ICM. Decision Curve Analysis (DCA) (48) for predicting

clinical outcomes using AMI Key Genes and ICM Key Genes was

performed using the ggDCA package in R. Moreover, Functional

Similarity (Friends) analysis was carried out with the GOSemSim R

package (49).
2.10 High- and low-risk group differential
expression analysis, GSEA, GSVA

To enhance the reliability of our methodology, we drew upon

the approach proposed by Zhang L et al. (50), and utilized
frontiersin.org
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mitophagy-related RiskScore to subgroup the AMI group for

further in-depth analysis. Based on the formula outlined in

section 2.8, we calculated the RiskScore for acute myocardial

infarction (AMI) samples within the AMI Combined Datasets,

utilizing the regression coefficients derived from the LASSO

model specifically for AMI. The median RiskScore was

instrumental in categorizing the samples into HighRisk and

LowRisk groups. Samples with a risk score above the median

were classified into the HighRisk group, while those with a risk

score equal to or below the median were classified into the LowRisk

group. A similar methodology was applied to determine the

RiskScore for ischemic cardiomyopathy (ICM) samples in the

ICM Combined Datasets, again using the LASSO regression

coefficients pertinent to ICM. The samples were classified into

HighRisk and LowRisk categories based on their median

RiskScores. These two sets of high- and low-risk classifications

will be utilized for subsequent subgroup analyses independently.

Differential analysis was carried out with the limma package in R,

with visualization of the results achieved through the ggplot2 and

pheatmap packages in R.

GSEA (41) was conducted on AMI samples in the AMI

Combined Datasets and ICM samples in the ICM Combined

Datasets with clusterProfiler package in R. GSVA (42) was

applied to the HighRisk and LowRisk groups of AMI and ICM

samples, respectively. The same gene sets, parameters, and

screening criteria were used as in previous analyses.
2.11 Immune infiltration analysis of
HighRisk and LowRisk groups

Immune cell infiltration matrices were determined through

single sample gene set enrichment analysis (ssGSEA) (51) for

samples of AMI and ICM. Comparison graphs for the groups

were created using ggplot2 to illustrate the variance in immune

cell expression between the LowRisk and HighRisk groups in AMI

and ICM. The detailed subgroup classification method can be found

in section 2.10.
2.12 Validation of peripheral blood samples

The Ethics Committee of Shanghai East Hospital, affiliated with

Tongji University, approved this study(Approval number 2024-

175), which follows the Declaration of Helsinki guidelines. Once

written informed consent was secured from all participants,

peripheral blood samples were collected from six individuals each

with diagnoses of AMI and ICM, and from six normal subjects.

Venous blood samples were collected into whole blood RNA

preservation tubes (model ZXQX-10). After centrifugation and

sedimentation, total RNA was extracted from peripheral blood

mononuclear cells (PBMCs) employing the TransZol Up Plus

RNA kit (TransGen, China). The integrity and purity of the

extracted RNA were evaluated using the GEN5 microplate reader

(biotek, USA). Quantitative real-time PCR (RT-qPCR) experiments

were performed on the Q5 Real-Time PCR Detection System
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(Thermo, USA). Glyceraldehyde-3-phosphate dehydrogenase

(GADPH) was used as the internal control to normalize the data.

Relative expression levels of the target genes were determined using

the 2-DDCt method.
2.13 Experimental validation

2.13.1 Experimental animals
For the animal experiments, we obtained eight-week-old male

C57BL/6 mice from Shanghai Lingchang Biotechnology Co.

(Shanghai, China). The mice were housed under controlled

conditions of temperature (23°C) and humidity (65%) with a 12/

12-hour light/dark cycle. All experimental procedures were

conducted in strict compliance with national regulations

regarding animal welfare and ethics. The study was approved by

the Ethics Committee of Shanghai East Hospital, associated with

Tongji University.

2.13.2 Establishment of myocardial
infarction model

Twenty-four mice were randomly assigned into two groups:

Myocardial Infarction (MI) and Sham, with 12 mice in each group.

In each group, six mice were randomly selected for histological

staining and immunohistochemistry, while the remaining six were

used for molecular analyses. Myocardial infarction was induced in

the MI group by ligating the left anterior descending (LAD)

coronary artery. Post-ligation, the myocardium exhibited a color

change from bright red to pale, accompanied by a gradual

weakening of contraction. Electrocardiographic (ECG)

monitoring confirmed the successful establishment of the MI

model, as indicated by ST-segment elevation and the presence of

a J wave following the ST-segment. The Sham group underwent the

same surgical procedure without LAD ligation. Cardiac function

was assessed via echocardiography on the day following surgery.

2.13.3 Hematoxylin & eosin, masson staining,
and immunohistochemistry

Hematoxylin and Eosin (HE) staining and Masson staining

were performed on cardiac tissue sections using the respective kits

(Beyotime, C0105M). These staining procedures were used to

observe and analyze the morphological characteristics of the

cardiac tissues. The heart tissue sections were deparaffinized,

rehydrated, autoclaved with citrate buffer (pH 6.0) for 10 minutes

for antigen repair, cooled to room temperature, and then sealed for

15 minutes with 3% H2O2 for endogenous peroxidase activity.

Sections were washed with PBS (Phosphate - Buffered Saline) and

blocked with 10% goat serum for 30 minutes. They were then

incubated overnight at 4°C with a primary antibody (anti-RPS11

antibody, 1:200, Proteintech, 17041-1AP). The following day,

biotinylated secondary antibody (1:500) and streptavidin-HRP

(Horseradish Peroxidase) were incubated sequentially at room

temperature for 30 minutes each after washing with PBS, and the

nuclei were washed with PBS and stained with DAB(3,3’ -

Diaminobenzidine tetrahydrochloride), and the nuclei were lightly

post-stained with hematoxylin. The expression of RPS11 protein
frontiersin.org
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was indicated by a brownish-yellow signal, and the area and

intensity of the positive signal were analyzed using Image-Pro

Plus software.

2.13.4 RT-PCR
Total RNA was extracted from mouse heart tissues using Trizol

reagent (Beyotime, R0016). The detailed methods, steps, and

reagents follow those described in section 2.12, RT-PCR operations.

2.13.5 Establishment of the myocardial H/R
model and detection of apoptosis rate by
flow cytometry

In this study, H9c2 cardiomyocytes were selected and cultured

at 37°C and 5% CO2 in sugar-rich DMEM(Dulbecco’s Modified

Eagle Medium) medium supplemented with 10% fetal bovine serum

(FBS) and 1% penicillin/streptomycin (P/S). When the cells reached

the logarithmic phase, they were divided into two groups according

to the experimental requirements: the normoxic control group (the

Control group) and the hypoxia-reoxygenation group (the H/R

group). In the construction of the hypoxia-reoxygenation model,

the cells in the hypoxia-reoxygenation group(the H/R group) were

first placed in a three-gas incubator (1% O2, 5% CO2, 94% N2) with

sugar-free DMEM instead of the conventional medium for a 4-hour

hypoxia treatment; then the cells were replaced with the

conventional medium (sugar-rich DMEM, 10% FBS, 1% P/S) and

placed in the conventional medium at 37°C and 5% CO2 for a 4-

hour reoxygenation. The cells of the normoxic control group (the

Control group) were always cultivated in a conventional incubator

without changing the culture medium. After the establishment of

the model, the cells in each group were subjected to flow cytometry

using the Annexin V-FITC/PI double staining kit (MCE,HY-

K1073), and the apoptosis rate was analyzed according to the

instructions of the kit.
2.13.6 Gene knockdown via plasmid transfection
& western blot

To investigate the role of the RPS11 gene in the hypoxia/

reoxygenation process of cardiomyocytes, H9c2 cardiomyocytes

were divided into three groups in this experiment: Hypoxia-

reoxygenation group (the H/R group), hypoxia-reoxygenation +

RPS11 knockdown group (the H/R+siRPS11 group) and hypoxia-

reoxygenation + empty vector control group (the H/R+siCON

group). Knockdown transfection was performed 24 hours before

hypoxia treatment with siRNA Transfection Reagent (Sigma-

Aldrich, SITRAN-RO) according to the instructions. The cells in

the H/R+siRPS11 group were transfected with the siRPS11 plasmid

(MCE, HY-RS12221); the cells in the H/R+siCON group were

transfected with the empty plasmid (siCON). Twenty-four hours

after transfection, the cells were placed in a triple gas incubator for a

4-hour hypoxia treatment (1% O2, 5% CO2, 94% N2). The cells were

shifted to a regular incubator following the replacement of the

standard medium for a 4-hour reoxygenation phase at 37°C and no

CO2. The anoxia treatment and reoxygenation methods were

performed as described previously.
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After modeling each experimental group, cellular protein

samples were collected for Western blot assay. After the protein

samples were lysed with RIPA (Radioimmunoprecipitation Assay

Buffer) lysate, the total protein concentration was determined using

the BCA (Bicinchoninic Acid) protein concentration assay

kit (Thermo Fisher Scientific, USA), and the same amount of

protein (30μg per well) was loaded onto an SDS-PAGE (Sodium

Dodecyl Sulfate - Polyacrylamide Gel Electrophoresis) gel for

electrophoresis. After electrophoresis, proteins were transferred to

PVDF (Polyvinylidene Fluoride) membranes (Millipore, USA),

sealed with 5% skimmed milk powder for 1 hour at room

temperature, and then incubated with primary antibodies

(including anti-GAPDH (MCE, HY-P80137), anti-b-actin (MCE,

HY-P80438), anti-RPS11 (Proteintech, 17041-1AP), anti-BNIP3

(BCL2 protein-interacting protein 3) (MCE, HY-P80035), and

anti-LC3II/I (Microtubule-associated protein 1 light chain 3 II/I)

(Aladdin,Ab112877) separately at 4°C overnight. The membranes

were treated as follows the next day: they were washed three times,

for 10 minutes each, with PBST(Phosphate - Buffered Saline

Tween), and then incubated for an hour with the secondary

antibodies (HRP-marked). Protein signals were detected using the

ECL(Enhanced Chemiluminescence) chemiluminescence kit

(MACKLIN, E917966), and the grey levels of target proteins were

analyzed using Image Lab software (Bio-Rad, USA) and normalized

using GAPDH and b-actin as internal references. The experiment

was repeated three times and the results were expressed as mean ±

standard deviation.
2.14 Statistical analysis

This article’s data processing and analyses were performed with

R software (Version 4.3.0). We assessed the statistical significance of

continuous variables across two groups using the independent

Student’s T-Test. For variables that did not follow a normal

distribution, the Mann-Whitney U test (also referred to as the

Wilcoxon Rank Sum Test) was utilized. The Kruskal-Wallis test was

applied to analyze data involving three or more groups. Spearman’s

correlation analysis determined the relationships among various

molecules. All statistical tests were two-sided, and a p-value

threshold of less than 0.05 was considered significant.
3 Results

3.1 Identification of differentially
expressed genes

Batch effects were meticulously removed from AMI datasets

GSE48060 and GSE29532, culminating in the creation of the AMI

Combined Datasets (Figures 2A, B, E, F). In a similar manner, batch

effects were eliminated from RPKM(Reads Per Kilobase of

transcript per Million mapped reads)data for ICM datasets

GSE116250 and GSE46224, producing the ICM Combined

Datasets (Figures 2C, D, G, H).
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Within the AMI Combined Datasets, a total of 1472 genes were

identified as differentially expressed, encompassing 677 upregulated

and 795 downregulated genes (Figures 2I, K). Concurrently, the

ICM Combined Datasets revealed 7572 DEGs(differentially

expressed genes), including 3557 upregulated and 4015

downregulated genes (Figures 2J, L).

A comparison of genes from both datasets showed that 429

genes were differentially expressed in both AMI and ICM, with 237

downregulated (Figure 2M) and 192 of these genes upregulated

(Figure 2N). Additionally, 61 MRDEGs(mitophagy-related
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differentially expressed genes) were isolated through the

intersection of the DEGs with genes related to mitophagy

(Figure 2O), detailed further in Supplementary Table S4.
3.2 Building the PPI network and
determining hub genes

Utilizing the STRING database, an interrelationship was

established among 52 MRDEGs (mitophagy-related differentially
FIGURE 2

Data set standardization, differential gene expression analysis. (A-H) Standardization and batch removal of AMI (A, B, E, F) and ICM (C, D, G, H)
combined datasets. (I-O) Differential gene expression analysis for AMI (I, K) and ICM (J, L), with Venn diagrams illustrating down-regulated (M) and
up-regulated genes (N), and common DEGs and MRGs (O).
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expressed genes), forming a robust PPI network (Figure 3A). These

genes were evaluated and ranked using five distinct algorithms within

Cytoscape, leading to the identification of the top 20 MRDEGs

(Figures 3B–F). A cross-analytical approach among these algorithms

revealed 11 critical Hub Genes associated with both AMI and ICM:

POLR2B, RPS11, MRPS5, METAP1, HNRNPA2B1, XRN1, GART,

GFM1, TNPO1, LIG3, and AGK (Figure 3G).
3.3 Protein domain prediction and
regulatory network construction

Protein structures for the 11 Hub Genes were predicted and

visualized using AlphaFoldDB (Figures 4A–K). Nine of these genes

demonstrated high structural confidence (pLDDT > 90) across their

main domains: POLR2B, RPS11, MRPS5, METAP1, HNRNPA2B1,
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XRN1, GART, TNPO1, and AGK; the remaining two, LIG3 and

GFM1, showed substantial confidence (70 < pLDDT < 90).

The regulatory network was expanded to include 48 transcription

factors linked to 9 Hub Genes, constructing an mRNA-TF network

(Figure 4L, detailed in Supplementary Table S5). Moreover, regulatory

networks involving 27 miRNAs binding to 4 hub genes and 43 RBPs

associated with 10 Hub Genes were elucidated (Supplementary Table

S5, Figures 4M, N, respectively). An mRNA-drug interaction network

involving 8 Hub Genes and 15 drugs or molecular compounds was

also constructed (Figure 4O, detailed in Supplementary Table S5).
3.4 Hub gene expression difference and
correlation analysis

Substantial differences were detected in the expression levels of

9 Hub Genes between the AMI group and the control group, with
FIGURE 3

PPI network and hub genes analysis. (A) PPI network from the STRING database of mitophagy-related differentially expressed genes (MRDEGs)
calculated from STRING database. (B-F) PPI networks of the top 20 MRDEGs identified by five CytoHubba algorithms [MCC (Maximal Clique
Centrality), MNC (Maximum Neighborhood Component), Degree, Closeness, EPC (Edge Percolated Component)]. (G) A Venn diagram of the top
20 MRDEGs.
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genes AGK, GART, HNRNPA2B1, LIG3, METAP1, POLR2B,

RPS11, TNPO1, and XRN1 showing statistically significant

differences (p-value < 0.05) (Figures 5A, D). The most

pronounced positive correlation was between GFM1 and AGK,

showing a p-value less than 0.001 and a correlation coefficient (r-

value) of 0.716 (Figure 5B), while the strongest negative correlation

was noted between RPS11 and POLR2B, with an r value of -0.371

and a p-value less <0.001 (Figure 5C).

When contrasting the ICM group with the control group, 10

Hub Genes revealed noteworthy distinctions in their expression

levels, with statistical significance (p-value < 0.05): AGK, GART,

HNRNPA2B1, LIG3, METAP1, MRPS5, POLR2B, RPS11, TNPO1,

and XRN1 (Figures 5E, H). In this group, the strongest positive

correlation was found betweenMRPS5 andHNRNPA2B1 (r-value =

0.645, p-value < 0.001, Figure 5F), while the most significant
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negative correlation was noted between RPS11 and POLR2B (r-

value = -0.698, p-value < 0.001, Figure 5G).
3.5 Functional enrichment analysis

After converting the hub genes into gene IDs, comprehensive

GO and KEGG analyses were performed. Key biological processes

identified included the DNA biosynthetic process, the regulation of

telomere maintenance via telomere lengthening, telomere

maintenance via telomere lengthening, regulation of DNA

biosynthetic process (Figures 6A–D, Supplementary Table S6).

The KEGG pathway analysis further elucidated the relationship

between Hub Genes and critical signaling pathways. These genes

exhibited notable enrichment primarily in pathways such as
FIGURE 4

Protein structure, regulatory network of hub genes. (A-K) Protein structures of hub genes. (L-O) Regulatory networks of hub genes: mRNA-TF
(L), mRNA-miRNA (M), mRNA-RBP (N), mRNA-Drug (O).
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Ribosome Pathway, the Antifolate Resistance, One Carbon Pool by

Folate, RNA polymerase, and Base excision repair (Figures 6E, F,

Supplementary Figure 1).
3.6 GSEA and GSVA

The GSEA highlighted that all genes in the AMI Combined

Datasets were significantly associated with biological functions

including regulation of cell death, inflammatory mediators, and their

signaling pathways (Figures 7A, C–F, Supplementary Table S7).

Similarly, genes in the ICM Combined Datasets were predominantly

linked to inflammatory responses and pathways like Tgf Beta, Nfkb,

among others (Figures 7B, G–J, Supplementary Table S8).
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In the GSVA, significant distinctions were noted in the

enrichment of specific functions and pathways between the

datasets. For the AMI Combined Datasets, notable pathways

included Reactive Oxygen Species Pathway, Cholesterol

Homeostasis , and Tgf Beta Signaling (Figures 7K, L,

Supplementary Table S9). In the ICM Combined Datasets,

numerous pathways demonstrated significant enrichment. By

applying stringent criteria, including a p-value < 0.05 and ranking

by logFC, we identified the top 10 pathways demonstrating positive

enrichment as well as the top 10 pathways displaying negative

enrichment. This selection includes pathways such as Unfolded

Protein Response, E2f Targets, Spermatogenesis, Heme

Metabolism, Peroxisome, and Myogenesis, among others

(Figures 7M, N, Supplementary Table S10).
FIGURE 5

Differential expression and correlation analysis. Hub gene comparison in AMI dataset (A) and in ICM dataset (E). Correlation and chord plots of hub
genes in AMI datasets (D) and ICM datasets (H). Correlation scatter plots between Hub Genes in AMI datasets (B, C) and in ICM datasets (F, G). (***p
< 0.001, **p < 0.01, *p < 0.05, ns p >0.05).
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3.7 Confirmation of key genes through
machine learning

For AMI, a logistic regression model utilizing 11 hub genes

identified 10 significant contributors (Figure 8A). Additionally, an

SVM(support vector machine) model highlighted 7 pivotal genes

with minimal error rates and maximum accuracy (Figures 8B, C).

Critical genes such as RPS11 and AGK were further affirmed

through LASSO(Least Absolute Shrinkage and Selection

Operator) regression, which refined the AMI diagnostic model to

include 4 key genes: RPS11, METAP1, HNRNPA2B1, and AGK

(Figures 8D, E). In ICM diagnosis, logistic regression, SVM, and

LASSO models emphasized the diagnostic relevance of genes like

MRPS5, METAP1, and HNRNPA2B1 (Figures 8N–R).

3.8 Diagnostic value assessment

The ROC(Receiver Operating Characteristic) curve generated

from the RiskScore of the diagnostic model for AMI demonstrated
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an AUC (Area Under the Curve) of 0.833 (Figure 8F), indicating

high diagnostic accuracy. The ROC curve for the key gene RPS11

had an AUC value of 0.794, with other genes having AUC values

between 0.5 and 0.7 (Figures 8G–J). The nomogram highlighted the

significant contribution of RPS11 expression to improving the

diagnostic utility of the AMI model over other factors (Figure 8M).

Similarly, the ICM diagnostic model showed high diagnostic

accuracy with a risk score AUC of 0.996, and key genes MRPS5

(AUC 0.929), HNRNPA2B1 (AUC 0.877), and METAP1 (AUC

0.855) also demonstrating high diagnostic accuracy (Figures 8S–V).

The nomogram indicated that the expression of MRPS5 notably

enhances the diagnostic utility of the ICM model over other

variables (Figure 8W). Calibration curve analysis and DCA

(Decision Curve Analysis) showed that both AMI and ICM

diagnostic models perform well with significant net benefits

(Figures 8K, L, X, Y).

Analysis conducted via the Friends algorithm indicated that

RPS11 is the gene proximate to the critical threshold (cut-off value =

0.60) in the context of AMI as depicted in Figure 9S. Similarly,
FIGURE 6

GO and KEGG enrichment analysis for hub genes. (A-E) GO and KEGG enrichment analysis for hub genes. (F) Visualization of the Ribosome pathway
in the KEGG pathway enrichment analysis.
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HNRNPA2B1 emerges as the gene nearest to the critical threshold

(cut-off value = 0.60) within ICM, as illustrated in Figure 9T. These

findings suggest that each of these genes holds a significant role in

the pathogenesis of AMI and ICM, respectively.
3.9 GSEA for HighRisk and LowRisk groups

An analysis within the AMI samples identified 2504 DEGs

(differentially expressed genes), meeting the criteria of having an |
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logFC |> 0 and a p-value < 0.05 between high and low-risk groups.

The detailed subgroup classification method can be found in section

2.10. Among these DEGs, 1193 genes were upregulated, while 1311

were downregulated (Figures 9A, B). Subsequent GSEA revealed

significant enrichment across various biological functions and

signaling pathways including WNT5A-dependent internalization

of FZD4, the Hedgehog signaling pathway, Wnt ligand biogenesis

and trafficking, and ADORA2B-mediated production of anti-

inflammatory cytokines (Figures 9C–G). The specific results of

this analysis are documented in Supplementary Table S11.
FIGURE 7

GSEA and GSVA analysis for AMI and ICM combined datasets. (A-J) GSEA of AMI and ICM combined datasets, detailing biological functions [(A) for
AMI, (B) for ICM] and enrichment pathways [(C-F) for AMI, (G-J) for ICM]. (K-N) GSVA for AMI and ICM datasets, represented by heat maps [(K) for
AMI, (M) for ICM] and group comparison maps [(L) for AMI, (N) for ICM]. (***p < 0.001, **p < 0.01, *p < 0.05, ns p >0.05).
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Similarly, for ICM samples, 1875 DEGs (differentially expressed

genes) met the established criteria, with 803 genes upregulated and

1072 genes downregulated (Figures 9H, I). The GSEA for these

samples indicated significant enrichment in pathways associated

with Oxidative Stress Response, IL1 and Megakaryocytes In

Obesity, Photodynamic Therapy-induced NFkb Survival

Signaling, and TGF-beta Receptor Signaling In Skeletal Dysplasias

(Figures 9J–N), with comprehensive details provided in

Supplementary Table S12.
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3.10 GSVA for HighRisk and
LowRisk groups

For AMI samples, GSVA differentiated the top 10 positively

and negatively enriched pathways between HighRisk and LowRisk

groups based on p-values less than 0.05 and logFC rankings

(Figures 9O, P, Supplementary Table S13). The detailed

subgroup classification method can be found in section 2.10.

Validation via the Mann-Whitney U test reaffirmed the
FIGURE 8

Diagnostic model and ROC curve analysis. Forest plots of hub genes included in the logistic regression model for AMI (A) and ICM (N). Visualization of
genes with the lowest error rate [(B) for AMI, (O) for ICM] and highest accuracy [(C) for AMI, (P) for ICM] obtained by the SVM algorithm. Diagrams of
variable trajectories and diagnostic models using the LASSO regression model for AMI (D, E) and ICM (Q, R). ROC curves for risk scores and key genes in
AMI (F-J) and ICM (S-V) datasets. Nomograms, calibration curves, and decision curve analysis (DCA) plots for key genes in AMI (K–M) and ICM (W–Y).
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statistical significance (p-value < 0.05) of 10 pathways between the

HighRisk and LowRisk groups, including pathways such as

Myogenesis, KRAS Signaling Down, Epithelial-Mesenchymal

Transition, Pancreas Beta Cells, Heme Metabolism, UV

Response Down, Estrogen Response (Late and Early), TGF-beta

Signaling, and Protein Secretion.
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The analysis of ICM samples highlighted 12 pathways showing

statistically significant differences between HighRisk and LowRisk

groups (Figures 9Q, R, Supplementary Table S14), including

pathways involved in P53 Pathway, IL6_JAK_STAT3 Signaling,

TNFA Signaling Via NFKB, Hypoxia, and Spermatogenesis, KRAS

Signaling Up, IL2_STAT5 Signaling, Coagulation.
FIGURE 9

GSEA and GSVA for risk groups, friends analysis of AMI&ICM key genes. (A-G) GSEA for AMI high and low-risk groups, including volcano plots (A),
heat maps (B), biological function mountain map (C) and enrichment pathways (D-G). (H-N) GSEA for ICM high and low-risk groups, including
volcano plots (H), heat maps (I), biological function mountain map (J) and enrichment pathways (K-N). (O, P) GSVA analysis of AMI high and low-risk
groups, illustrated by heat maps (O) and group comparison (P) maps. (Q, R) GSVA analysis for ICM high and low-risk groups, with corresponding
heat maps (Q) and comparison maps (R). (S, T) Friends analysis of key genes in AMI (S) and ICM (T). (***p < 0.001, **p < 0.01, *p < 0.05, ns p >0.05).
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3.11 ssGSEA for HighRisk and
LowRisk groups

In AMI samples, ssGSEA analysis revealed distinct variations in the

presence of six types of immune cells between the high and low-risk

groups. Please refer to Section 2.10 for the detailed grouping method of

high and low-risk subgroups. These included activated CD4+ T cells,
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CD56 bright natural killer cells, central memory CD4+ T cells, natural

killer cells, Type 17 T helper cells, and Type 2 T helper cells, as

illustrated in Figure 10A. Notably, the LowRisk group exhibited a

substantial negative correlation between Type 17 T helper cells and

activated CD4+ T cells(r-value = -0.579, p-value < 0.05) (Figure 10B),

and similar trends were observed in the HighRisk group (Figure 10C).

The gene AGK exhibited a significant positive association
FIGURE 10

Immune infiltration analysis for AMI and ICM risk groups using ssGSEA. (A-E) AMI risk group immune infiltration analysis: Immune cell comparison in
LowRisk and HighRisk groups (A). Correlation of immune cell infiltration in HighRisk (B) and LowRisk (C) groups. Bubble plots of immune cell
infiltration and Key Genes correlation in LowRisk (D) and HighRisk (E) groups. (F-J) ICM risk group immune infiltration analysis: Immune cell
comparison in LowRisk and HighRisk groups (F). Correlation of immune cell infiltration in LowRisk (G) and HighRisk (H) groups. Bubble plots of
immune cell infiltration and Key Genes correlation in LowRisk (I) and HighRisk (J) groups. (ns, p-value ≥ 0.05, *p-value < 0.05, **p-value < 0.01, ***p
< 0.001).
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withactivated CD4+ T cells in both risk groups, as shown in

Figures 10D, E. Furthermore, the gene RPS11 shows a positive

correlation with natural killer cells in the HighRisk group (Figure 10E).

For ICM samples, ssGSEA indicated significant variations in 10

types of immune cells, including activated CD4+ T cells, central

memory CD8+ T cells, effector memory CD8+ T cells, activated

dendritic cells, eosinophils, macrophages, memory B cells, mast

cells, myeloid-derived suppressor cells (MDSCs), and regulatory T

cells (Figure 10F). In the LowRisk group, regulatory T cells and

macrophages demonstrated a marked positive association, with an

r-value of 0.952 and a p-value less than 0.05 (Figure 10G); while in

the HighRisk group, mast cells and MDSCs displayed a significant

positive correlation (r-value = 0.936, p-value < 0.05) (Figure 10H).

Moreover, the gene MRPS5 showed a notable negative association
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with activated CD4+ T cells in the LowRisk group (Figure 10I) and

with memory B cells in the HighRisk group (Figure 10J).

3.12 Validation of findings via clinical
samples and experiments

Key genes were validated in peripheral blood from three groups

using RT-PCR. The results showed a significant statistical difference in

RPS11 in the AMI group (p<0.05) and a significant statistical difference

in MRPS5 in the ICM group (p<0.05) (Figures 11A–E).This suggests

that different mitophagy genes are involved and play distinct roles in

the AMI phase and the chronic phase of ICM. During the acute phase,

the increased expression of RPS11 indicates its potential as a valuable

diagnostic marker.
FIGURE 11

Validation results of experiment. (A-E) Key genes validated in peripheral blood from three groups using RT-PCR. (F-N) Validation of key genes in
mice with myocardial infarction: electrocardiogram (K, L), cardiac ultrasound (I, J), HE staining (F, G), LVEF (H), and differences in the expression of
mRNA levels of key genes, RPS11 (M) and MRP5 (N), between the MI and Sham groups. (**p < 0.01, *p < 0.05, ns p >0.05).
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To further investigate their effect on MI (Myocardial Infarction),

we induced MI mice and performed Electrocardiographic (ECG)

monitoring (Figures 11K, L) and cardiac ultrasonography

(Figures 11H–J) to assess cardiac function 48 hours after MI.

Electrocardiogram results confirmed the successful establishment of

the acute myocardial infarction model. Ultrasonography results

showed a significant decline in heart function following acute

myocardial infarction, consistent with the heart failure criteria of
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ischemic cardiomyopathy. Mice were raised until 28 days of post-

ligation, at which point cardiac tissue was collected. At 28 days (4

weeks), the myocardial tissue had already undergone the acute

inflammatory phase, with increased fibrosis and the initiation of

myocardial remodeling, marking a critical stage that impacts

subsequent heart function. We performed hematoxylin and eosin

(HE) staining (Figures 11F, G) on the heart tissue of the mice to

visualize the area of infarction as well as the surrounding area.
FIGURE 12

Validation results of experiment. (A, B) Masson’s trichrome staining results of the Sham group (A) and the MI group (B). Fibrous tissue formation is
observed in the infarct region of the MI group. (C-H) Immunohistochemical staining of RPS11 protein in the Sham group (C-E) and MI group (F-H).
Notable brown RPS11 protein expression is observed in the MI group. (I) Comparison of relative RPS11 protein expression between the two groups in
the immunohistochemical staining. (K, L) Light microscopy images of H9c2 cell morphology in the normoxic Control group (K) and hypoxia/
reoxygenation (H/R) group (L). (J, M, N) Flow cytometry analysis of cell apoptosis in the normoxic Control group (M) and H/R group (N); (J) bar
graph comparing apoptosis rates between the two groups. (O-R) Protein expression levels of RPS11, LC3II/I, and BNIP3 in the H/R group, H/R +
RPS11 knockdown group (H/R+siRPS11 group), and H/R + empty vector control group(H/R+siCON group). Western blot images (O), and comparison
of relative protein expression among the three groups: (P) RPS11, (Q) LC3II/I, and (R) BNIP3. (****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1486961
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hao et al. 10.3389/fimmu.2025.1486961
Additionally, further RT-PCR analyses (Figures 11M, N) were

conducted, which revealed that the expression of RPS11 was elevated

in the infarcted mice group. The outcome of Masson staining

(Figures 12A, B) showed that the myocardial tissue of the sham

group was structurally intact, the cardiomyocytes were aligned and

the collagen fibers in the interstitium were less stained and had a

sporadic distribution, whereas the myocardial tissue of the infarct

group was significantly damaged, with some areas of cardiomyocytes

disorganized or broken, and the staining of collagen fibers in the

fibrotic region was significantly increased (blue color).

Immunohistochemical staining of the animal model

(Figures 12C–I) showed that the RPS11 protein was mainly

distributed in the cytoplasm of the cells, and the positive signals

were brownish-yellow in color. The positive expression of RPS11 in

the infarct area was significantly increased in the MI group

compared with the Sham group (p < 0.05). These findings suggest

that RPS11 exhibits significant differential expression not only

during the acute phase of myocardial infarction (AMI) but also in

the transition from the acute to the chronic phase.

Observation under the light microscope showed that the

morphology of H9c2 cardiomyocytes in the normoxic control

group was intact and evenly arranged, and the nuclei were clear,

while the cells in the hypoxia-reoxygenation group (the H/R group)

showed the damage characteristics of rounding, crumbling,

widening of gaps, and partial rupture and detachment (as shown

in Figures 12K, L), indicating that hypoxia-reoxygenation treatment

had significantly affected the morphology of cardiomyocytes.

Cell flow assay results (Figures 12M, N, J) showed that the

apoptosis rate of cardiomyocytes in the H/R group was significantly

higher than that in the Control group (P < 0.05).

Western blot results (Figures 12O–R) showed that the

expression of RPS11, BNIP3(BCL2 protein-interacting protein 3),

and the LC3II/I(Microtubule-associated protein 1 light chain 3II/I)

ratio was significantly lower in the H/R+siRPS11 group than in the

H/R group (p < 0.05). The expression of the internal control

protein as an internal reference protein was not significantly

different in the two groups (p > 0.05). The expression levels of

the individual proteins in the H/R+siCON group did not differ

significantly from those of the H/R group (p > 0.05).The

myocardial hypoxia-reoxygenation model simulates the cardiac

status of acute myocardial infarction patients following emergency

revascularization in real-world settings, providing strong evidence

for a comprehensive understanding of the mechanisms underlying

the transition from AMI to ICM.
4 Discussion

AMI represents a severe coronary artery disease with high

mortality and disability rates. Recently, ICM as a complication of

AMI has escalated, posing a significant public health issue. The

transition from AMI to ICM is multifactorial, but the exact

mechanisms are not fully understood. Mitophagy is crucial for

cardiovascular homeostasis, removing damaged mitochondria to

maintain cardiac integrity. Deficient mitophagy is linked to

myocardial infarction and diabetic cardiomyopathy. Excessive
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mitophagy, however, may deplete mitochondria, impair ATP

production, and trigger inflammation and apoptosis. Hence,

mitophagy’s pathophysiological implications in AMI and ICM are

crucial for developing targeted therapies.

In the BP annotations of GO and KEGG analyses, we found that

these 11 hub MRDEGs were predominantly enriched in DNA

biosynthesis processes and its regulation, telomere maintenance

via elongation mechanisms, among other biological processes. The

mitochondrion, a highly complex organelle, possesses its own

genetic material, DNA polymerase, and RNA polymerase, thereby

constituting an autonomous and comprehensive protein synthesis

system, characterized by distinctive fusion and fission dynamics.

Mitochondria are capable of repairing damage through genomic

DNA repair mechanisms and several mitochondrial-specific DNA

repair pathways (52).

Subsequent SVM and LASSO regression analyses identified four

key genes associated with AMI (RPS11, METAP1, HNRNPA2B1,

AGK) and three linked to ICM (MRPS5, METAP1, HNRNPA2B1).

Diagnostic models based on these genes, validated using ROC

curves, showed substantial diagnostic accuracy (AUCs of 0.83 and

0.996). ROC curve analyses indicated that RPS11 had superior

diagnostic utility among AMI genes (AUC 0.794), while MRPS5

demonstrated the highest efficacy in the ICM cohort (AUC 0.929).

The gene RPS11 encodes a member of the S17P family of the

40S ribosomal subunit, implicated in peptide chain elongation and

mRNA activation subsequent to cap-complex and eukaryotic

initiation factor (eIF) binding. While RPS11 has not been

previously reported in cardiac diseases, other ribosomal proteins

(RPS6) have been associated with cardiac conditions (53). The

mitochondrial ribosomal protein MRPS5 represents a pivotal

element of the mitochondrial translation mechanism. MRPS5’s

functionality is intricately linked to cellular stress responses,

wherein it disrupts mitochondrial structure and function by

suppressing the expression of Klf15(Kruppel-like factor 15)

through the l-phenylalanine/c-myc axis and the p-CREB/CREB

(cAMP-response element binding protein) signaling pathway

(54). Although research on these genes’ role in cardiovascular

pathology is sparse, further investigation into their role in patient

populations with AMI and ICM is imperative.

As two stages of disease, AMI and ICM exhibit both some

similarities and distinct differences in terms of differentially

expressed genes, activated signaling pathways, and immune cell

involvement. Our analysis found that the TGF-b (Transforming

Growth Factorb) signaling pathway showed statistically significant

differences in the GSVA analyses of AMI Combined Datasets, AMI

HighRisk and LowRisk groups, and ICM HighRisk and LowRisk

groups. This suggests that the TGF-b signaling pathway plays an

important role in the regulation of acute myocardial infarction, the

progression of ICM, and the transition from AMI to ICM.

The TGF-b (Transforming Growth Factorb) signaling pathway
relies on two main mechanisms, the Smad-dependent pathway and

the non-Smad-dependent pathway, to achieve its biological

functions. The role of TGF-b in Ischemic Cardiomyocytes

remains controversial. In ischemia-reperfusion models, early

administration of TGF-b1 has been shown to reduce

cardiomyocyte apoptosis and infarct size through ERK1/2
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(Extracellular signal-regulated kinase 1/2) activation (55). Vivo

experiments using mice with cardiomyocyte-specific deletion of

Tgfbr1(encoding TGF-b receptor 1, ALK5) or Tgfbr2(encoding

TGF-b receptor 2) in non-reperfused MI models revealed that

TGF-b signaling promotes left ventricular rupture by suppressing

the transcription of genes encoding cardioprotective proteins such

as IL-33(Interleukin-33), growth differentiation factor 15, and

thrombospondin-4 (TSP4) (56). TGF-b also plays a key role in

regulating inflammation, repair, and cardiac remodeling by

inhibiting T helper 1 and cytotoxic T cell responses (57, 58) and

inducing Treg cell differentiation. Meanwhile, TGF-b regulation of

cardiac fibroblasts is critical for infarcted heart repair. Disruption of

myofibroblast-specific SMAD3(Mothers Against Decapentaplegic

Homolog 3) signaling impairs cardiac repair, inhibits integrin-

mediated oxidative activity, and affects myofibroblast array

formation, and SMAD3 deficiency is also associated with

ventricular rupture and adverse remodeling (59). However,

prolonged activation of TGF-b signaling may lead to increased

fibrotic remodeling and diastolic dysfunction (60, 61). Therefore,

dynamic regulation of the TGF-b pathway is required: early

promotion of ECM (Extracellular Matrix) deposition via SMAD3

activation to prevent ventricular rupture and dilatation, and late

inhibition of TGF-b-SMAD3 signaling to prevent excessive fibrosis

and functional deterioration.

In the GSVA and GSEA analyses of ICM and its associated

high- and low-risk groups, the TNFa(Tumor Necrosis Factor

alpha)-mediated NF-kB (nuclear factor kappa-light-chain-

enhancer of activated B cells) signaling pathway and

Photodynamic Therapy-induced NF-kB Survival signaling

pathway were significantly enriched. The role of NF-kB in

myocardial infarction and subsequent heart failure is complex.

Moderate activation of NF-kB has been shown to protect heart

tissue by reducing cell damage and apoptosis after myocardial

infarction (62). Conversely, studies report elevated NF-kB activity

in the hearts of heart failure patients, which declines significantly

after treatment with a left ventricular assist device, leading to

improved cardiac function (63). Hypoxia further complicates this

pathway by inducing hypoxia-inducible factor 1a, which activates

NF-kB, promoting cardiomyocyte apoptosis (64). NF-kB also

drives inflammation by enhancing the expression of NLRP3

(NOD-like receptor family pyrin domain containing protein 3)

and caspase-1, which facilitate the maturation of IL-1b(Interleukin-
1b) and IL-18(Interleukin-18). This, in turn, triggers both local and

systemic inflammatory responses. In addition, NF-kB regulates the

expression of other inflammatory factors, such as IL-1b, which
amplifies the inflammatory response and drives structural

remodeling and fibrosis in the heart, exacerbating the condition

(65, 66). Thus, long-term activation of the NF-kB signaling pathway

and the TNFa pathway suggests the persistence of systemic and

local inflammatory responses, which play an important role in the

deterioration of cardiac function in ischemic cardiomyopathy.

This investigation employed ssGSEA within HighRisk and

LowRisk AMI groups, unveiling no significant disparities in

neutrophil infiltration between the groups, yet highlighting
Frontiers in Immunology 19
differences in various T cells and natural killer (NK) cell infiltrations.

Prior studies have documented the migration of CD8+ and CD4+ T

cell populations to the damaged myocardium during the cardiac repair

phase (67). Consistent with our findings, Matsumoto et al. reported

that NK cells facilitate myocardial cell death and exacerbate cardiac

remodeling post-MI through the NKG2D/NKG2DL(Natural - Killer

Group 2, Member D/Natural - Killer Group 2D Ligand) interaction

(68). Furthermore, within the LowRisk group, activated CD4+ T cells

exhibited positive correlations with RPS11, METAP1, HNRNPA2B1,

and AGK genes, particularly with AGK; Type 17 T helper cells

displayed negative correlations with these MRGs(mitophagy-related

genes). T lymphocyte subgroups demonstrate considerable

heterogeneity in T cell functionality, antigen recognition, and

responsiveness to cardiac injury. Our analysis suggests potential

associations between various T cells and mitophagy, revealing

contrasting expression trends of RPS11 with Type 17 T helper and

with central memory CD4+ T cells in the LowRisk and HighRisk

groups. In the high-risk group, RPS11 shows a positive correlation with

Natural Killer cells. AGK consistently exhibited a significant

relationship with activated CD4+ T cells across both risk groups.

The consistent and contrasting expression patterns of these MRGs

(mitophagy-related genes) associated with T cells in different risk

groups merit further investigation to elucidate potential

pathophysiological implications.

The ssGSEA analysis of the ICM HighRisk and LowRisk groups

revealed differences in the infiltration patterns of ten distinct

immune cell types. In the LowRisk group, regulatory T cells and

macrophages demonstrated the most significant positive

correlation. Additionally, the gene MRPS5 in the LowRisk group

exhibited the most notable negative correlation with activated CD4

+ T cells and, in the HighRisk group, the strongest negative

correlation with memory B cells, Mast cells, Activated CD4+ T

cells. Preliminary research into the depletion of B cell populations

has indicated significant enhancements in myocardial recovery

post-MI(Myocardial Infarction) (69). Nonetheless, the precise

mechanisms or factors that orchestrate B cell activation in

response to myocardial injury remain to be fully elucidated. This

study is pioneering in proposing MRGs(mitophagy-related genes)

associated with memory B cells, offering new insights into the

mechanisms of B cell action in ICM.

This study constructed regulatory networks for the mRNA of hub

MRDEGs with transcription factors (TFs), miRNAs, and RNA-binding

proteins (RBPs) using multiple databases. The hub genes

(HNRNPA2B1, METAP1, XRN1, TNPO1) were found to interact

with twenty-seven miRNAs in the course of our study. miRNAs are

capable of targeting mRNA to regulate key biological processes such as

apoptosis, inflammation, fibrosis, and angiogenesis (70), thereby

influencing the occurrence and progression of myocardial infarction

(71, 72). Several miRNAs have been under consideration for their

diagnostic capabilities and therapeutic applications (73). Elevated miR-

1 (74)and miR-208 (75)are recognized as markers for the diagnosis of

acute myocardial infarction (AMI). The role of miRNAs associated

with mitophagy in diagnosis and prognosis is worth deeper

exploration. Additionally, we constructed protein structures and
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integrated data from CTD databases to predict potential interactions

with associated complexes. Valproic acid relates to HNRNPA2B1,

MRPS5, and GART; acetaminophen to MRPS5 and TNPO1; and

cyclosporine to HNRNPA2B1, LIG3, POLR2B, and TNPO1. These

compounds, widely used clinically, suggest potential roles in

modulating mitophagy and treating AMI and ICM.

We confirmed our findings through clinical samples and

experiments both in animals and cell models. First, blood samples

from patients with acute myocardial infarction (AMI) and ischemic

cardiomyopathy (ICM) showed clear differences. In AMI patients,

RPS11 levels were significantly higher, whileMRPS5 levels were notably

different in ICM patients. 28 days after myocardial infarction, the acute

inflammatory edema phase had ended, and the early scar formation

phase began, marking the initiation of myocardial remodeling (76).

Moreover, during this stage, the regulation of various neurohumoral

mechanisms plays a role in affecting cardiac weight, fibrosis, and

cardiac output. This is a critical period for the transition from AMI

to ICM (77, 78). This time point provides more accurate information

for the study of long-term pathological changes and potential

therapeutic targets. Therefore, we established a 28-day myocardial

infarction animal model to observe the expression of RPS11. The

results showed that RPS11 expression was not only upregulated at

the mRNA level but also significantly increased in the infarcted area at

the protein level, as revealed by immunohistochemistry. We then

studied the role of RPS11 in a hypoxia/reoxygenation (H/R) cell

model using H9c2 cardiomyocytes. In the myocardial hypoxia/

reoxygenation model, this acute injury process triggers a series of

cellular responses and can effectively simulate the physiological changes

observed in clinical patients with acute myocardial infarction who

undergo revascularization (such as thrombolysis or coronary

intervention).In this model, we reduced the expression of RPS11

through gene knockdown and observed a subsequent decrease in the

LC3II/I (Microtubule-associated protein 1 light chain 3 II/I)ratio and

BNIP3 (BCL2 protein-interacting protein 3) expression.

Microtubule-associated protein 1 light chain 3 (LC3), also called

Atg8(Autophagy - related 8) in mammals, goes through several steps:

modification, activation, and translocation (79). Ultimately LC3

conjugates with the lipid phosphatidylethanolamine (79). After being

lipidated, LC3 serves as a linker or scaffold (80). It binds proteins

containing LIR(LC3 interaction region) motifs to the surfaces of the

growing phagosome (81, 82). And the phagosome is released from the

membrane (83). LC3 is essential for extending the phagosome

membrane, expanding the phagosome, and facilitating the fusion of

autophagosomes with lysosomes (81, 84). The alteration in the LC3II/I

ratio is closely associated with the initiation and progression of

mitophagy.BNIP3(BCL2 protein-interacting protein 3) is a protein

located in the outer membrane of mitochondria (85). BNIP3 is a

member of the Bcl-2 family (85).BNIP3 is activated in response to

stressful conditions (e.g., hypoxia, oxidative stress, etc.), and can

directly contribute to mitophagy (86, 87). It can also recruit damaged

or unwanted mitochondria into autophagic vesicles by interacting with

autophagy-related proteins such as LC3 (88). These results suggest that

RPS11may affect mitophagy by regulating BNIP3 levels. As part of the
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ribosome, Under conditions of oxidative stress, hypoxia, or other

cellular damage, RPS11 can regulate the expression of mitophagy

pathway proteins, thereby promoting mitophagy to help maintain

cellular homeostasis. However, prolonged and sustained

overexpression of RPS11 may lead to excessive mitophagy, resulting

in excessive clearance of mitochondria, which can disrupt myocardial

energy metabolism.

In our research, involving bioinformatics analyzing, clinical

studying, and many experimental validations, we paid an attention

to mitophagy and we presented the importance of RPS11 in the event

of acute myocardial infarction (AMI) and its transition to ischemic

cardiomyopathy (ICM). Beginning our investigation with mitophagy

has allowed us to delve deeper, but was also potentially responsible

for the lack of discovery of novel biomarkers and pathways. These

novel developments may be a groundwork for future progress. In

future investigations, we will continue with an unrestricted attitude to

uncover additional possibilities. We plan to conduct a more

comprehensive analysis and explore additional relevant pathways to

enhance the depth and breadth of our study. Due to the current

limitations in our research conditions, many meaningful and yet-to-

be-validated works remain unfinished, such as miRNAs related to

mitophagy genes. We plan to conduct further clinical trials in the

future to clarify their practical application value.
5 Conclusion

We investigated the regulatory mechanisms of mitophagy

throughout AMI and ICM, identified key genes associated with

these processes, and established accurate diagnostic models. The

findings provide a significant foundation and novel insights for the

diagnosis, risk stratification, and identification of potential

therapeutic targets for AMI and ICM.
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Glossary

AMI Acute Myocardial Infarction
ICM Ischemic Cardiomyopathy
MI Myocardial Infarction
DEGs differentially expressed genes
MRGs mitophagy-related genes
MRDEGs mitophagy-related differentially expressed genes
PPI Network Protein-protein Interaction Network
GO Gene Ontology
KEGG Kyo t o En c y c l o p e d i a o f G en e s a n d Genome s

enrichment analysis
GSEA Gene Set Enrichment Analysis
GSVA Gene Set Variation Analysis
TF Transcription Factor
RBP RNA-Binding Protein
SVM Support Vector Machine
LASSO Least Absolute Shrinkage and Selection Operator
ROC Receiver Operating Characteristic
AUC Area Under the Curve
DCA Decision Curve Analysis
ssGSEA single sample gene set enrichment analysis
I/R ischemia-reperfusion
Drp1 dynamin - related protein 1
Mff mitochondrial fission factor
ATP Adenosine Triphosphate
H/R Hypoxia/Reoxygenation
HE Hematoxylin and Eosin
IHC Immunohistochemistry
TGF-b Transforming Growth Factorb
Klf15 Kruppel-like factor 15
ERK1/2 Extracellular signal-regulated kinase ½
IL-33 Interleukin-33
CREB cAMP-response element binding protein
SMAD3 Mothers Against Decapentaplegic Homolog 3
ECM Extracellular Matrix
NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells
TNFa Tumor Necrosis Factor alpha
NLRP3 NOD-like receptor family pyrin domain containing protein 3
IL-1b Interleukin-1b
IL-18 Interleukin-18
NKG2D/NKG2DL Natural - Killer Group 2, Member D/Natural - Killer Group

2D Ligand
BNIP3 BCL2 protein-interacting protein 3
LC3 Microtubule-associated protein 1 light chain 3
LIR LC3 interaction region
PBS Phosphate - Buffered Saline
DAB 3,3’ Diaminobenzidine tetrahydrochloride
HRP Horseradish Peroxidase
DMEM Dulbecco’s Modified Eagle Medium
RIPA Radioimmunoprecipitation Assay Buffer
BCA Bicinchoninic Acid
SDS-PAGE Sodium Dodecyl Sulfate - Polyacrylamide Gel Electrophoresis
PVDF Polyvinylidene Fluoride
PBST Phosphate - Buffered Saline Tween
Atg8 Autophagy - related 8
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