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CD19-targeted chimeric antigen receptor (CAR) T-cell therapy has achieved

marvelous results in the treatment of patients with relapsed and/or refractory B-

cell lymphomas, B-cell acute lymphoblastic leukemia, and multiple myeloma. As

a new treatment method that has changed the existing treatment paradigm,

there has been a short time from its emergence to FDA approval. However, with

the increasing number of cases and the passage of time, hidden problems have

gradually been exposed. In this review, we summarize the short- and long-term

toxicity, such as secondary T-cell tumors and lethal CAR tumors, of patients with

hematologic malignancies treated with CD19-CAR-T cells, including cytokine

release syndrome (CRS), ICANS, and secondary malignancies with low

occurrence rates but high mortality, such as secondary T cell tumors and

lethal CAR tumors, which may be related to the gene modification mechanism

of viral vectors currently approved for CAR-T cells. We also discuss potential

investigational strategies designed to improve the safety of CAR-T-cell therapy.
KEYWORDS

CD19, CAR T cancer therapy, cytokine release syndrome (CRS), immune effector cell-
associated neurotoxicity syndrome (ICANS), secondary malignancies
Highlights
• CD19-targeted CAR-T-cell therapy is now approved for the treatment of relapsed

and/or refractory B-cell lymphomas and B-cell acute lymphoblastic leukemia.

• The most prominent long-term toxicities after treatment include neurotoxicity,

thrombocytopenia, and B-cell depletion, along with associated symptoms such as

infections and hypogammaglobulinemia.
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• Strategies to improve the durability of CAR-T-cell therapy

responses include novel CAR designs, such as dual-specific

CARs, and modifications to the manufacturing process.

• The preparation process using viral vectors for CAR T cells

may result in lethal CAR tumor cells and T-cell-associated

secondary malignancies. Potential safety-enhancing

strategies involve the use of precise gene editing and

nonviral vector tools to avoid the activation of oncogenes

in the T-cell genome.
Introduction

Chimeric antigen receptor (CAR) is an engineered fusion

protein that recognizes specific antigens present on tumor cells

and activates the first and second signals of T cells. By genetically

modifying T cells to express CARs, T cells can target tumor cells and

produce antitumor immune responses (1, 2). CD19 is a B-cell-

specific antigen that is expressed on both normal and malignant B

cells. CAR-T cells targeting CD19 have achieved complete remission

rates of 40-54%, 67%, and 69-74% in clinical trials for R/R aggressive

B-cell lymphoma, mantle cell lymphoma, and inert B-cell

lymphoma, respectively (3–6). Currently, the FDA has approved

the launch of six CD19 or BCMA-CAR-T-cell therapies, including

KYMRIAH (tisagenlecleucel, a CD19 CAR-T cell), YESCARTA

(axicabtagene ciloleucel, a CD19 CAR-T cell), TECARTUS

(brexucabtagene autoleucel, a CD19 CAR-T cell), BREYANZI

(lisocabtagene maraleucel, a CD19 CAR-T cell), ABECMA

(idecabtagene vicleucel, a BCMA CAR-T cell) and CARVYKTI

(ciltacabtagene autoleucel, a BCMA CAR-T cell) (7, 8).

The revolutionary therapeutic effects of CAR-T-cell therapy and

rapid FDA approval have changed the treatment pattern for

hematological malignancies. Currently, approved CAR-T-cell

products use second-generation CAR structures, including

antigen binding domains, hinge and transmembrane domains,

costimulatory domains (derived from CD28 or 4-1BB) (9, 10),

and CD3 domains. z-T cells activate these domains (11) and express

CAR structures through viral transduction of patient-derived T

cells. However, as a new type of “living drug”, CD19 CAR-T cells

can cause various degrees of cytokine release syndrome (12),

immune effector cell-associated neurotoxicity syndrome (ICANS),

and various forms of special B-cell deficiency, such as infection and

low toxicity (Figure 1) (13–15). At present, relatively complete risk

management measures have been established, but the potential

long-term adverse events associated with CAR-T-cell therapy are
eviations: CAR T, Chimeric antigen receptor; FDA, food and drug
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still unknown. We summarize the limitations and risks of CD19

CAR-T-cell therapy and potential solutions to these problems.
Short-term side effects

Cytokine release syndrome

After CAR-T-cell infusion, once the interaction between

immune cells and tumor cells is too strong, a cytokine storm can

occur due to the release of a large amount of cytokines. This is one

of the most common and severe side effects, with the severity of CRS

classified into 4 levels ranging from mild to severe based on a

combination of fever, low blood pressure, and hypoxemia. In

clinical trials of CAR-T-cell therapy for B-ALL and large B-cell

lymphoma, the incidence of cytokine storms ranged from 57% to

100%, with treatment-related deaths accounting for less than 5%.

Cytokine storms typically occur within 1-14 days of CAR-T-cell

administration (16, 17). Currently, the occurrence and severity of

CRS are assessed by continuously monitoring patient IL6 levels and

the biomarker C-reactive protein (CRP) (18). In the past, high doses

of corticosteroids were avoided in CAR-T-cell therapy due to the

potential risk of treatment failure, so both tocilizumab and

corticosteroids were only used to treat severe CRS (19). However,

in recent clinical practice, prophylactic use of tocilizumab and

corticosteroids in the early stages after CAR-T-cell infusion has

been shown to prevent the occurrence of severe CRS (20, 21). To

eliminate and limit the cytotoxicity of CAR-T cells, safety switches

can be integrated into CAR-T cells to deactivate and eliminate

them. Safety switches include suicide genes, such as the FK506-

binding protein fusion protein (22) and caspase-9 (iCasp9) (23),

which, when integrated into CARs and exposed to a synthetic

inducer of dimerization drug, undergo dimerization and ultimately

lead to cell apoptosis.
Immune effector cell-associated
neurotoxicity syndrome

ICANS is defined as the pathological process affecting the

central nervous system caused by the activation or involvement of

endogenous or exogenous T cells and/or other immune effector

cells, including CAR-T cells, resulting from immunotherapy. It is

the second most common complication that may occur after CAR-

T-cell therapy, with an incidence rate of 20% to 60% and a severe

ICANS (≥3 grade) incidence rate of 12% to 30% (24). ICANS

typically occurs after cytokine release syndrome (CRS) and often

occurs after CRS has resolved. Due to the poor efficacy of

tocilizumab, ICANS is considered a separate adverse reaction

from CRS (25). The mechanism of ICANS may be as follows:

brain mural cells are important components of the blood−brain

barrier, and CD19 is specifically expressed in brain mural cells.

CAR-T-cell therapy-induced cytokine release syndrome (CRS) can

disrupt blood−brain barrier integrity, allowing CAR-T cells to

penetrate the blood−brain barrier (26). As brain mural cells

express CD19, they become targets of CD19 CAR-T cells, leading
frontiersin.org
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to further damage to the blood−brain barrier (Figure 1). This allows

a large number of CAR-T cells to enter the central nervous system,

causing severe neurotoxicity. The use of tocilizumab, which binds to

the interleukin-6 (IL-6) receptor, can increase serum free IL-6

levels, further elevating IL-6 concentrations in the cerebrospinal

fluid and potentially exacerbating neurotoxicity (27). Therefore, the

use of corticosteroids is more important than the use of tocilizumab

in the management of ICANS. Prophylactic use of the IL-1 receptor

antagonist anakinra can significantly reduce the incidence of

ICANS caused by CD19-targeted CAR-T-cell therapy without

affecting the therapeutic effect of CAR-T cells (28). The

lymphodepletion regimens prior to CD19-CAR-T reinfusion are

mainly used to remove lymphocytes from the patient through

cytotoxic chemotherapy. The goal is to remove the original

lymphocyte population including T cells in the patient’s body to

ensure better implantation and expansion of the reinfused T cells in

vivo. This will enhance the survival, persistence, and antitumor

activity of reinfused cells by decreasing myeloid suppressor cells and

regulatory T cells, increasing homeostatic cytokines such as

interleukin (IL)-12 and IL-13, and eliminating resident T cells

competing for these trophic cytokines. Phase I/II studies of

JCAR014 (late-stage B-cell malignancies) and JCAR017 (pediatric

ALL) have shown that pretreating patients with fludarabine and

cyclophosphamide to remove lymphocytes before administering

CD19-CAR-T cells can enhance the therapeutic effect of CAR-T

cells (29). However, in some clinical trials, the use of high doses of

fludarabine (>20 mg/h/L) significantly increased the number of
Frontiers in Immunology 03
deaths from ICANS compared to that in the low-dose group (3 vs

0), suggesting that fludarabine may exacerbate the occurrence of

ICANS (30). In addition, in phase I/II studies of ROCKET, the

incidence of severe neurotoxic events increased after the addition of

fluorouracil to the pretreatment chemotherapy regimen, including

the deaths of two patients with treatment-related brain edema (31).
Long-term adverse reactions

Thrombocytopenia

Post-CAR-T thrombocytopenia is a common hematological

toxicity observed in patients. A predictive model for immune

therapy-related hematological toxicity, known as CAR-

HEMATOTOX, indicates that 62% of patients experience

thrombocytopenia (32). Overall, thrombocytopenia following

CAR-T treatment exhibits a biphasic pattern, which may be

associated with pretreatment chemotherapy, bone marrow

hematopoietic reserves, and levels of inflammation. Some patients

may develop isolated thrombocytopenia after CAR-T therapy, with

laboratory findings and treatment characteristics meeting the

diagnostic criteria for immune thrombocytopenic purpura (ITP);

however, the underlying mechanisms remain unclear (33).

Additionally, another condition related to CAR-T, termed CAR-

T-associated coagulopathy (CARAC), also presents with

thrombocytopenia. In the early phase following CAR-T cell
FIGURE 1

Schematic diagram of CD19-CAR T associated side effects.
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infusion—typically within 28 days—most patients experience this

condition in association with CRS, leading to bleeding and/or

thrombotic events alongside decreased platelet counts and

abnormal coagulation parameters (34). Dynamic monitoring,

early identification, and graded interventions based on CRS

severity are essential for the prevention and management of

CARAC (35).
B-cell depletion
and hypogammaglobulinemia

Due to the expression of CD19 on both normal B cells and

malignant tumor cells, long-term B-cell depletion, which is the

expected “off-tumor” effect of CD19 CAR-T cells, is a common

phenomenon following CD19-targeted CAR-T-cell therapy. Maude

et al. demonstrated B-cell regeneration impairment in 83% of ALL

patients at 6 months after receiving tisagenleucel treatment (36).

Studies have shown that 25-38% of patients continue to experience

B-cell depletion even years after CAR-T-cell infusion. In some of these

patients, detectable CAR-expressing T cells may be lost (37).

Immunoglobulin depletion is a result of impaired B-cell and plasma

cell activity. Park et al. reported that within one month after CD19

CAR-T-cell therapy, 83% of ALL patients had low IgG levels (38).

Long-term follow-up data show that 18-74% of patients treated with

CD19-targeted CAR-T cells continue to experience IgG depletion for

years after cell infusion. The main treatment for persistent

hypogammaglobulinemia following CAR-T-cell therapy is

symptomatic intravenous immunoglobulin infusion (IVIG) (39, 40).
Frontiers in Immunology 04
In patients with available data, 67% of patients had low levels of IgG/

IVIG replacement. Locke et al. reported that 44% of patients with

sustained remission in the ZUMA-1 study received immunoglobulin

injections (IVIGs) (41).
CD19 antigen-negative relapse

Cancer cells expressing the CD19 antigen targeted by CD19

CAR-T cells exert strong selective pressure (Figure 2A). Due to the

nonessential nature of the CD19 antigen for cell survival,

downregulation or loss of CD19 expression serves as a natural

escape pathway for the target antigen (42). The accurate

quantification of relapse rates due to CD19 antigen escape

becomes complex because tissue collection is lacking after relapse.

It has been reported that the frequency of CD19-negative relapses in

patients with leukemia and lymphoma is 27% (Figure 2B) (43).

Additionally, as current CD19-CAR T cell therapies typically use

mouse-derived single chain variable fragment (scFv), several studies

have shown that following the infusion of CAR-T cells into patients,

the body generates human anti-mouse antibodies (HAMAs)

neutralizing the CD19 scFv, which not only leads to allergic

reactions but also results in CAR-T-cell failure (44).
Secondary malignancies

Due to the multifaceted mechanisms of malignant tumors, under

the same carcinogenic factors, primary malignant tumors in different
FIGURE 2

Schematic diagram of CD19-CAR T clearing B malignant cells and B cell CD19 antigen loss mechanism. (A) CD19 CAR recognition of the CD19
binding site and intiation of tumor celarance. (B) Cancer cell phenotypie switch to CD19 negative. (C) CD19-CAR masking to CD19 binding site.
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systems may appear at different times, leading to a greater risk of

secondary malignancies in patients with hematologic malignancies

than in the general population (45). We conducted a statistical

analysis of the occurrence of secondary malignancies in 273 patients

treated with CD19 CAR-T-cell therapy across 5 clinical trials. These

secondary malignancies were mainly concentrated in patients with

primary MDS and nonhematologic malignancies, including lung

cancer, prostate cancer, and ovarian cancer (41, 46–50). For example,

in the CARTITUDE-1 clinical trial, 10% (10/97) of patients

were observed to develop myeloid malignancies, including

myelodysplastic syndrome (MDS), acute myeloid leukemia (AML),

or MDS progressing to AML after receiving treatment with

idecabtagene vicleucel.

Notably, in addition to the aforementioned secondary

malignancies, as the number of patients receiving CD19 CAR-T-

cell therapy increases, attention is gradually being given to patients

with a lower incidence of secondary tumors. As of December 2023,

the FDA reported 22 cases of T-cell cancers occurring after

treatment with CAR-T-cell products. These cancers include T-cell

lymphoma, T-cell large granular lymphocytic leukemia, peripheral

T-cell lymphoma, and cutaneous T-cell lymphoma. In 14 patients

with sufficient data, cancer occurred within 2 years after CAR-T-cell

therapy (1 to 19 months). In three cases where genetic sequencing

was performed, CAR transgenes were detected in the malignant

clones, indicating the potential involvement of CAR T cell-cells in

the development of T-cell cancers (51). Mechanistically, since

currently available CD19 CAR-T-cell therapies use viral vectors

for gene delivery and modification, the random insertion of the

gene encoding CAR into the infected T-cell genome may pose a

potential oncogenic risk (Figures 2C, 3, 4) (52).

Furthermore, another possible disadvantage of viral vectors is

the preparation of autologous CD19 CAR-T cells from patient-

derived sources. During the collection of raw T cells, contamination

by malignant cells may occur (53). Although the majority of

malignant cells are eliminated during subsequent cell culture and

CAR-T-cell preparation processes, if CD19-CAR is expressed in

tumor cells, it can artificially block the CD19 antigen in tumor cells,
Frontiers in Immunology 05
preventing recognition and clearance by CD19-CAR-T cells and

resulting in fatal CAR Tumor cells (Figures 5, 6) (54).
Potential solutions

Enhancing CAR-T-cell antigen recognition
and persistence

Essentially, ICANS, B-cell deficiency, and infections are

manifestations of on-target, off-tumor effects. For ICANS, CD19-

CAR-T cells attack brain mural cells. B-cell deficiency and infection

are caused by CD19 CAR-T cells targeting normal B cells.

Therefore, the main challenge is to improve the antigen

recognition and specificity of CAR-T cells. Since the CD19

antigen on tumor cells and normal B cells, as well as brain mural

cells, may have mutations, it is possible to avoid attack on

normal cells by using scFv for specific recognition of CD19 (55).

Another strategy is to reduce the attack on normal tissues by

adjusting the affinity between scFv and CD19, utilizing the

difference in CD19 expression levels on tumor cells and

normal cells (56). In some clinical trials, the risk of developing

ICANS significantly increased in patients treated with fludarabine

during lymphocyte depletion pretreatment. Therefore,

selecting the appropriate chemotherapy pretreatment is highly

important for regulating the migration and homing of T cells in

the body (29, 31). Prophylactic use of the IL-1 receptor antagonist

anakinra can significantly reduce the incidence of ICANS caused

by CD19-targeted CAR-T-cell therapy without affecting the

therapeutic effect of CAR-T cells. For allergies, using variable

domain of heavy chain of heavy-chain antibody (VHH) as a

replacement for traditional scFv can achieve specific recognition

of CD19 without causing allergic reactions and can to some extent

address the issue of short-term relapse after treatment with mouse-

derived CAR-T cells (57, 58). Another strategy to address relapse

due to loss of the CD19 antigen is to use CD19/CD20 bispecific

CAR-T cells, which can prevent loss of a single antigen (59–61).
FIGURE 3

Technical schematic diagram for preparing CD19-CAR T by infecting T cells with lentivirus vector.
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Secondary malignancy

There are several strategies to enhance the safety of CAR-T cells

in response to the potential oncogenic risk of using viral vectors and

fatal CAR Tumor. One approach is to use CRISPR technology for

precise gene editing of T cells, allowing the gene encoding CAR to

be inserted at specific loci in the genome to avoid activation of

oncogenes (62). However, due to the limitations of gene editing

efficiency and off-target effects of gene editing tools, continuous

clinical experiments are needed to determine their safety. Another

strategy is to use nonviral vectors such as mRNA or plasmids and
Frontiers in Immunology 06
minicircle DNA vectors to deliver the vector into T cells through

LNPs, liposomes or electroporation, achieving transient expression

of CARs (63–66). Although CAR-T cells prepared in this way

cannot express CAR for a long time, limiting the sustainability of

their antitumor effects, they do not modify the T-cell genome, thus

avoiding potential oncogenic risks and sustained CD19 antigen

blockade. Notably, by introducing S/MAR self-replicating

sequences into minicircle DNA vectors, it is possible to achieve

long-term retention of minicircle DNA vectors in T cells, increasing

the sustainability of the antitumor effects of gene-modified T

cells (67).
FIGURE 5

The mechanism of CAR T cells production process involves the contamination of raw T cells by B malignant cells, leading to the fatal of CAR
B production.
FIGURE 4

Technical schematic diagram for preparing CD19-CAR T malignant cells by infecting T cells with lentivirus vector.
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Optimizing CAR structure to enhance
CAR-T-cell proliferation and persistence

By optimizing the costimulatory signal structure, the

proliferation and persistence of CAR-T cells can be enhanced.

Integrating one or more costimulatory domains into the CAR

structure can affect its effector function. CAR-T cells stimulated

with 4-1BB are known to persist longer, while CD28 costimulation

enhances proliferation and tumor clearance (68). CD28 and 4-1BB

are widely used, but ICOS, OX40, CD27, and others are still under

investigation (69, 70). Building upon the traditional second-

generation CAR structure, CARs can be redesigned to express a

structure driven by transcription factors that induce gene

expression in response to signals, known as Universal CAR S/

MAR. For example, transgenic T cells carrying the IL-7 receptor

(C7R) can be integrated into the CAR structure. When

encountering antigens, this promotes constant signal

transduction, activating intracellular STAT5 signal transduction, a

key IL-7 signaling node that supports antitumor activity (71).

Another synthetic biology approach is chimeric switch receptor

(CSR), which converts inhibitory signals transmitted by inhibitory

molecules received by T cells into activation signals. For instance,

Liang et al. designed CD19-targeting CAR-T cells expressing a PD-1

CSR to treat patients with CD19 CAR-T-cell failure by inhibiting

PD-1/PD-L1-mediated T-cell exhaustion. In clinical trials, three out

of six patients achieved complete remission (72).
Fatal CAR-tumor cells

Sorting raw T cells to obtain T cells with 100% purity can

prevent the generation of CAR Tumor cells. However, the existing

CAR-T-cell preparation process using flow cytometry or FACS for

sorting cannot guarantee 100% cell purity. The persistent

expression of CAR in tumor cells implies sustained blockade of

the CD19 antigen; therefore, modifying T cells to transiently express

CAR using nonintegrating gene vectors such as mRNA and

minicircle DNA vectors can be utilized (73, 74). Even if tumor
Frontiers in Immunology 07
cells are mixed with raw T cells, gene-modified tumor cells will not

permanently block CD19 after modification. However, transient

CAR expression means that the retention time of CAR-T cells in the

body may affect the longevity of CAR-T-cell therapy. This can be

addressed by administering multiple doses of CAR-T cells to

prolong their effectiveness (74).
Conclusion

CAR-T-cell therapy is an effective treatment option for patients

with hematologic malignancies, with long-term data demonstrating

strong efficacy and overall low levels of toxicity. The highly durable

remissions observed in patients with B-cell-related malignancies

treated with CD19-targeted CAR-T-cell therapy demonstrate the

potential for inducing long-lasting cures with this treatment

approach. Currently, the indications for CD19-CAR-T cells are

expanding, serving not only as a crucial bridge for B-ALL patients

undergoing allogeneic hematopoietic stem cell transplantation but

also for providing long-term remission for patients with multiple

myeloma. However, as the number of treated patients increases,

some potential risks are emerging in the process of CD19 CAR-T-

cell therapy, including aspects such as autologous cell collection and

selection, gene vector selection, lymphodepletion regimens,

posttreatment infection prophylaxis, and sequential bone marrow

transplantation. Various targeted strategies are being researched

and demonstrated for their safety in clinical trials to address these

risks. Nevertheless, given the existence of multiple risks, a

comprehensive approach will be needed in the future to modify

CD19 CAR-T cells to mitigate these risks.
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