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Comprehensive and advanced 
T cell cluster analysis for 
discriminating seropositive and 
seronegative rheumatoid arthritis 
Shinji Maeda1*, Hiroya Hashimoto2, Tomoyo Maeda1, 
Shin-ya Tamechika1, Taio Naniwa1 and Akio Niimi1 

1Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University 
Graduate School of Medical Sciences, Nagoya, Japan, 2Laboratory of Biostatistics, Clinical Research 
Center, NHO Nagoya Medical Center, Nagoya, Japan 
Objective: Rheumatoid arthritis (RA) is classified into seropositive (SP-RA) and 
seronegative (SN-RA) types, reflecting distinct immunological profiles. This study 
aimed to identify the T cell phenotypes associated with each type, thereby 
enhancing our understanding of their unique pathophysiological mechanisms. 

Methods: We analyzed peripheral blood T cells from 50 participants, including 16 
patients with untreated SP-RA, 17 patients with SN-RA, and 17 healthy controls, 
utilizing 25 T cell markers. For initial analysis, a dataset was established through 
manual T cell subset gating analysis. For advanced analysis, two distinct datasets 
derived from a self-organizing map algorithm, FlowSOM, were used: one 
encompassing all CD3+ T cells and another focusing on activated T cell 
subsets. Subsequently, these datasets were rigorously analyzed using adaptive 
least absolute shrinkage and selection operator in conjunction with leave-one­
out cross-validation. This approach enhanced analysis robustness, identifying T 
cell clusters consistently discriminative between SP-RA and SN-RA. 

Results: Our analysis revealed significant differences in T cell subsets between RA 
patients and healthy controls, including elevated levels of activated T cells (CD3+, 
CD4+, CD8+) and helper subsets (Th1, Th17, Th17.1, and Tph cells). The Tph/Treg 
ratio was markedly higher in SP-RA, underscoring an effector-dominant immune 
imbalance. FlowSOM-based clustering identified 44 unique T cell clusters, six of 
which were selected as discriminative T cell clusters (D-TCLs) for distinguishing 
SP-RA from SN-RA. TCL21, an activated Th1-type Tph-like cell, was strongly 
associated with SP-RA’s aggressive profile, while TCL02, a central memory CD4+ 
T cell subset, displayed ICOS+, CTLA-4low+, PD-1low+, and CXCR3+, providing 
insights into immune memory mechanisms. Additionally, TCL31 and TCL35, both 
CD4−CD8− T cells, exhibited unique phenotypes: CD161+ for TCL31 and HLA­
DR+CD38+TIM-3+ for TCL35, suggesting distinct pro-inflammatory roles. 
Support vector machine analysis (bootstrap n = 1000) validated the D-TCLs’ 
discriminative power, achieving an accuracy of 86.2%, sensitivity of 85.7%, and 
specificity of 80.9%. 
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Conclusions: This study advances our understanding of immunological 
distinctions between SP-RA and SN-RA, identifying key T cell phenotypes as 
potential targets for SP-RA disease progression. These findings provide a basis for 
studies on targeted therapeutic strategies tailored to modulate the markers and 
improve treatment for SP-RA. 
KEYWORDS 

rheumatoid arthritis, anticyclic citrullinated peptide antibodies, mass cytometry, T cell 
biomarker, FlowSOM, peripheral helper T cell 
1 Introduction 

Rheumatoid arthritis (RA) is a chronic autoimmune disease 
characterized by persistent synovitis and joint destruction (1, 2). 
Key diagnostic markers, anticyclic citrullinated peptide antibody 
(ACPA) and rheumatoid factor (RF), are pivotal in the diagnosis 
and prognosis of RA. ACPA targets citrullinated proteins and 
peptides, which are significant markers in RA (3, 4), aiding in 
classifying RA into seropositive (ACPA+ and/or RF+) and 
seronegative (ACPA− and RF−) types  (5). ACPA is associated with 
enhanced autoimmune responses, increased proinflammatory 
activity, and a higher likelihood of osteoclastogenesis (5–7). 
Conversely, RF contributes significantly to the disease process by 
promoting immune complex formation and complement activation, 
thereby intensifying the inflammatory response (5). Therefore, both 
ACPA and RF are crucial indicators of joint prognosis, treatment 
outcomes, and risk of extra-articular complications (5). 
Understanding the dynamics of T cells, particularly how they 
associate with ACPA and RF positivity, is critical for developing novel 
targeted therapies for RA. This understanding helps identify patients 
who might benefit from  specific immunomodulatory treatments. 

CD4+ T helper (Th) cells play a critical role in RA pathogenesis. 
They exacerbate RA by promoting the production of inflammatory 
cytokines, leading to chronic inflammation and bone destruction 
(8–10). Th17 cells, a subtype of CD4+ Th cells, are notable for 
producing cytokines, such as tumor necrosis factor-alpha and 
interleukin (IL)-17, which are instrumental in driving the 
pathogenesis of arthritis and bone degradation (11). Th17.1 cells 
are resistant to regulation by regulatory T cells (Tregs) and 
therapies involving cytotoxic T-lymphocyte-associated antigen-4 
(CTLA-4) immunoglobulin (12–14). exFoxp3 Th17 cells act as 
potent inducers of osteoclastogenesis under inflammatory 
conditions, contributing significantly to joint damage (15). IL-21­
producing peripheral Th (Tph) cells are crucial in recognizing 
citrullinated peptides in seropositive RA (SP-RA). They support B 
cells in producing autoantibodies and influence disease progression, 
with higher levels observed in patients with SP-RA than patients 
with SN-RA (16, 17). 

Recent research underscores the significant role of CD8 T cells 
in the pathogenesis of RA. In particular, clonally expanded 
02 
cytotoxic CD8+ T cells in ACPA-positive RA recognize 
citrullinated antigens and contribute to synovial tissue destruction 
(18). Synovial CD8+ tissue-resident memory T cells persist in 
previously inflamed joints and orchestrate site-specific arthritis 
flares upon antigen re-encounter (19). These findings highlight 
the importance of understanding CD8 T cell behavior to advance 
therapeutic strategies. In RA, the abundance of double-negative 
(CD4−CD8−) T cells, particularly gamma-delta types, increases in 
synovial fluid. This increase highlights their distinct phenotypic and 
functional attributes, which are crucial for the pathogenesis of RA 
(20, 21). Furthermore, gd T cells have been shown to play a critical 
role in the activation and inflammatory responses within the RA 
synovium, particularly through their involvement in cytokine 
production and interactions with antigen-presenting cells, 
suggesting their potential to exacerbate chronic inflammatory 
states (22, 23). 

Recent studies have uncovered significant molecular defects in 
energy metabolism and DNA damage repair in T cells in RA. These 
defects impact even naïve T cells, accelerating their early senescence 
and promoting inflammasome activation through the mTOR 
pathway. Such changes exacerbate chronic inflammation and RA 
pathology (9, 24–26). These findings underscore the importance of 
a comprehensive analysis of all T cell subsets, including naïve, 
inflammatory effector, and double-negative T cells, to enhance our 
understanding of RA pathogenesis and identify prognostic 
biomarkers for joint destruction. 

Recent studies have identified six distinct cell-type abundance 
phenotypes in the RA synovium, advancing our understanding of 
cellular composition in RA (27). This knowledge is pivotal for 
improving therapeutic strategies and predicting treatment 
responses. Understanding the correlation between these 
immunophenotypes and clinical outcomes, such as joint 
prognosis and treatment resistance, is vital for improving RA 
management. Although differences in CCR6+ Th cells and Tph 
cells between SP-RA and SN-RA in peripheral blood have been 
observed (16, 28), comprehensive analyses of all CD3+ T cells 
remain scarce. The inclusion of specific T cell dynamics in relation 
to serostatus (ACPA and RF) provides a direct and straightforward 
approach to discerning immunological factors in SP-RA, thereby 
facilitating the development of therapeutic strategies. This 
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integration of serostatus with T cell behavior helps clarify why 
targeted therapies may succeed or fail, making it essential for 
improving  RA  management  and  tailoring  personalized  
treatments. Given the invasive nature of synovial biopsies, 
peripheral blood analysis presents a viable, less invasive option 
for repeated immunological assessments crucial for this purpose. 

In this study, we applied high-dimensional mass cytometry (29) 
in conjunction with established computational techniques for the 
comprehensive analysis of CD3+ T cells in SP-RA and SN-RA. This 
sophisticated approach allowed us to discern subtle yet meaningful 
differences, which can act as biomarkers, to differentiate between 
RA subtypes. These findings enhance our comprehension of key 
immunological subtleties, driving the advancement of accurate 
diagnostics and targeted therapeutics. The central objective of this 
study was to clarify the immunophenotypic differences between 
seropositive and seronegative RA, and to determine whether high-
dimensional  T  cell  profi l ing  combined  with  advanced  
computational methods can robustly discriminate between these 
disease subtypes. 
 

2 Materials and methods 

2.1 Patients and clinical assessment 

Patients  newly  diagnosed  with  RA  who  visited  the  
Rheumatology Department of Nagoya City University Hospital 
between January 2007 and November 2019 were included in the 
study. Eligible patients met the 2010 American College of 
Rheumatology/European  League  Against  Rheumatism  
classification criteria for RA. Prior to blood sample collection, 
none of the patients received any treatment other than abortive 
nonsteroidal anti-inflammatory drugs (NSAIDs). Healthy controls 
(HCs) were selected based on the absence of pre-existing 
immunological disorders, such as autoimmune diseases, 
inflammatory conditions, infections, and allergies. 

Clinical data extracted from the participants’ medical records 
included age, gender, duration of illness, use of NSAIDs, duration of 
morning stiffness, and number of tender and swollen joints. Both 
patient and physician global assessments were scored using a visual 
analog scale (VAS) ranging from 0 to 100 mm. Laboratory 
measurements comprised levels of C-reactive protein (CRP), 
matrix metalloproteinase-3 (MMP-3), RF, and ACPA. Disease 
activity was assessed using disease activity score 28-joint count 
CRP (DAS28-CRP) and simplified disease activity index (SDAI) at 
the time of blood sample collection. 
2.2 Staining protocol and peripheral T cell 
subset analysis by mass cytometry 

A comprehensive  flowchart illustrating the methodological 
approach of this study is presented in Figure 1, summarizing the 
processes and analyses undertaken. Employing CyTOF analysis 
(26), peripheral blood (10 mL) was collected into heparin tubes 
Frontiers in Immunology 03 
from patients with RA and HCs. Peripheral blood mononuclear 
cells (PBMCs) were isolated using density gradient centrifugation 
with Leucosep tubes (Greiner Bio-One GmbH, Kremsmuenster, 
Austria) and Ficoll-Paque Plus (Cytiva, Tokyo, Japan) and 
suspended in RPMI 1640 medium enriched with L-glutamine and 
phenol red (FUJIFILM, Tokyo, Japan). PBMCs were cryopreserved 
at −80°C using Cell Banker 1 plus (Takara Bio Inc., Japan) until 
analysis. PBMCs were thawed in a 37°C incubator and washed with 
Maxpar Cell Staining Buffer (Fluidigm, South San Francisco, CA, 
USA). Dead cells were identified by incubation with 0.1 M cisplatin 
using Cell-ID Cisplatin-198Pt (Fluidigm). To prevent nonspecific 
binding, cells were blocked with Human TruStain FcX (BioLegend, 
San Diego, CA, USA). A total of 1 million cells per sample were 
barcoded using CELL-ID 20-plex PD Barcoding Kit (Fluidigm), 
following the manufacturer’s protocol. The barcoded samples were 
pooled for staining. Two technical control samples were 
incorporated into all pools to facilitate data normalization and 
ensure measurement consistency across analysis dates. 

To profile the immunological landscape of T cells, 25 distinct 
cocktails of metal isotope-tagged monoclonal antibodies (Fluidigm) 
were prepared for cell surface staining. The target antigens included 
CD3, CD4, CD8, CD45RO, CD45RA, CCR7, Human leukocyte 
antigen-DR isotype (HLA-DR), CD38, CD25, CD127, CXCR3, 
CCR5, CCR4, CCR6, CD161, CXCR5, programmed death-1 (PD­
1), CD28, CTLA-4, lymphocyte activation gene 3, inducible T cell 
costimulatory  (ICOS),  4-1BB,  OX40,  Fas,  and  T  cel l  
immunoglobulin and mucin domain-containing protein 3 (TIM­

3). The specifics of the metal isotope-tagged monoclonal antibodies, 
including antibody clones and metal isotopes, are detailed in 
Supplementary Table. One million PBMCs from each sample 
were stained with this antibody cocktail for 1 h at 4°C. The cells 
were centrifuged, washed, and fixed with 1.6% formaldehyde 
prepared from a 16% stock solution (w/v) (Thermo Scientific) in 
Maxpar PBS (Fluidigm). The fixed cell specimens were securely 
transported through refrigerated mail to St. Luke’s SRL Advanced 
Clinical Research Center, Inc. (previously known as St. Luke’s 
Medical & Biological Laboratories Corporation, Tokyo, Japan) for 
analysis. Subsequently, cell samples were incubated with 125 nM 
iridium intercalator (Cell-ID Intercalator-Ir 125 mM, Fluidigm) in 
Maxpar Fix and Perm Buffer (Fluidigm) overnight at 4°C, washed 
with Milli-Q water, resuspended, filtered through a 35-mm nylon 
mesh, and prepared with EQ Four-Element Calibration Beads 
(Fluidigm), according to the manufacturer’s protocol.  The
samples were analyzed using a Helios mass cytometer and 
CyTOF System (Fluidigm). Cytometry data were subsequently 
exported to the FCS 3.0 file format. 

As a foundational component of our study, we employed a 
manual gating strategy to analyze the distribution of T cell subsets 
(Supplementary Figure 1). This approach was based on markers 
previously established in our research and those widely recognized 
in the field (14, 26). To ensure robust and consistent analysis, 
adjustments were made to account for differences in data 
distribution between Mass Cytometry and Flow Cytometry, 
aligning results with established cell subset definitions 
(Supplementary Methods 2.2). Specifically, the analysis of Treg 
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subsets was guided by insights from recent human Treg studies 
(27), emphasizing the precision required in the identification and 
selection of these cell populations. 

T  cel l  subsets  were  defined  based  on  establ ished  
immunophenotypic criteria described in previous studies (30). 
These subsets included Th1 (CD3+CD4+CD8−CD45RO+CXCR3 
+CCR4−CCR6−), Th2 (CD3+CD4+CD8−CD45RO+CCR4 
Frontiers in Immunology 04
+CXCR3−CCR6−), Th17 (CD3+CD4+CD8−CD45RO+CCR6 
+CCR4+CXCR3−), Th17.1 (CD3+CD4+CD8−CD45RO+CCR6 
+CD161+CXCR3+CCR4−), Tph (CD3+CD4+CD8−CD45RO 
+PD-1high+CXCR5−ICOS+), Treg (CD3+CD4+CD25+CD127−), 
naïve Tregs (Treg fraction I, CD45RA+CD25low+Treg), effector 
Tregs (Treg fraction II, CD25high+CD45RA−Treg), central 
memory (CM) T cells (CCR7+CD45RA−), effector memory (EM) 
FIGURE 1 (Continued) 
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FIGURE 1 (Continued) 

Integrative analysis workflow: from T cell profiling to discriminative cluster identification. The figure provides a comprehensive illustration of the 
study’s workflow, including all major datasets and abbreviations: FSM-TCL-DS (FlowSOM T cell cluster dataset: 44 clusters from all CD3+ T cells), 
FSM-ATCL-DS (FlowSOM activated T cell cluster dataset: 12 clusters from activated CD38+HLA-DR+ T cells), gating-TCS-DS (manually gated T cell 
subset dataset), D-TCLs (discriminative T cell clusters, defined as those selected by adaptive LASSO in >50% of LOOCV iterations), and ATCLs 
(activated T cell clusters). The relationships between datasets, feature selection, and validation steps are depicted. Starting with the collection of 
peripheral blood from 50 participants, including 16 patients with untreated SP-RA, 17 patients with SN-RA, and 17 healthy controls, T cells were 
stained for 25 markers and analyzed using mass cytometry. Initial data segmentation was achieved through manual gating of T cell subsets, 
followed by an advanced clustering using the FlowSOM algorithm, which created two datasets: one for all CD3+ T cells and another focusing on 
activated T cell subsets. These datasets facilitated the detailed examination and identification of unique T cell clusters. The number of clusters for 
FSM-TCL-DS and FSM-ATCL-DS was determined empirically, based on biological interpretability and hierarchical merging criteria. Subsequently, the 
adaptive LASSO method was applied 33 times with leave-one-out cross-validation (LOOCV), with inverse probability weighting (IPW) in each cycle 
for background adjustment. Clusters selected as non-zero coefficients in >50% of LOOCV cycles were defined as discriminative T cell clusters (D-
TCLs). All model parameters and feature selection criteria were established a priori, and no post hoc optimization was performed, in order to 
minimize bias and overfitting. This analysis highlighted six D-TCLs critical for distinguishing between SP-RA and SN-RA. The identified clusters were 
further validated using a support vector machine (SVM) with extensive bootstrap analysis, demonstrating their significance in differentiating disease 
states. This integrative approach underscores the potential of detailed T cell phenotyping in uncovering nuanced immunological differences 
between RA subtypes and guiding targeted therapeutic strategies. 
T cells (CCR7−CD45RA−), terminally differentiated effector 
memory T cells re-expressing CD45RA (TEMRA) T cells (CCR7 
−CD45RA+), and naïve T cells (CCR7+CD45RA+). 

We used a detailed strategy to categorize and analyze T cell 
subsets and their functional states. We quantitatively assessed the 
distribution of T cell types within the CD3+ T cell population, 
including CD4 single positive (CD4-SP), CD4−CD8− double-
negative, CD4+CD8+ double-positive, and CD8 single positive 
(CD8-SP) cells. This analysis was supported by the assessment of 
central and EM cells among the CD4+ and CD8+ T cell 
populations, in addition to the measurement of frequencies of 
naïve and effector T cells within these groups. 

We identified specific T cell subsets, such as Th1, Th2, Th17, 
Th17.1, and Tph as well as Tregs within the CD4+ lineage. 
Established markers were used to facilitate this classification and 
ensure the rigor of our gating strategy. For a deeper insight into the 
immunoregulatory environment, we planned to calculate the ratios 
of Th cells to Tregs, aiming to delineate the balance between these 
cell types. 

This methodological setup laid the groundwork for creating 
gating T cell subset dataset (gating-TCS-DS), which focuses on well-
characterized T cell subsets and includes a comprehensive array of 
immunological markers and functional characteristics pertinent to 
each subset. This dataset intends to serve as a bridge for subsequent 
analyses, including machine learning-based clustering, which will 
elucidate the complex immunological landscape associated 
with RA. 
2.3 Unsupervised FlowSOM clustering of T 
cell and activated T cell clusters in RA 
using mass cytometry 

FlowSOM, a machine-learning algorithm, was applied to 
CyTOF data gated on CD3+ T cells from all participants (31, 32). 
This approach resulted in two key cluster datasets: the FlowSOM T 
cell cluster dataset (FSM-TCL-DS), containing 44 clusters (TCLs, 
TCL00–TCL43) from all CD3+ T cells, and the FlowSOM activated 
T cell cluster dataset (FSM-ATCL-DS), containing 12 clusters 
Frontiers in Immunology 05 
(ATCLs, ATCL00–ATCL11) from activated CD38+HLA-DR 
+CD3+ T cells. Additionally, canonical T cell subsets were 
manually gated, forming the gating-TCS-DS. These abbreviations 
are used consistently throughout the manuscript. High-dimensional 
data visualization was performed using t-SNE, and the phenotypic 
profiles of each cluster were summarized in heatmaps. While some 
clusters appear to be closely positioned or overlap in the two-
dimensional t-SNE plot, this visualization does not necessarily 
reflect true separation in the original high-dimensional marker 
space. Cluster distinctiveness was therefore further confirmed by 
examining comprehensive marker expression heatmaps. Details of 
the clustering procedure, preprocessing, and analytical methods— 
including cluster number selection—are provided in Supplementary 
Methods 2.3. 

To ensure the robustness of clustering results and exclude 
potential batch effects, additional analyses—such as inter-run 
normalization using the CytoNorm algorithm, permutation-based 
multivariate analysis of variance based assessment of sample 
grouping, and Principal Component Analysis—were conducted. 
The details of these analyses are described in Supplementary 
Methods 2.3.4, and representative results are shown in 
Supplementary Figure 2. 
2.4 Feature selection and discriminative T 
cell cluster identification using adaptive 
least absolute shrinkage and selection 
operator 

This study utilized adaptive least absolute shrinkage and 
selection operator (adaptive LASSO) to identify T cell clusters 
that distinguish SP-RA from SN-RA. Analysis was conducted on 
three datasets (gating-TCS-DS, FSM-TCL-DS, and FSM-ATCL­

DS), comprising immunophenotypic data from 33 RA patients 
stratified by ACPA status. Data normalization was performed 
using the centered log-ratio transformation to account for 
compositional biases. 

To rigorously prevent overfitting and ensure unbiased 
performance estimation, we employed a leave-one-out cross-
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validation (LOOCV) framework: in each of 33 cycles, one patient 
was excluded as the test set, and the model was trained on the 
remaining 32. Within each LOOCV cycle, inverse probability 
weighting (IPW) was used to adjust for background covariates 
(age, sex, symptom duration, NSAID use). Adaptive LASSO feature 
selection was then performed, and clusters selected as non-zero 
coefficients in >50% of LOOCV iterations were designated as 
discriminative T cell clusters (D-TCLs). All model parameters 
and selection criteria were established a priori and applied 
consistently, minimizing bias and overfitting. 

The workflow of the feature selection and D-TCL identification 
process, including LOOCV, and adaptive LASSO application, is 
illustrated in Figure 1. This visual summary highlights the analytical 
pipeline and key steps in identifying robust biomarkers for 
distinguishing SP-RA and SN-RA. Further methodological details, 
including statistical modeling and validation processes, are 
described in Supplementary Methods 2.4. 
2.5 Weighted comparative analysis of T cell 
cluster distributions in patients with SP-RA 
and SN-RA 

Differences in T cell cluster distributions between SP-RA and 
SN-RA groups were analyzed using weighted Mann–Whitney U 
tests, incorporating propensity score modeling and inverse 
probability weighting (IPW) for confounding adjustments. 
Weighted TCL distributions were visualized through scatter plots 
to provide an intuitive understanding of the comparative analysis. 
The detailed methodology, including IPW weight calculation, 
median value computation, and data visualization, is described in 
Supplementary Methods 2.5. 
2.6 Classification performance evaluation 

2.6.1 Bootstrap-supported SVM validation of D-
TCLs and clinical benchmarks 

To evaluate the discriminative power of the identified D-TCLs 
in distinguishing SP-RA from SN-RA, we employed a support 
vector machine (SVM) model with bootstrap resampling (n = 
1000 iterations). 

For each bootstrap sample, the dataset was randomly split into 
training and test sets (typically 70% train, 30% test). The SVM 
hyperparameters (cost and gamma) were optimized by grid search 
using the training set, and model performance was assessed on the 
corresponding test set. 

Performance metrics—including accuracy, sensitivity, 
specificity, positive predictive value (PPV), negative predictive 
value (NPV), F1 score, and area under the receiver operating 
characteristic curve (AUC-ROC)—were calculated for each 
bootstrap iteration. 

Distributions of performance metrics were summarized with 
violin and box plots, and mean values, confidence intervals, and 
interquartile ranges were reported. All validation was performed 
internally using bootstrap-supported train/test split. 
Frontiers in Immunology 06
Further methodological details are provided in Supplementary 
Methods 2.6, and an overview of the analytic workflow is shown 
in Figure 1. 

2.6.2 Permutation test for SVM predictive 
performance 

To further evaluate whether the observed SVM classification 
performance could be attributed to chance or model flexibility, we 
performed a permutation test. The observed mean area under the 
ROC curve (AUC) was calculated using 1000 bootstrap resamplings 
of the dataset, with SVM hyperparameters (cost and gamma) fixed 
to the optimal values determined on the original labels. For the 
permutation test, the ACPA status labels were randomly shuffled 
1000 times, and for each permutation, the mean AUC was 
recalculated using the same SVM model and parameter settings. 
The distribution of permuted mean AUCs was then compared to 
the observed mean AUC, and a permutation p-value was 
determined as the proportion of permutations with mean AUCs 
greater than or equal to the observed value. Full implementation 
details are provided in Supplementary Methods 2.6. 

2.6.3 Alternative classifier validation 
To further examine the robustness of the predictive signature, 

we performed bootstrap validation (n = 1000) using three 
alternative classification algorithms—Elastic Net, Random Forest, 
and XGBoost—in addition to the SVM. For each bootstrap sample, 
the optimal regularization parameter (lambda) for the Elastic Net 
model was determined by internal cross-validation within the 
training set. For Random Forest, the number of variables 
randomly sampled at each split (mtry) was selected by 3-fold 
cross-validation. For XGBoost, fixed parameters (max_depth = 3, 
eta = 0.1, nrounds = 50) were used based on preliminary tuning. 
Model performance (AUC) was evaluated on the corresponding test 
set. Full implementation details are provided in Supplementary 
Methods 2.6. 
2.7 Statistical analysis 

2.7.1 Patient background and descriptive statistics 
For evaluating differences in patient background characteristics, 

we employed the Mann–Whitney U test for continuous variables 
and Fisher’s exact test for categorical variables. For comparing three 
groups involving continuous variables, the Kruskal–Wallis test was 
used. All tests were assessed for statistical significance at a p-value 
of <0.05. 

2.7.2 T cell cluster and T cell subset analysis 
Percentage of T cell cluster populations and T cell subsets, 

including Th cells, CD4+ T cells, and CD8+ T cells, were quantified 
using FlowJo software and FlowSOM v3.0.18 (29). Statistical 
comparisons between groups for T cell subsets were conducted 
using the Mann–Whitney U test, with significance set at a p-value of 
<0.05. To account for multiple comparisons, FDR correction 
(Benjamini–Hochberg method) was performed within each 
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biologically defined group (core T cell subsets; activated T cell 
subsets; and Th/Treg ratio group, which includes Th and Treg 
frequencies as well as their calculated ratios). Both p-values and q-
values are reported throughout. 

2.7.3 Quantitative analysis for Treg cell marker 
expression 

Expression levels of co-stimulatory and inhibitory molecules 
(CD28, CTLA-4, PD-1, Fas, ICOS, LAG-3, TIM-3, OX40, HLA-DR, 
and 4-1BB) were quantified on total Treg cells and their functional 
subfractions—naïve Tregs (Fraction I) and effector Tregs (Fraction 
II)—using FlowJo software. For each sample, the median expression 
level of each marker was calculated. 

Group comparisons were made between RA patients (SP-RA 
and SN-RA) and HCs, as well as between SP-RA and SN-RA 
subgroups. The Mann–Whitney U test was used to assess 
statistical significance. Expression data are presented as median 
values with interquartile ranges (IQR). 

This analysis aimed to characterize the differential expression of 
immunoregulatory molecules across Treg subsets in RA, providing 
insights  into  their  potential  roles  in  disease-specific 
immune regulation. 

2.7.4 Correlation analysis 
Spearman’s rank correlation  coefficient was used to assess 

correlations between the proportions of each T cell population 
(subsets and clusters, using CLR-transformed values for 
compositional data) and clinical background data, including age, 
gender, duration of illness, morning stiffness, number of tender and 
swollen joints, patient VAS scores, and laboratory measures (CRP, 
MMP-3, RF, ACPA levels, DAS28-CRP, and SDAI). Correlation 
matrices were visualized to enhance the interpretability of these 
associations, with the Benjamini–Hochberg procedure applied to 
control the false discovery rate in the face of multiple 
comparisons (33). 

All statistical analyses and visualizations were conducted using 
R version 4.3.1. The corrplot package was used for generating 
correlation plots, and the stats package was used for other 
statistical computations. 
2.8 Flow cytometric analysis of additional T 
cell subset characteristics 

To complement the CyTOF-based profiling, additional analyses 
were performed using conventional flow cytometry to evaluate the 
composition and transcription factor expression of selected T cell 
subsets. These included quantification of gd T cells within the CD4­

CD8- double-negative T cell population, as well as intracellular 
expression of T-bet, GATA3, RORgt, and Foxp3 in Th1, Th2, Th17, 
Th17.1, and Treg cells. Detailed staining protocols and gating strategies 
are described in the Supplementary Methods. Representative data are 
shown in Supplementary Figure 3 (transcription factor analysis) and 
Supplementary Figure 4 (gdTCR analysis). 
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2.9 Ethics statement 

This study was approved by the Ethics Review Committee of the 
Graduate School of Medicine, Nagoya City University under the 
approval number 60-00-0472. The date of approval was July 10, 
2017. The study was conducted in accordance with the Declaration 
of Helsinki. Written informed consent was obtained from all 
patients and HCs who participated in this study. 
3 Results 

3.1 Baseline characteristics of patients with 
RA and HCs 

Thirty-three patients with RA (SP-RA, n = 16 and SN-RA, n = 
17) and 17 HCs were included in this study. Details of patient 
demographics and clinical characteristics are summarized in 
Table 1. Patient background factors were compared between SP­
RA and SN-RA groups and between RA and HC groups. Median 
ages of HC, SN-RA, and SP-RA groups were 51, 68, and 62 years, 
respectively. The disease activity (DAS28-CRP and SDAI) of RA 
tended to be slightly higher in the SN-RA group. The rate of oral 
NSAID use was similar between the SN-RA (35.3%) and SP-RA 
groups (31.2%). There were no significant differences between SN­
RA and SP-RA groups regarding the duration of illness, duration of 
morning stiffness, serum CRP levels, and serum MMP-3 levels. 
Median serum titers in the SP-RA group were 265.5 U/mL for 
ACPA and 99.0 IU/mL for RF. Clinical features were generally 
comparable between SP-RA and SN-RA, with slightly higher 
disease activity in SN-RA. 
3.2 Comparison of T cell subsets in 
patients with SP-RA, patients with SN-RA, 
and HCs 

The peripheral blood T cell subsets were analyzed by manual 
gating of CyTOF data to create the gating-TCS-DS dataset 
(Supplementary Figure 1), encompassing a comprehensive set of 
immunophenotypic parameters detailed in Table 2. Significant 
immunological differences were observed between patients with RA 
and HCs. Specifically, CD4-SP, CM CD4+ T cells, CM CD8+ T cells, 
and naïve CD4+ T cells were significantly elevated in RA patients 
compared to HCs. Activated T cell subsets, including activated CD3+, 
activated CD4+, activated CD8+, and activated Th1 cells, were also 
markedly higher in RA patients (Figure 2, Table 2). 

Among Th subsets, proportions of Th1, Th17, Th17.1, and Tph 
cells were notably higher in RA patients compared to HCs (Figure 3, 
Table 2). Moreover, the ratios of effector Th subsets to Tregs, such 
as Th1/Treg, Th2/Treg, Th17/Treg, Th17.1/Treg, and Tph/Treg, 
were significantly elevated in RA patients, indicating a shift toward 
an effector-dominant immune profile. These findings highlight the 
distinct immunological landscape of RA compared to HCs and 
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suggest the critical role of activated and effector T cell subsets in 
driving RA pathogenesis. 

Further analysis within the RA cohort revealed distinct 
differences between SP-RA and SN-RA subgroups. While most 
Th subset proportions, including Th1, Th17, and Th17.1, showed 
no significant differences, the EM subset in CD4+ T cells tended to 
be higher in SP-RA than in SN-RA, reflecting a pro-inflammatory 
bias in the seropositive group. The activated fraction of Tph cells 
was significantly elevated in SP-RA compared to SN-RA (p = 
0.037), consistent with its association with aggressive disease 
phenotypes. In contrast, the overall Treg population was 
significantly reduced in SP-RA compared to SN-RA (p = 0.002), 
suggesting impaired regulatory mechanisms in the seropositive 
subtype (Figure 3, Table 2). To further delineate the regulatory 
capacity of Tregs, their functional fractions (Fraction I and Fraction 
II) were examined. No significant differences in these fractions were 
observed between SP-RA and SN-RA groups, indicating that the 
observed regulatory deficit in SP-RA is driven by reduced Treg 
numbers rather than functional impairment. 
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The balance between effector Th cell and Treg was also evaluated. 
While the overall Th/Treg ratio was elevated in RA patients compared 
to HCs, only the Tph/Treg ratio showed a significant difference 
between SP-RA and SN-RA, being substantially higher in SP-RA 
(p = 0.0496). This imbalance underscores the effector-dominant 
immune profile characteristic of seropositive RA and its potential 
implications for disease progression and therapeutic targeting 
(Figure 3, Table 2). 

To validate the immunophenotypic definitions based on surface 
markers used in the CyTOF analysis, we performed additional flow 
cytometric analyses in an independent cohort of RA  patients (n  =  6–8), 
focusing on the expression of lineage-defining transcription factors. 
These supplementary data, presented in Supplementary Figure 3, 
confirmed that 78% of CD4+CD25+CD127- Treg cells expressed 
Foxp3, supporting the reliability of our gating strategy. In contrast, 
the expression of T-bet, GATA3, and RORgt within chemokine 
receptor-defined Th subsets was modest, indicating phenotypic-
functional heterogeneity. These findings reinforce the validity of our 
Treg characterization and suggest a more variable transcriptional 
=

= = =

TABLE 1 Clinical characteristics of patients with rheumatoid arthritis and healthy controls. 

Patient characteristics 

RA (n 33) 
p-value 

HCs 
p-value

SN-RA (n 17) SP-RA (n 16) n 17 

Median [IQR] 
or (%) 

Median [IQR] 
or (%) 

SN-RA vs. 
SP-RA 

Median [IQR] 
or (%) (RA vs. HCs) 

Age, years 68 [46, 73] 62 [54, 72.5] 0.885 51 [38, 69] 0.085 

Sex: male/female, (%) 8/9 (47.06/52.94) 8/8 (50.0/50.0) 1 8/9 (47.06/52.94) 0.943 

Symptom duration, months 3.00 [1.47, 4.00] 1.43 [0.93, 4.75] 0.286 – – 

DAS28-CRP 5.00 [3.94, 5.64] 4.24 [3.49, 5.50] 0.28 – – 

SDAI score 31.93 [22.18, 37.46] 21.40 [13.42, 30.74] 0.113 – – 

Swollen Joints (0–68) 11 [6, 13] 7 [3.75, 11.25] 0.169 – – 

Tender Joints (0–68) 12 [9,17] 6 [3, 13.25] 0.108 – – 

Physician’s global 
assessment scores 

50 [39.00, 60.00] 41 [31.75, 48.50] 0.2 – – 

Patient global assessment scores 52[38.00, 69.00] 60 [36.25, 70.75] 0.885 – – 

Morning stiffness, (h) 1.00 [0.50, 3.00] 1.50 [0.50, 3.25] 0.487 – – 

Concomitant NSAIDs, n (%) 6 (35.3) 5 (31.2) 1 – – 

CRP, mg/dL 2.17 [0.15, 6.35] 1.17 [0.38, 5.06] 0.666 – – 

MMP-3, ng/mL 83.00 [43.00, 242.60] 123.00 [81.42, 185.25] 0.721 – – 

ACPA+, n (%) 0 (0) 16 (100) – – 

ACPA titer (U/mL) 0.60 [0.60, 0.90] 265.50 [86.32, 354.00] 0.818 × 10−6 – – 

RF+, n (%) 0 (0) 16 (100) 0.857 × 10−9 – – 

RF titer (IU/mL) 5.00 [5.00, 7.00] 99.00 [49.75, 157.75] 0.74 × 10−6 – – 
 

The table summarizes the clinical characteristics of the study participants, categorized into seropositive rheumatoid arthritis (SP-RA), seronegative rheumatoid arthritis (SN-RA), and healthy 
controls (HCs). The parameters assessed included age, sex, symptom duration, disease activity score 28-joint count C-reactive protein (DAS28-CRP), simplified disease activity index (SDAI), 
physician’s global assessment scores, patient global assessment scores, morning stiffness duration, and usage of nonsteroidal anti-inflammatory drugs (NSAIDs) as well as levels of C-reactive 
protein (CRP), matrix metalloproteinase-3 (MMP-3), rheumatoid factor (RF), and anticyclic citrullinated peptide antibody (ACPA). Data are presented as median with interquartile range (IQR) 
for continuous variables and as proportions (%) for categorical variables. Differences in continuous variables between SP-RA vs. SN-RA and RA overall vs. HCs were analyzed using the Mann– 
Whitney test. Categorical data were analyzed using the chi square test to determine statistical significance, with corresponding p-values displayed in the rightmost columns of the table. 
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TABLE 2 Comparative analysis of T cell subsets in patients with rheumatoid arthritis and healthy controls. 

RA HCs SN-RA vs. 
-RA 

RA vs. HCs 

value q-value p-value q-value 

17 0.677 0.00048* 0.00144† 

84 0.242 0.007* 0.012† 

01 0.242 0.69 0.75273 

39 0.697 0.058 0.07733 

05 0.705 0.0000117* 0.00007† 

71 0.293 0.000277* 0.00111† 

04* 0.048† 0.007* 0.012† 

94 0.242 0.108 0.1296 

84 0.242 0.000000167* 0.000002† 

5 0.293 0.862 0.862 

64 0.677 0.00686* 0.012† 

68 0.552 0.014* 0.021† 

64 0.752 0.0000269* 0.000112† 

17 0.752 0.00109* 0.00291† 

73 0.773 0.0000281* 0.000112† 

2 0.587 0.039* 0.078 

6 0.752 0.242 0.3872 

27 0.773 0.85 0.967 

25 0.5 0.967 0.967 

37* 0.296 0.926 0.967 

21 0.324 0.000000176* 0.000001† 

07* 0.021† 0.055 0.06875 

(Continued) 
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T cell subset (%), Median [IQR] ALL (n=33) SN-RA (n=17) SP-RA (n=16) HCs (n=17) p

Core T cell subsets 

CD4 single positive/CD3 (%) 60.00 [53.10, 70.90] 62.90 [52.20, 75.60] 58.25 [53.55, 68.28] 47.00 [38.90, 50.30] 0.

CD4−CD8−-double negative/CD3 (%) 6.08 [4.10, 10.20] 4.70 [3.14, 6.44] 7.10 [5.84, 10.22] 11.10 [8.06, 19.60] 0.

CD4+CD8+ double-positive/CD3 (%) 0.66 [0.46, 1.09] 0.72 [0.60, 0.94] 0.52 [0.32, 1.10] 0.66 [0.52, 1.01] 0.

CD8 single positive/CD3 (%) 26.70 [18.20, 36.70] 30.00 [18.30, 39.30] 25.70 [18.10, 35.80] 37.30 [24.20, 39.30] 0.

Central memory/CD4 (%) 16.70 [12.60, 18.90] 16.70 [12.60, 19.30] 16.55 [12.90, 17.38] 4.77 [2.66, 7.74] 0.

Central memory/CD8 (%) 3.22 [1.90, 5.59] 3.95 [2.67, 5.85] 2.56 [1.77, 4.02] 0.91 [0.50, 1.48] 0.

Effecter memory/CD4 (%) 38.70 [33.00, 45.40] 33.40 [31.00, 39.30] 43.90 [37.60, 48.75] 45.80 [41.30, 49.90] 0.

Effecter memory/CD8 (%) 37.50 [27.10, 45.10] 29.90 [23.10, 41.00] 41.10 [34.20, 47.10] 29.40 [21.70, 42.00] 0.

Naïve/CD4 (%) 34.10 [27.60, 42.70] 40.80 [27.60, 48.40] 32.70 [27.88, 35.52] 12.70 [9.71, 14.90] 0.

Naïve/CD8 (%) 13.20 [8.09, 27.10] 19.70 [11.80, 29.60] 9.74 [6.90, 20.73] 16.40 [9.40, 22.30] 0.

TEMRA/CD4 (%) 8.78 [7.55, 10.80] 10.30 [7.55, 10.80] 8.70 [7.65, 10.97] 38.60 [23.20, 43.00] 0.

TEMRA/CD8 (%) 37.30 [31.50, 47.30] 35.90 [25.50, 41.00] 41.70 [32.62, 48.00] 57.00 [43.60, 62.80] 0.

Activated T cell subsets 

Activated T cells/CD3 (%) 2.23 [1.69, 3.67] 2.12 [1.69, 2.45] 2.36 [1.75, 3.84] 0.99 [0.76, 1.31] 0.

Activated CD4+ T cells/CD4 (%) 3.06 [2.05, 4.60] 2.23 [2.05, 3.65] 3.67 [2.14, 4.66] 1.76 [1.48, 2.36] 0.

Activated CD8+ T cells/CD8 (%) 6.01 [4.32, 8.01] 6.12 [4.09, 8.00] 5.47 [4.41, 8.44] 2.07 [1.31, 3.37] 0.

activated Th1/Th1 (%) 4.17 [2.25, 5.29] 2.64 [1.98, 5.00] 4.75 [2.62, 6.23] 0.00 [0.00, 5.26] 0.

activated Th2/Th2 (%) 10.00 [6.15, 13.50] 9.68 [5.79, 13.00] 10.85 [7.22, 13.93] 7.32 [0.00, 12.50] 0.

activated Th17/Th17 (%) 0.00 [0.00, 16.70] 0.00 [0.00, 10.50] 2.17 [0.00, 20.00] 0.00 [0.00, 22.20] 0.

activated Th17.1/Th17.1 (%) 0.00 [0.00, 0.00] 0.00 [0.00, 3.49] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.

activated Tph/Tph (%) 30.00 [21.40, 42.90] 25.60 [20.00, 30.00] 37.95 [28.75, 45.80] 25.00 [16.70, 50.00] 0.

Th/Treg/ratio 

Th1/CD4+CD45RO+ (%) 12.40 [9.45, 16.70] 15.20 [10.30, 17.50] 10.45 [8.57, 12.92] 2.51 [1.45, 3.16] 0.

Th2/CD4+CD45RO+ (%) 8.59 [5.31, 11.90] 10.70 [8.59, 13.10] 6.26 [3.66, 7.63] 5.56 [3.71, 7.91] 0.
P

-

5

0

1

6

7

1

0

0

0

1

5

3

5

5

7
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TABLE 2 Continued 

RA HCs SN-RA vs. 
SP-RA 

RA vs. HCs 

) SP-RA (n=16) HCs (n=17) p-value q-value p-value q-value 

1.04 [0.53, 1.71] 0.72 [0.46, 1.03] 0.482 0.482 0.026* 0.06875 

1.89 [0.78, 2.63] 0.64 [0.43, 1.06] 0.589 0.589 0.016* 0.06875 

2.77 [2.03, 3.56] 0.95 [0.69, 1.60] 0.505 0.589 0.0000679* 0.000475† 

2.48 [1.93, 3.55] 5.00 [3.98, 5.88] 0.002* 0.012† 0.0505 0.06875 

8.085 [4.875, 14.575] 15.5 [9.68, 19.3] 0.1390077 0.324 0.1122823 0.1684 

20.2 [14.9, 22.5] 17.4 [10.3, 29.0] 0.9856277 0.986 0.6448513 0.8383 

3760] 1.2087 [0.6941, 1.6112] 0.1224 [0.0692, 0.1910] 0.358 0.537 0.00000165* 0.000009† 

0104] 0.5778 [0.4070, 0.9195] 0.2966 [0.1951, 0.3466] 0.653 0.838 0.0000294* 0.000154† 

1188] 0.1060 [0.0625, 0.1651] 0.0385 [0.0272, 0.0651] 0.407 0.573 0.00173* 0.00693† 

1822] 0.2000 [0.0732, 0.2753] 0.0291 [0.0166, 0.0841] 0.117 0.324 0.0161* 0.0322† 

2712] 0.2432 [0.2211, 0.4294] 0.0583 [0.0317, 0.1102] 0.0496* 0.124 0.0000294* 0.000154† 

ts, activated T cell subsets, and Th/Treg/ratio subsets, between RA subtypes and controls. The ‘Th/Treg/ratio subset group’ includes Th subset frequencies, Treg 
 the Mann–Whitney U test, and FDR-adjusted q-values (Benjamini–Hochberg) were calculated within each group. Statistical significance is indicated by * (p < 0.05) 
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T cell subset (%), Median [IQR] ALL (n=33) SN-RA (n=1

Th/Treg/ratio 

Th17/CD4+CD45RO+ (%) 1.10 [0.79, 1.71] 1.14 [0.81, 1.53] 

Th17.1/CD4+CD45RO+ (%) 1.75 [0.83, 2.53] 1.75 [0.83, 2.10] 

Tph/CD4+CD45RO+ (%) 2.60 [1.80, 3.78] 2.43 [1.55, 4.12] 

Treg/CD4 (%) 3.57 [2.43, 4.95] 4.84 [3.57, 5.47] 

Treg fraction I/Treg (%) 12.1 [5.77, 15.9] 14.3 [11.1, 16.8] 

Treg fraction II/Treg (%) 17.6 [43, 22.9] 20.2 [14.9, 22.5] 

Th1/Treg Ratio 1.1475 [0.6193, 1.5118] 1.0392 [0.3072, 1

Th2/Treg Ratio 0.6154 [0.4139, 1.0104] 0.6197 [0.4667, 1

Th17/Treg Ratio 0.0983 [0.0576, 0.1361] 0.0825 [0.0576, 0

Th17.1/Treg Ratio 0.1413 [0.0444, 0.2288] 0.1293 [0.0262, 0

Tph/Treg Ratio 0.2277 [0.1616, 0.2907] 0.1775 [0.1174, 0

Data are shown as median [IQR]. The table compares various T cell subsets, including core T cell subs
frequencies, and the calculated ratios of Th subsets to Treg. For each group, p-values were calculated usin
and † (q < 0.05). See Figures 2A, B, and 3 for visual presentation. 
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profile among effector T cell subsets. In addition, to address the absence 
of gdTCR detection in the CyTOF antibody panel, we performed 
supplementary flow cytometric analysis on peripheral blood samples 
from RA patients (n = 4). This analysis demonstrated that gd T cells  
accounted for an average of 50.7% (range: 45–53%) of the CD4-CD8-
Frontiers in Immunology 11 
double-negative T cell population. These findings, as shown in 
Supplementary Figure 4, indicate that  gd T cells represent a 
substantial component of the double-negative T cell compartment in 
RA. These results demonstrate an effector-dominant T cell profile and 
reduced Treg presence in RA, especially in SP-RA. 
FIGURE 2 

Comparative analysis of T cell subsets in seropositive and seronegative rheumatoid arthritis. The figure illustrates the proportions and ratios of 
various T cell subsets, excluding T helper (Th) cells and regulatory T cells (Tregs), in patients with seropositive rheumatoid arthritis (SP-RA), 
seronegative rheumatoid arthritis (SN-RA), and healthy controls (HCs). The analysis focuses on the relative prevalence of these subsets and their 
ratios, highlighting differences in immune profiles among the groups. Dot plots, violin plots, and overlaid box plots are used to display the data, 
showing the distribution within each group. The box plots highlight the median (indicated by a white dot) and interquartile ranges, providing a 
summary of the data distribution alongside the individual data points shown by the dot plots. (A) Core T cell subsets and (B) activated T cell subsets. 
Differences between groups were tested for statistical significance using the Mann–Whitney U test. FDR-adjusted q-values were calculated 
separately for the core T cell subsets (panel A) and activated T cell subsets (panel B) using the Benjamini–Hochberg method. Statistical significance is 
indicated by * (p < 0.05) and † (q < 0.05). Both p-values and q-values are shown for each comparison. 
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3.3 Differential expression of co-
stimulatory and inhibitory molecules in 
Treg subsets between RA and healthy 
controls 

To clarify the phenotypic characteristics of Treg subsets in RA, 
we analyzed the expression of ten co-stimulatory and inhibitory 
surface molecules—including CD28, CTLA-4, PD-1, Fas, ICOS, 
LAG-3, TIM-3, OX40, HLA-DR, and 4-1BB—in total Tregs as well 
as their functional subfractions: naïve Tregs (Fraction I) and effector 
Tregs (Fraction II). The expression profiles were compared among 
SP-RA, SN-RA, and HCs (Table 3). Compared with HCs, RA 
patients showed significantly elevated expression of all molecules 
except LAG-3, across total Tregs (p < 0.05). Notably, in naïve Tregs, 
CD28, Fas, and ICOS were significantly upregulated, while in 
effector Tregs, increased expression of CD28, Fas, PD-1, and 4-
1BB was observed. Between RA subtypes, CTLA-4 expression was 
significantly higher in SN-RA than in SP-RA within total Tregs (p = 
0.035), and 4-1BB was significantly increased in naïve Tregs of SN-
RA. No differences were found in effector Tregs between subtypes. 
Frontiers in Immunology 12 
These findings indicate that RA is associated with enhanced 
activation of Tregs, and that SN-RA may retain a more 
immunoregulatory Treg phenotype, particularly within the naïve 
compartment. This enhanced Treg activation in SN-RA may 
contribute to its distinct immunological profile. 
3.4 Correlation of T cell subsets with 
clinical background factors 

We next analyzed the correlations between T cell subsets and 
clinical background factors to further elucidate the immunological 
landscape in RA. This analysis, conducted using samples from RA 
patients (n = 33), revealed significant associations that highlight the 
interplay between immune cell populations and disease 
characteristics (Figure 4). 

Notably, ACPA titers were negatively correlated with Th2 cells 
and Tregs, while positive correlations were observed with EM-CD4 
and EM-CD8 cells and the Th17.1/Treg and Tph/Treg ratios. These 
findings underscore the effector-dominant immune profile 
FIGURE 3 

Comparative analysis of T helper and regulatory T cell profiles in seropositive and seronegative rheumatoid arthritis. (A) depicts the proportions of 
effector T helper (Th) cells and regulatory T cells (Tregs) in patients with seropositive rheumatoid arthritis (SP-RA), seronegative rheumatoid arthritis 
(SN-RA), and healthy controls (HCs). (B) examines the ratios of circulating Th1/Treg, Th2/Treg, Th17/Treg, Th17.1/Treg, and Tph cell/Treg in CD3+ T 
cells across three groups: SP-RA, SN-RA, and HCs. The analysis focused on the relative prevalence of these ratios, indicating differences in immune 
regulation across the groups. Data are presented using dot plots, violin plots, and overlaid box plots, illustrating the distribution within each group. 
The box plots emphasize the median (indicated by a white dot) and interquartile ranges, providing a concise summary of the data distribution while 
also highlighting individual data points with dot plots. Statistical significance of observed differences was assessed using the Mann–Whitney U test, 
and FDR-adjusted q-values (Benjamini–Hochberg method) were calculated within the Th/Treg/ratio subset group. Statistical significance is indicated 
by * (p < 0.05) and † (q < 0.05). Both p-values and q-values are shown for each comparison. 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1491041
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Maeda et al. 10.3389/fimmu.2025.1491041 
associated with seropositive RA, characterized by a reduction in 
regulatory mechanisms. 

Inflammatory markers, such as serum CRP levels, were 
positively correlated with Th17 and Th17.1 cells, as well as the 
Th17/Treg ratio, reinforcing the critical role of Th17-mediated 
inflammation in RA pathogenesis. Additionally, disease activity 
Frontiers in Immunology 13 
indices showed distinct associations with T cell subsets. DAS28­
CRP was positively correlated with Th17 and Tph cells, while SDAI 
demonstrated a strong positive correlation with Tph cells, 
suggesting their potential as biomarkers for disease monitoring. 

These correlations provide valuable insights into the distinct 
immune mechanisms driving RA subtypes and emphasize the 
TABLE 3 Expression of co-stimulatory and inhibitory molecules on treg cells in RA and healthy controls. 

Treg subset Molecule HC SN-RA SP-RA RA vs HC (p) SN-RA vs SP-RA (p) 

Treg CD28 28.9 [27, 33.7] 51 [43.6, 61.9] 53.05 
[43.38, 58.48] 

<0.001* 0.773 

CTLA-4 1.3 [1.19, 1.54] 2.16 [1.74, 2.88] 1.5 [0.98, 2.13] 0.026* 0.035* 

Fas 12.3 [8.3, 16.8] 26.1 [15.3, 37.9] 28.3 [23.27, 39.6] <0.001* 0.494 

HLA-DR 0.03 [0, 0.25] 0.66 [0.32, 1.66] 0.87 [0.24, 1.46] 0.004* 0.914 

ICOS 4.1 [2.12, 5.02] 5.91 [3.63, 7.76] 6.03 [4.93, 7.4] 0.001* 0.857 

LAG-3 0 [0, 0] 0 [0, 0] 0 [0, 0] 0.205 0.47 

OX40 0.15 [0, 0.44] 0.39 [0.11, 0.67] 0.49 [0.22, 1.14] 0.023* 0.407 

PD-1 0.73 [0.17, 0.9] 1.17 [0.8, 1.52] 1.48 [0.74, 1.75] 0.001* 0.601 

TIM-3 0 [0, 0] 0 [0, 0.17] 0 [0, 0.33] 0.049* 0.522 

4-1BB 0.22 [0, 0.38] 0.98 [0.53, 1.3] 0.58 [0.07, 0.75] 0.001* 0.149 

Treg Fr.I CD28 23 [19.5, 31.5] 37.2 [27.65, 42.3] 33.8 [26.3, 35.1] 0.01* 0.695 

CTLA-4 0.98 [0.48, 1.99] 2.62 [1.33, 3.33] 1.57 [0.38, 2.53] 0.228 0.174 

Fas 0.03 [0, 2.78] 2.6 [0.9, 5.04] 2.41 [0.06, 4.44] 0.034* 0.818 

HLA-DR 0 [0, 0.27] 0 [0, 0.03] 0 [0, 0] 0.241 0.404 

ICOS 0.33 [0, 2.32] 2.1 [1.52, 3.14] 2.81 [1.91, 5.42] 0.028* 0.269 

LAG-3 0 [0, 0.07] 0 [0, 0.2] 0.18 [0, 0.48] 0.248 0.272 

OX40 0 [0, 0] 0 [0, 0.33] 0 [0, 0.12] 0.346 0.452 

PD-1 0.26 [0, 0.87] 0.08 [0, 0.39] 0 [0, 0.78] 0.576 0.472 

TIM-3 0 [0, 0] 0 [0, 0] 0 [0, 0] 0.67 0.469 

4-1BB 0 [0, 0.61] 0.64 [0.12, 1.39] 0 [0, 0.08] 0.429 0.008* 

Treg Fr.II CD28 49.3 [33.9, 57.7] 77.5 
[68.48, 100.62] 

83.9 [65.2, 89.35] <0.001* 0.502 

CTLA-4 1.99 [1.46, 2.69] 2.54 [1.98, 3.63] 1.89 [1.21, 3.71] 0.438 0.277 

Fas 38.3 [29.8, 48.3] 92.15 
[52.72, 104.25] 

95.6 [51.6, 124.5] 0.001* 0.502 

HLA-DR 2.4 [0.58, 5.81] 5.37 [3.25, 10.63] 9.35 [1.17, 31.95] 0.101 0.526 

ICOS 12.1 [7.97, 17.9] 20.8 [8.55, 24.07] 20.8 [6.67, 22.5] 0.149 0.828 

LAG-3 0 [0, 0] 0 [0, 0.09] 0 [0, 0] 0.476 0.666 

OX40 0.8 [0.46, 1.56] 1.54 [1.19, 2.08] 1.74 [0.83, 2.99] 0.051 0.565 

PD-1 0.4 [0, 1.59] 1.52 [1.11, 3] 2.54 [1.34, 4.58] 0.009* 0.323 

TIM-3 0.21 [0, 0.77] 0.65 [0, 1.18] 0.77 [0, 1.5] 0.227 0.716 

4-1BB 0.46 [0, 1.03] 0.98 [0.37, 1.84] 1.89 [1.23, 2.29] 0.006* 0.063 
Expression of co-stimulatory and inhibitory molecules on Treg cells and their subfractions in patients with seropositive RA (SP-RA), seronegative RA (SN-RA), and healthy controls (HC). The 
table displays median values and interquartile ranges (IQR) for each molecule. For each sample, the median expression level was quantified using FlowJo software. Statistical comparisons of 
expression levels between different groups were performed using the Mann-Whitney test, assessing differences between RA patients (combining SN-RA and SP-RA) versus HCs, and within RA 
between SN-RA and SP-RA. This analysis aims to identify significant differences in the immunoregulatory profiles of Treg cells between the patient cohorts and healthy individuals. * indicates 
statistical significance (p < 0.05). 
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potential clinical utility of targeting specific effector and regulatory 
T cell populations. Taken together, our findings further highlight 
the immunological divergence between SP-RA and SN-RA. 
3.5 Dimensionality reduction plot of high-
dimensional CyTOF Data for 25 markers 

High-dimensional concatenated data for 25 T cell markers from 
the 50 participants were visualized as two-dimensional plots using 
t-SNE (Supplementary Figures 5, 6). The expression of the 25 cell 
surface markers was displayed as a heatmap on the t-SNE map 
(Supplementary Figure 5A). The t-SNE maps for the HCs, SP-RA, 
and SN-RA groups were displayed (Supplementary Figure 7A). The 
pseudocolor plot of cell density distribution indicated differences in 
cell density distribution across the three groups. Additionally, on 
the t-SNE map, the indicated T cell subsets were presented as 
overlays in the indicated colors (Supplementary Figure 7B). The 
analyzed Th subset accounted for a small portion of CD3+ T cells, 
whereas the remaining CD4+ and CD8+ T cells could be further 
divided into smaller cell populations. These visualizations revealed 
distinct distribution patterns of T cell populations across SP-RA, 
SN-RA, and HC groups, supporting further phenotypic clustering. 
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3.6 T cell clustering analysis using self-
organizing maps 

To identify T cell clusters that distinguish  SP-RA  from SN-

RA, we first performed unsupervised clustering using the 
FlowSOM algorithm, generating the FSM-TCL-DS (44 TCLs, 
TCL00–TCL43; see Figure 1 for workflow). This analysis was 
complemented by manual gating of canonical T cell subsets 
(gating-TCS-DS) and FlowSOM clustering on activated T cells 
(FSM-ATCL-DS). Adaptive LASSO with leave-one-out cross-
validation (LOOCV) and inverse probability weighting (IPW) 
was applied to each dataset to select discriminative T cell clusters 
(D-TCLs), defined as clusters consistently selected in >50% of 
LOOCV iterations. The relationships between datasets, cluster 
selection steps, and validation analyses are summarized 
in Figure 1. 

The clusters derived from the FSM-TCL-DS dataset were 
visualized on a t-SNE map with distinct colors (Supplementary 
Figure 5B), and their marker expression profiles were summarized 
in a heatmap (Supplementary Figure 5C). We then quantified the 
proportion of each TCL within CD3+ T cells in individual samples 
in order to explore differences in cluster distribution between SP­
RA and SN-RA. 
FIGURE 4 

Correlation analysis of T cell subsets and clinical characteristics in rheumatoid arthritis (RA) (n = 33). The figure shows a correlation coefficient matrix 
(Spearman’s r) between T cell subset frequencies, Th/Treg ratios, and clinical background factors such as age, sex, symptom duration, and ACPA 
positivity. For compositional variables (e.g., T cell clusters, T cell subset frequencies), correlations were calculated using CLR-transformed values; for 
ratios and other non-compositional variables, raw values were used. Each cell in the matrix indicates the strength and direction of the correlation, 
on a scale of −1 (strong negative correlation) to +1 (strong positive correlation), represented by a color gradient from red to blue. FDR correction 
(Benjamini–Hochberg method) was applied for multiple testing. Significance levels are indicated within each cell using asterisks to denote 
Benjamini–Hochberg adjusted q-values: *q < 0.1, **q < 0.05, ***q < 0.01, and ****q < 0.001. 
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3.7 FlowSOM clustering of activated T cell 
subsets in CD38+HLA-DR+CD3+ T cells 

Similar to our approach with T cell clusters, we performed 
clustering using the FlowSOM algorithm on the activated T cell 
gate, focusing on the CD38+HLA-DR+CD3+ T cell population for 
further insights. In our analysis, we identified 12 distinct ATCLs 
within this population (Supplementary Figure 6A). These exhibited 
a wide range of immunophenotypes, as evidenced by our 
comprehensive heatmap analysis of 25 surface markers for each 
cluster (Supplementary Figure 6B). Notably, the ATCLs consisted of 
various T cell subsets: five clusters (ATCL01–03, 05, and 06) were 
derived from CD4+ T cells; three (ATCL09–11) from CD8+ T cells; 
one (ATCL00) cluster showed weak CD8 expression; and three 
(ATCL04, 07, and 08) were identified as originating from CD4 
−CD8− double-negative T cells. We further analyzed the proportion 
(%) of these ATCLs within CD3+ T cells for each sample, resulting 
in the creation of FSM-ATCL-DS. Among the 12 ATCLs, eight 
clusters (ATCL02, 03, 04, 05, 06, 09, 10, and 11) were found to be 
significantly increased in RA patients compared to HCs 
(Supplementary Figure 6C). Although no statistically significant 
differences were observed between SN-RA and SP-RA, ATCL02 and 
ATCL03 tended to be more abundant in SN-RA, while ATCL05, 06, 
and 09 showed a trend toward higher expression in SP-RA. 
3.8 Identification and characterization of 
distinct T cell clusters in RA subtypes 

Prior to identifying D-TCLs, we performed extensive analysis to 
ensure the robustness and reliability of our findings. We analyzed T 
cells from 16 patients with untreated SP-RA and 17 patients with 
SN-RA, utilizing mass cytometry to assess 25 T cell markers. The 
FlowSOM algorithm facilitated the identification of 44 T cell 
clusters (TCL00–43). 

To examine the dataset, we conducted a series of analyses on 
three distinct datasets: gating-TCS-DS, FSM-TCL-DS, and FSM­

ATCL-DS (Figures 5A, B). Each of these datasets underwent a 
specific set of analytical procedures. Importantly, for each iteration 
of LOOCV, we applied IPW to adjust for variations in patient 
backgrounds. This approach ensured that patient background 
adjustments were individually tailored for each LOOCV iteration. 
Subsequently, we used adaptive LASSO in the LOOCV process, 
conducted 33 times (Figure 1). 

This rigorous approach was designed to extract features that 
were consistently observed in >50% of the validations, ensuring 
results reliability. 

To determine the dataset with the highest predictive accuracy, 
we calculated prediction accuracy for each dataset using LOOCV. 
The accuracies were 81.8% for FSM-TCL-DS, 60.6% for FSM­

ATCL-DS, and 45.5% for gating-TCS-DS (Figure 5B). Based on 
these outcomes, we focused on FSM-TCL-DS, which exhibited the 
highest accuracy. Within FSM-TCL-DS, we identified certain 
features that were selected as non-zero coefficients in more than 
50% of LOOCV cycles (Figure 5C) were designated as 
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discriminative T cell clusters (D-TCLs), reflecting robust and 
reproducible discriminative power and minimizing the risk of 
overfitting. This refined approach emphasizes the thoroughness of 
our analytical process, ensuring that each step is optimally aligned 
to enhance the validity of our findings. For additional insight into 
the methodological rigor of our study, we graphically demonstrated 
the adjustments made to propensity scores using IPW across all 
cases, highlighting the impact of patient background adjustments 
(Supplementary Figure 8A). Following this, our use of the adaptive 
LASSO model is illustrated, which visualizes the selection of 
significant variables from the FSM-TCL-DS, FSM-ATCL-DS, and 
gating-TCS-DS datasets (Supplementary Figure 8B). Subsequently, 
we displayed the T cell variables and their corresponding 
coefficients that were identified as non-zero variables by applying 
the adaptive LASSO model to the entire dataset (Figure 5D). 

The identified D-TCLs included TCL02, TCL21, TCL24, 
TCL31, TCL32, and TCL35. To facilitate interpretation, marker 
expression profiles for these clusters are visualized using both a 
heatmap with a unified global color scale (Figure 6A) and the 
original cell diagram representation (Figure 6B). The heatmap 
enables direct quantitative comparison of marker expression 
across the D-TCLs, while the cell diagram provides an intuitive 
overview of the phenotypic profiles. The full heatmap of all 44 
clusters is provided in Supplementary Figure 5C. 

Each cluster displayed unique characteristics and patterns, 
distinct from the remaining data. Among these, TCL21 stood out 
as a representative of the activated Th1-type Tph cell, characterized 
by a specific marker expression profile. TCL21 belongs to EM CD4+ 
T cells and was characterized as CXCR3+CCR6−CCR5low+PD-1 
high+ICOS+CD28+Fas+HLA-DR+. This cell population is 
considered similar to the Th1-type activated Tph cell. TCL21 
displayed a positive correlation with DAS28-CRP and patient 
VAS. TCL02 was another significant finding, indicative of CM 
CD4+ T cells. The profile of this cluster was CD45RO+CD28 
+CD38+HL-DR−CCR7+ICOS+CTLA-4low+PD-1low+CXCR3+, 
suggesting a state of partial activation and memory potential. We 
identified two CD4−CD8− double-negative T cell clusters, TCL31 
and TCL35. TCL31 was distinguished by the expression of CD161+, 
typically associated with innate-like T cell functions, whereas 
TCL35 was characterized by HLA-DR+CD38+TIM-3+, markers 
often associated to an activated, potentially regulatory phenotype. 

Two TCLs with low T cell phenotype expression, TCL24 and 
TCL32, were pivotal in the stratification of patients with SP-RA and 
SN-RA. TCL24 is a CD4-SP cluster that is negative for CD45RA, 
CD45RO, and CCR7. There was little expression of other lineage 
markers, no expression of activation markers, and low expression of 
the CTLA-4 costimulatory/coinhibitory marker. TCL32 is a CD8­
SP cluster that is negative for CD45RA, CD45RO, and CCR7. No 
other characteristic markers were identified. Although these clusters 
had less pronounced marker expression, they contributed 
significantly to the overall T cell landscape and its association 
with RA subtypes. 

These  D-TCLs  may  represent  dis t inct  per iphera l  
immunophenotypes that aid in differentiating between 
seropositive and seronegative RA. 
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3.9 Correlation analysis of T cell clusters 
with clinical parameters in patients with 
RA: identifying signatures of disease 
activity and serostatus 

To complement the primary findings of T cell clusters favoring 
SP-RA (all with coefficient values of >0), we expanded our 
investigation to explore associations with seronegative RA. We 
performed a correlation analysis between T cell clusters and a 
range of clinical parameters—age, gender, disease duration, 
disease activity scores (DAS28-CRP and SDAI), patient-reported 
VAS, and serum markers (CRP, MMP-3, ACPA, and RF)—in a 
cohort of 33 patients with RA (Supplementary Figure 9). This 
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analysis aimed to delineate T cell profiles unique to seronegative 
RA, thus broadening our understanding of RA serostatus diversity. 

Correlation analysis revealed that in addition to primary 
clusters  (TCL24  and  TCL32),  TCL10  and  TCL29  were  
significantly correlated with ACPA, predominantly in patients 
with SN-RA. TCL10, a CD4-SP ATCL, expressed high levels of 
activation markers, including HLA-DR+ and CD38+. This cluster 
was further characterized by a comprehensive marker profile: 
CD45RO+, CD45RA+, CCR7+, CXCR3high+, CXCR5+, CCR4+, 
CD28+, ICOS+, CTLA-4+, Fas+, and PD-1+, with lower expression 
of CD25 and CD127, indicating a highly activated state. Conversely, 
TCL29, a naïve CD4-SP T cell cluster, was marked primarily by 
CD45RA+ and CCR7+, denoting its naïve status. This cluster 
FIGURE 5 

Adaptive LASSO-driven selection and visualization of discriminative T cell clusters in seropositive and seronegative rheumatoid arthritis. (A) Predicted 
probability of ACPA positivity for each patient. The y-axis shows the IPW-adjusted probability of ACPA positivity as estimated by the adaptive LASSO 
model using leave-one-out cross-validation (LOOCV). The x-axis represents patient IDs, indexed such that actual SN-RA cases are labeled from 1 to 
17 and actual SP-RA cases from 18 to 33. Each point represents an individual patient, with predicted probabilities derived from the model trained on 
all other patients (see Methods for details). Predictions are adjusted using inverse probability weighting (IPW) based on patient background variables, 
such as sex, age, symptom duration, NSAID usage, and DAS28-CRP. A horizontal reference line at the 0.5 probability threshold clearly differentiates 
predictions above (ACPA-positive) from those below (ACPA-negative), providing a direct visual comparison of predicted versus actual ACPA status. 
(B) Predictive accuracy across datasets. The bar graph presents the predictive accuracy of the adaptive LASSO model the FSM-TCL-DS, FSM-ATCL­
DS, and gating-TCS-DS datasets. It shows the proportion of samples correctly predicted as SP-RA or SN-RA, demonstrating the effectiveness of the 
model. The FSM-TCL-DS dataset achieved the highest predictive accuracy (81.8%), underscoring its utility in model validation. (C) Frequency of 
selection for T cell variables across datasets. The graph illustrates how frequently different T cell variables were selected as significant discriminators 
between SP-RA and SN-RA, across multiple rounds of LOOCV. Variables consistently selected in >50% of the rounds are defined as discriminative T 
cell clusters (D-TCLs), with clusters such as TCL02, 21, 24, 31, 32, and 35 identified as particularly influential. (D) Coefficients of T cell variables from 
adaptive LASSO analysis. The plot displays the coefficients assigned to various T cell variables through adaptive LASSO analysis performed on the 
entire dataset of 33 patients with rheumatoid arthritis, illustrating the relative importance of each variable in distinguishing between patient groups. 
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exhibited activation markers, such as CD38 and  CD28, and

chemokine receptors, including CXCR3 and CCR4. CCR6 
expression was detected at low levels, whereas CD161 was highly 
expressed, suggesting a distinctive profile of the naïve T cell 
population in SN-RA. 

Shifting our analysis to broader RA disease activity, DAS28­
CRP was positively correlated with TCL21. By contrast, TCL14, an 
EM CD4+ T cell cluster characterized by CD45RO+, PD-1+, CCR5 
+, and CXCR3+, was negatively correlated with SDAI. TCL18, a 
CD45RO−CD45RA−CCR7− CD4-SP cluster characterized by 
CTLA-4low+, ICOSlow+, Faslow+, CD28+, CD25low+, CD127−, 
and CCR4+, mirrored the attributes of nonregulatory, 
proinflammatory cytokine-secreting cells (human Treg fraction III 
(34) and positively correlated with SDAI, CRP, and MMP-3 levels, 
suggesting associations with markers of RA disease activity. 

In this secondary analysis, our investigation expanded to 
include specific T cell clusters, such as TCL10 and TCL29, 
newly identified through their negative correlations with ACPA. 
TCL21, previously identified as one of the D-TCLs, was associated 
with RA disease activity, suggesting its relevance in the 
pathogenesis of SP-RA. To illustrate the distributional 
differences of these T cell clusters across HCs, SP-RA, and SN­

RA, a non-weighted graph was constructed (Figure 7A). We used 
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IPW to evaluate the distinction in T cell distribution between SP­
RA and SN-RA while adjusting for patient background. The 
balloon sizes in the subsequent graph represent IPW weights, 
visually indicating the weighted statistical significance of TCL 
distribution across patient groups (Figure 7B). 

Significant variances were observed across all six D-TCLs 
between HCs and RA groups. The proportions of TCL31 and 
TCL32 were lower in patients with RA than in HCs, whereas the 
remaining D-TCLs were more prevalent in RA. In IPW analysis 
comparing SP-RA with SN-RA, except for TCL02, all other D-TCLs 
demonstrated significant predominance in the SP-RA group. 
TCL21, TCL24, and TCL35 significantly increased from HCs to 
RA and from SN-RA to SP-RA, underscoring their potential 
pathogenic significance in SP-RA. Although the differentiation 
between SP-RA and SN-RA was unclear, TCL02 was consistently 
present across all RA conditions. 

Unlike the D-TCLs primarily featured in SP-RA with positive 
coefficients, TCL10 and TCL29 were more commonly observed in 
SN-RA. TCL10 exhibited higher proportions in RA than in HCs, 
whereas the distinction for TCL29 was not apparent. Nevertheless, 
both clusters were significantly increased in SN-RA compared with 
SP-RA. These findings further underscore the immunophenotypic 
diversity between SP-RA and SN-RA and its clinical relevance. 
FIGURE 6 

Marker expression profiles of discriminative T cell clusters (D-TCLs) identified between seropositive (SP-RA) and seronegative rheumatoid arthritis 
(SN-RA). (A) Heatmap displaying the expression levels of all measured surface markers across the six D-TCLs, using a unified global color scale (see 
color bar). This enables direct quantitative comparison of marker expression across clusters. The heatmap is extracted from the comprehensive 44­
cluster heatmap shown in Supplementary Figure 5C. (B) Cell diagram representation of the same D-TCLs, where T cell surface markers are depicted 
as soft-edged rectangles, and colors correspond to their expression levels (low: navy, high: red). This diagram provides an intuitive overview of the 
phenotypic profiles within each cluster. Presenting both the heatmap and the cell diagram allows for both precise quantitative comparison and rapid 
visual assessment of the marker expression patterns of D-TCLs. The full heatmap of all 44 clusters is provided in Supplementary Figure 5C. 
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3.10 Internal performance assessment of 
D-TCLs using bootstrap-supported SVM 

The discriminative performance of the identified D-TCLs for 
classifying SP-RA versus SN-RA was assessed using support vector 
machine (SVM) modeling with bootstrap-supported internal 
validation (n = 1000 iterations). 

For each bootstrap sample, the data were randomly divided into 
training and test sets, the SVM was optimized via grid search, and 
performance was evaluated on the test set. 

The mean ROC curve and its 95% confidence interval (mean 
AUC = 0.960, 95% CI: 0.746–1.000) are shown across all bootstrap 
iterations (Figure 8A). 

The distributions of accuracy, F1 score, sensitivity, specificity, 
PPV, and NPV are summarized as violin and box plots, with mean 
values indicated by red dots (Figure 8B). 

The average accuracy was 86.2% (95% CI: 62%–100%), 
sensitivity 85.7%, specificity 80.9%, PPV 82.3%, NPV 87.4%, and 
F1 score 0.823. 
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These results highlight the high discriminative power of D­
TCLs as candidate immunophenotypic biomarkers for RA 
subgroup classification. 

All validation was performed internally using bootstrap-
supported  train/test  splitting;  external  validation  with  
independent data remains essential to fully confirm generalizability. 

The observed  mean AUC  of  the SVM  model using  the  true  labels  
was 0.944. In the permutation test (n = 1000), the mean AUCs 
obtained with randomly shuffled labels were centered at 0.654 (range 
0.608–0.879). The observed mean AUC was significantly higher than 
the entire permuted distribution (permutation test p-value = 0.0010), 
indicating that the predictive performance of the selected variables was 
highly unlikely to be attributable to chance alone. These results further 
support the robustness and true discriminative value of the D-TCLs for 
classifying ACPA status (Supplementary Figure 10). 

The alternative classifier analysis confirmed that the predictive 
performance of the selected D-TCLs was not restricted to SVM. The 
mean AUCs for Elastic Net, Random Forest, and XGBoost models 
were 0.844 (95% CI: 0.500–1.000), 0.892 (0.650–1.000), and 0.835 
FIGURE 7 

Comparative analysis of key T cell clusters in rheumatoid arthritis subtypes and healthy controls. (A) Non-weighted distribution of key T cell clusters (TCLs). 
The panel presents a combination of violin and dot plots illustrating the percentage distribution of selected T cell clusters within CD3+ T cells across three 
groups: seropositive RA (SP-RA), seronegative RA (SN-RA), and healthy controls (HCs). The plot features eight key T cell clusters, including six discriminative T 
cell clusters (D-TCLs): TCLs 02, 21, 24, 31, 32, and 35, in addition to TCL 10 and TCL 29, which have been identified through correlation analysis as having 
significant negative associations with ACPA positivity. The plots provide a visual comparison of the frequencies of these TCLs, highlighting variations between 
HCs and the combined RA groups (SN-RA and SP-RA) as well as directly between the SP-RA and SN-RA groups. Statistical significance of the differences 
was assessed using the Mann–Whitney U test, with symbols indicating levels of significance: *p < 0.05,  **p < 0.01,  and  †p < 0.005.  (B) Weighted scatter plot 
of key T cell clusters in patients with RA. The panel features a weighted scatter plot showing the distribution of the same eight key T cell clusters (TCLs), 
specifically among patients with RA, divided into the SP-RA and SN-RA groups. The sizes of the points are proportional to inverse probability weighting (IPW), 
which adjusts for patient background factors, such as age, sex, symptom duration, DAS28-CRP, and NSAID usage. Weighted median values for each TCL are 
depicted with horizontal bars. The significance of the differences, assessed using the weighted Mann–Whitney test adjusted for IPW, is marked by *p < 0.05,  
**p < 0.01,  and  †p < 0.005, providing detailed visualization of intercluster variability.]. 
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(0.525–1.000), respectively (Supplementary Figure 11). These 
results demonstrate that the identified signature provides robust 
discrimination of RA subgroups across multiple machine 
learning algorithms. 
4 Discussion 

In this study, we identified six novel D-TCLs: TCL02, TCL21, 
TCL24, TCL31, TCL32, and TCL35, which can serve as biomarkers 
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for distinguishing between SP-RA and SN-RA. Utilizing mass 
cytometry and machine learning, including the FlowSOM 
algorithm, we stratified patients by ACPA and RF status and 
characterized 44 distinct TCLs. This approach represents a 
significant advance, moving beyond traditional analyses that focus 
on memory and activated T cell subsets. In addition to these TCLs, 
our analysis of T cell subsets revealed critical immunological 
differences between SP-RA and SN-RA. Specifically, we observed 
a higher frequency of EM-CD4+ T cells and a reduced prevalence of 
Tregs in SP-RA compared to SN-RA. Moreover, the Tph/Treg ratio, 
significantly elevated in SP-RA, underscores the effector-dominant 
immune imbalance characteristic of this subtype. These findings 
suggest that the balance between effector and regulatory T cells, 
particularly Tph and Tregs, plays a pivotal role in distinguishing 
these  RA  subtypes  and  contr ibutes  to  their  dist inct  
immunopathological profiles. Our comprehensive examination of 
the CD3+ T cell population, including naïve T cells, has broadened 
our understanding of T cell diversity, uncovering additional clusters 
and suggesting new potential biomarkers for RA. These findings not 
only enhance diagnostic precision but also deepen our 
understanding of RA pathogenesis. 

Our study advances the understanding of CD4+ T cell 
heterogeneity in RA, particularly in distinguishing the 
immunological landscapes of SP-RA and SN-RA. Prior single-cell 
RNA sequencing studies have identified transcriptomic differences, 
such as splicing variations in PTPRC (CD45), critical for T cell 
activation, and CLEC2D, associated with lymphocyte counts and 
pro-inflammatory states, which may contribute to immune 
dysregulation in RA (35, 36). These molecular insights align with 
our findings of increased effector subsets, such as EM-CD4+ T cells, 
in SP-RA. ACPA titers, a hallmark of SP-RA, were positively 
correlated with EM-CD4+ and EM-CD8+ T cells and the Tph/ 
Treg ratio, while inversely correlated with Tregs. These associations 
emphasize the effector-dominant immune response in SP-RA, 
driven  by  autoantibody  production  and  inflammation.  
Additionally, CRP levels and disease activity indices (DAS28-CRP 
and SDAI) were strongly linked to Th17 and Th17.1 cells and the 
Th17/Treg ratio, reaffirming the role of Th17-mediated 
inflammation in RA (11, 14, 15). 

Among CD4+ T cell subsets, activated Tph cells were 
significantly elevated in SP-RA, accompanied by a marked 
increase in the Tph/Treg ratio. This imbalance reflects an 
effector-dominant immune profile in SP-RA, where Tph cells 
drive B cell activation and autoantibody production (16, 17, 36). 
In contrast, SN-RA exhibited an increased prevalence of Tregs, 
which negatively correlated with ACPA titers. This suggests that 
Tregs play a protective role in SN-RA, mitigating inflammation and 
osteoimmunological damage (37, 38). Notably, clonal expansion of 
Tregs has been reported to be higher in ACCP- RA synovial fluid, 
potentially contributing to a more regulated immune environment 
in this subtype (36). To further explore the regulatory mechanisms 
underlying these observations, we analyzed the expression of co­
stimulatory and inhibitory molecules within Treg subsets across RA 
subtypes. Notably, CTLA-4 expression in total Tregs and 4-1BB 
expression in naïve Tregs were significantly higher in SN-RA 
FIGURE 8 

Internal performance assessment of discriminative T cell clusters (D-
TCLs) for distinguishing seropositive and seronegative rheumatoid 
arthritis (SP-RA and SN-RA) using bootstrap-supported SVM 
modeling. Bootstrap validation (n = 1000 iterations) was performed 
by randomly dividing each sample into training and test sets, with 
SVM hyperparameters (cost and gamma) optimized via grid search. 
All validation and performance assessment were conducted 
internally; external validation using independent data remains 
necessary to fully establish generalizability. Performance metrics— 
including accuracy, area under the receiver operating characteristic 
curve (AUC-ROC), F1 score, negative predictive value (NPV), positive 
predictive value (PPV), sensitivity, and specificity—were computed 
for each bootstrap iteration. (A) Mean ROC curve and 95% 
confidence interval. The mean ROC curve (blue line) and its 95% 
confidence interval (shaded area) are shown (mean AUC-ROC = 
0.960, 95% CI: 0.746–1.000). (B) Distribution of classification 
performance metrics. Violin and box plots summarize the 
distributions of accuracy, F1 score, sensitivity, specificity, PPV, and 
NPV across bootstrap samples; mean values are indicated by red 
dots. The results confirm the high discriminative power of D-TCLs, 
with an average accuracy of 86.2% (95% CI: 62%–100%), sensitivity 
of 85.7%, specificity of 80.9%, PPV of 82.3%, NPV of 87.4%, and F1 
score of 0.823. 
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compared to SP-RA, suggesting a more functionally active 
regulatory phenotype in the seronegative subgroup. These 
molecular features align with the increased Treg frequency 
observed in SN-RA, and collectively point to a more robust 
immunoregulatory environment. In addition to suppressing 
effector T cells, Tregs—particularly those expressing CTLA-4—are 
also involved in modulating Tph-mediated B cell activation and 
autoantibody production. Therefore, these findings imply that the 
enhanced regulatory capacity in SN-RA may help restrain both 
cellular and humoral autoimmunity. In contrast, SP-RA appears to 
be characterized by reduced Treg quantity and function, 
contributing to an imbalance favoring effector responses. 
Together, these results highlight the functional heterogeneity of 
Tregs in RA and their potential role in shaping the distinct 
immunopathology of SP-RA and SN-RA. 

Enhanced interactions between T cells and antigen-presenting 
cells, observed in ACCP- RA through ligand-receptor pairs such as 
CCR8-CCL18, may further support compensatory immune 
mechanisms in SN-RA (39). Metabolic differences in dendritic 
cells (DCs) may also contribute to these distinct immune profiles. 
Enhanced glycolysis in cDC2 has been shown to promote effector T 
cell activation, which could support the inflammatory phenotype of 
SP-RA, while a less inflammatory metabolic profile in pDCs may 
favor Treg expansion in SN-RA (40). This interplay between 
metabolic and immune regulation provides further insights into 
the mechanisms underlying RA subtypes and potential 
therapeutic avenues. 

Among D-TCLs, TCL21 was notable. This cluster, distinguished 
by its CCR5+CXCR3+CCR6−HLA-DR+ profile, high PD-1 levels, 
with ICOS expression, and lacking CXCR5, is indicative of an 
activated Th1-type Tph-like cell (41). The relevance of this finding 
becomes apparent in SP-RA, characterized by autoantibody profiles 
akin to those found in systemic lupus erythematosus (41). Activated 
Th1-type Tph-like cells, represented by TCL21, are likely to play a 
significant role in SP-RA by modulating the inflammatory 
responses associated with the disease. This interpretation is 
supported by the correlation of TCL21 with DAS28-CRP and 
patient-reported VAS, linking it to disease activity and symptom 
severity. Our observations underscore the potential role of activated 
Th1-type Tph-like cells in SP-RA and contribute to the evolving 
understanding of activated Tph cells in autoimmune diseases. 

Similarly, the characteristics of TCL02 as a CM CD4+ T cell 
highlight its potential role in sustaining long-term immune memory 
in RA, which is implicated in the maintenance of immunological 
memory to self-antigens, a core aspect of RA pathogenesis (42). 
This cluster is defined by the expression of markers such as CD38, 
ICOS, CD28, and CXCR3. The presence of these activation and 
costimulatory markers suggests that TCL02 cells are primed for 
rapid antigen responses, critical for continuous T cell activation and 
survival (43, 44). Although TCL02 is consistently detected in both 
SP-RA and SN-RA and shows increased prevalence in patients with 
RA compared with HCs, its utility as a biomarker for differentiating 
between these RA subgroups remains limited due to overlapping 
characteristics. Nevertheless, the ubiquitous presence of TCL02 
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across these patient groups underscores its potential as a 
therapeutic target throughout the RA spectrum. 

The identification of two CD4−CD8− double-negative T cell 
clusters, TCL31 and TCL35, predominantly in SP-RA and 
characterized by CD161+ and HLA-DR+CD38+TIM-3+ 
expression respectively, offers critical insights into their diverse 
immunological roles in SP-RA. TCL31, newly recognized and 
marked by CD161+ expression, may influence SP-RA pathology. 
Recent research has highlighted the role of CD161+ gd T cells, 
which are key in inflammatory responses because they secrete IFN-g 
and IL-17, in the pathogenesis of chronic pulmonary disorders, 
such as bronchiectasis (45). Similarly, TCL31 appears to mirror the 
immunological phenotype of CD161+ gd T cells. Notably, our 
supplementary flow cytometry analysis revealed that gd T cells 
comprise approximately 50% of the CD4-CD8- double-negative T 
cells in RA peripheral blood (Supplementary Figure 4), supporting 
the possibility that TCL31 reflects a gd T cell–enriched population 
within this subset. In RA, the production of citrullinated proteins 
and the consequent activation of ACPA extend beyond the 
synovium to the lungs (5, 46), linking to an increased incidence 
of bronchial abnormalities in patients with SP-RA (46). This 
systemic manifestation, in addition to the expression of CD161 
on natural killer T cells and mucosal-associated invariant T cells, 
which are activated and reduced in the peripheral blood of patients 
with RA (47, 48), similar to TCL31, highlights the need for 
experimentally confirming the role of CD161 in CD4−CD8− 
double-negative T cells in the inflammatory pathways of SP-RA. 
TCL35, characterized by HLA-DR+CD38+TIM-3+ expression, 
exhibits multifaceted functionality. The presence of HLA-DR and 
CD38, markers associated with T cell activation and antigen 
presentation, combined with TIM-3, recognized for its regulatory 
and suppressive functions, suggests a dual role for TCL35 in SP-RA, 
potentially contributing to both the exacerbation and regulation of 
the autoimmune response. Unraveling the functions of these 
clusters could pave the way for novel targeted therapeutic 
strategies in SP-RA, ultimately enhancing treatment efficacy and 
improving patient outcomes. These observations underscore the 
need for further investigation to directly establish the mechanistic 
contributions of these TCLs to RA pathophysiology. 

As a next step, validating whether D-TCLs are present and 
functionally relevant in RA target tissues such as the synovium or 
lung will be important. However, directly matching CyTOF-defined 
clusters in blood with scRNA-seq-defined populations in tissue is 
technically challenging due to differences in data modality and 
tissue-specific immune states. Future studies using matched 
samples for CyTOF and scRNA-seq may help bridge this gap, 
allowing the identification of peripheral blood phenotypes that 
reflect tissue-resident pathogenic T cells. This integrative 
approach could also facilitate the development of blood-based 
biomarkers and clarify links between D-TCLs and clinically 
important features such as treatment resistance and extra-
articular manifestations. 

The identification of T cell clusters like TCL24 and TCL32, 
marked by low phenotype expression, highlights an intriguing 
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aspect of the RA immune landscape. Although these cells display 
minimal active markers, their notable presence across RA subtypes 
invites deeper examination. It is unclear whether these clusters have 
direct immunological functions or are simply variations seen in RA. 
Given their intriguing presence, it is crucial to investigate these 
clusters to understand their potential impact on RA pathogenesis. 
Until such investigations are conducted, the functional roles of 
TCL24 and TCL32 should be considered undetermined. 

The identification of potential cellular biomarkers in SN-RA, 
specifically TCL10 and TCL29, is significant. TCL10, characterized by 
a cluster of activated CD4+ T cells, showed increased expression of 
chemokine receptors crucial for T cell activation and trafficking, 
underscoring its role in the pathogenesis of SN-RA. Conversely, 
TCL29, composed of naïve CD4+ T cells with atypical activation 
markers and chemokine receptors, indicates an aberrant activation 
state. This distinction highlights the need for further investigation 
into how this cluster contributes to the distinctive immunopathology 
observed in SN-RA, potentially affecting disease progression and 
therapeutic responses. 

Although FSM-ATCL-DS did not qualify for inclusion in D­
TCL analysis, some ATCLs, such as ATCL06, exhibited notable 
patterns relevant to RA. ATCL06, more prevalent in SP-RA than in 
SN-RA (Supplementary Figure 6B), mirrored the phenotype of 
activated Th1-type Tph-like cells, characterized by CXCR3+, 
CCR5+, and CCR6− , similar to TCL21 (Supplementary 
Figure 5C). This similarity suggests a role in the pathogenesis of 
SP-RA, reinforcing prior research on the involvement of activated 
Tph cells in RA (16, 49), and may have implications in therapeutic 
strategies. ATCL03, which exhibited a phenotype consistent with 
activated Treg cells (CD4+CD25+CD127^low), tended to be more 
abundant in SN-RA than in SP-RA, although the difference was not 
statistically significant. This lack of significance may reflect the 
modest effect size or biological variability within subgroups. It also 
underscores a limitation of surface marker–based unsupervised 
clustering, which, while effective for exploratory phenotyping, 
may not fully resolve functionally distinct subsets like activated 
Tregs when compared to manual gating based on well-
established definitions. 

The identification of D-TCLs in RA using FlowSOM revealed 
complex patterns that surpass traditional analysis capabilities, 
demonstrating the significant potential of machine learning in 
immunological research. Our study focused on the single-cell 
analysis of 25 surface antigens; however, it is crucial to recognize 
that the phenotypic complexity of immune cells far exceeds this 
scope. FlowSOM, an unsupervised machine-learning technique, has 
excelled in differentiating between SP-RA and SN-RA T cell 
clusters, outperforming conventional methods by achieving 
higher accuracy. This success not only paves new pathways in 
immunology research, including the discovery of novel biomarkers 
and the exploration of pathophysiological mechanisms, but also 
underscores the need for broader investigations. Future research 
should aim to validate these findings in independent datasets to 
enhance their clinical applicability and build on our discoveries. 

A primary limitation of our study lies in the reliance on surface 
marker expression—particularly chemokine receptor-based 
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definitions—for characterizing conventional T cell subsets such as 
Th and Treg. While these phenotypic definitions are grounded in 
widely accepted immunological criteria, they may not fully capture 
the underlying functional or transcriptional heterogeneity within 
these subsets. For example, cytokine co-expressing T cells such as 
IFN-g+ IL-17+ CD4+ T cells, which are increasingly recognized as 
pathogenic in RA and other autoimmune diseases (50), cannot be 
reliably distinguished from conventional Th1 or Th17 cells using 
surface markers alone. Although Th17.1 cells (CXCR3+CCR6+), 
included in our analysis, are considered to partially reflect this 
hybrid population (51), surface phenotype alone may not capture 
their full functional diversity. In contrast, the clustering of TCLs 
and ATCLs was based on a broader panel of surface markers; 
however, this unsupervised approach, diverging from traditional 
manual gating analyses of T cell subsets, may not fully capture T cell 
function  or  differentiation,  potentially  missing  crucial  
immunological insights. However, the unsupervised phenotypic 
clustering approach was invaluable in identifying distinct D-
TCLs. Subsequent functional estimation of these clusters, 
informed by established immunological knowledge, revealed their 
potential roles. However, clusters such as TCL24 and TCL32 that 
showed minimal marker expression, posed challenges in 
interpreting their role in disease pathology. Conversely, the 
analysis of clusters such as TCL21 and TCL34 was informative, 
enhancing our understanding of this phase of the study. By 
integrating established immunological insights with our 
phenotypic clustering, we addressed some inherent limitations of 
our methodology and facilitated detailed analyses that were 
uniquely possible through this approach. 

A further limitation is the potential variability introduced by 
differences in data distribution between Mass Cytometry and Flow 
Cytometry. While we carefully adjusted gating strategies and 
positivity thresholds to account for  these differences, subtle

variability in data distribution may still affect the precision of 
subset identification. This highlights the inherent challenges in 
reconciling data generated by different platforms, despite rigorous 
methodological efforts. 

Another significant limitation is the relatively small patient 
sample size, which may impact the statistical power and reliability 
of the results. Although efforts were made to adjust for differences in 
patient backgrounds using IPW, further validation in a larger, more 
closely-matched patient cohort is essential. Additionally, the lack of 
external validation using independent datasets limits the 
generalizability of our findings. Although our T cell clusters 
demonstrated robustness in SVM analysis with extensive 
bootstrap support (n = 1000), achieving impressive accuracy, 
these results were only validated within our initial patient cohort. 
It is critical for future studies to validate these T cell phenotypes in 
independent cohorts to establish their clinical applicability and 
confirm their role in RA pathophysiology and treatment. This study 
serves as an important step in identifying target cell populations for 
future large-scale validation, emphasizing the foundational value of 
our findings in advancing research into the pathophysiology of RA. 

In conclusion, this exploratory study identified significant 
differences in T cell phenotypes between SP-RA and SN-RA. 
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These distinctions suggest their potential as biomarkers for 
autoantibody production and response to altered self-antigens. In 
addition to offering insights into factors influencing joint prognosis 
and extra-articular complications in SP-RA, these phenotypic 
variations contribute to a deeper understanding of the 
immunological complexities in RA heterogeneity. Our findings 
increase the understanding of the intricate mechanisms of RA 
and lay the foundation for future investigations into the disease’s 
cellular biology. It paves the way for developing more targeted 
therapeutic strategies tailored to the nuanced needs of individual 
patients with RA. 
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RA Rheumatoid arthritis 
Frontiers in Immunol
HCs Healthy controls 
SP-RA Seropositive RA 
SN-RA Seronegative RA 
PBMC Peripheral blood mononuclear cell 
ACPA Anticyclic citrullinated peptide antibody 
CRP C-reactive protein 
MMP-3 Matrix metalloproteinase-3 
RF Rheumatoid factor 
DAS28-CRP Disease activity score 28-joint count C-reactive protein 
SDAI Simplified disease activity index 
NSAID Nonsteroidal anti-inflammatory drug 
CM Central memory 
EM Effector memory 
TEMRA Terminally Differentiated Effector Memory T cells Re-

expressing CD45RA 
CD4-SP CD4 single positive 
CD8-SP CD8 single positive 
IL Interleukin 
ogy 24 
HLA-DR Human leukocyte antigen-DR isotype 
Th cell T helper cell 
Treg Regulatory T cell 
Tph Peripheral helper T cells 
CTLA-4 Cytotoxic T-lymphocyte-associated antigen-4 
PD-1 Programmed death-1 
LAG-3 Lymphocyte activation gene 3 
ICOS Inducible T cell costimulator 
TIM-3 T cell immunoglobulin and mucin domain-containing 

protein 3 
t-SNE t-Distributed stochastic neighbor embedding 
TCL T cell cluster 
ATCL Activated T cell cluster 
LOOCV Leave-one-out cross-validation 
IPW Inverse probability weighting 
adaptive LASSO Adaptive least absolute shrinkage and selection operator 
gating-TCS-DS Gating T cell subset dataset 
FSM-TCL-DS FlowSOM T cell cluster dataset 
FSM-ATCL-DS FlowSOM activated T cell cluster dataset 
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