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Multi-targeted, NOT gated
CAR-T cells as a strategy to
protect normal lineages for
blood cancer therapy
Breanna DiAndreth, Pavlo A. Nesterenko, Aaron G. Winters,
Aaron D. Flynn, Claudia A. Jette, Vasantika Suryawanshi,
Sanam Shafaattalab, Sara Martire, Mark Daris, Elizabeth Moore,
Ryan Elshimali , Tanveer Gill , Timothy P. Riley, Sara Miller,
Chawita Netirojjanakul, Agnes E. Hamburger
and Alexander Kamb*

A2 Biotherapeutics Discovery Research, Agoura Hills, CA, United States
Introduction: Despite advances in treatment of blood cancers, several—

including acute myeloid leukemia (AML)—continue to be recalcitrant. Cell

therapies based on chimeric antigen receptors (CARs) have emerged as

promising approaches for blood cancers. However, current CAR-T treatments

suffer from on-target, off-tumor toxicity, because most familiar blood cancer

targets are also expressed in normal lineages. In addition, they face the common

problem of relapse due to target-antigen loss. Cell therapeutics engineered to

integrate more than one signal, often called logic-gated cells, can in principle

achieve greater selectivity for tumors.

Methods:We applied such a technology, a NOT gated system called Tmod™ that

is being developed to treat solid-tumor patients, to the problem of therapeutic

selectivity for blood cancer cells.

Results:Here we show that Tmod cells can be designed to target 2-4 antigens to

provide different practical and conceptual options for a blood cancer therapy: (i)

mono- and bispecific activating receptors that target CD33, a well-known AML

antigen expressed on the majority of AML tumors (as well as healthy myeloid

cells) and CD43 (SPN), an antigen expressed on many hematopoietic cancers

(and normal blood lineages); and (ii) mono- and bispecific inhibitory receptors

that target CD16b (FCGR3B) and CLEC9A, antigens expressed on key normal

blood cells but not on most blood cancers.

Discussion: These results further demonstrate the robust modularity of the

Tmod system and generalize the Tmod approach beyond solid tumors.
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1 Introduction

Certain blood cancers such as AML are deadly diseases, with no

broadly effective therapies other than chemotherapy preconditioning

combined with stem cell transplant (1, 2). One of the fundamental

challenges is the lack of genes expressed uniquely in AML and other

blood cancers that can be exploited as molecular targets for selective

elimination of malignant cells (3, 4). Most (if not all) AML molecular

targets under consideration are also expressed in subsets of normal

lineages. A good example is CD33, a lectin that is expressed on >90%

of AML tumors but also on normal immune cells, especially myeloid

cells such as monocytes, promyelocytes and neutrophils (5–8).

Despite the relative appeal of CD33 as an AML tumor-associated

antigen (TAA), therapeutics targeting CD33 have substantial clinical

toxicity, presumably caused at least in part by expression on healthy

myeloid cells (9–11). For instance, an FDA-approved antibody-drug

conjugate (Mylotarg™) has serious dose-limiting toxicity that limits

its use and efficacy, some of which is likely caused by on-target

toxicity (12–15). CD33-directed T cell engagers have encountered

similar problems in the clinic, with the additional challenge of

cytokine release syndrome (CRS), a potentially serious immune

overreaction caused by antigen expression on normal cells (16).

Although cell therapies have emerged as a powerful new

weapon against certain types of blood cancer including Non

Hodgkin’s lymphoma (NHL) and multiple myeloma (17, 18), so

far they have not demonstrated the same success in AML (19). In

contrast to NHL and certain other blood cancers, AML does not

possess any genes that are expressed: (i) in the large majority of

tumors indicated for treatment; and (ii) only in normal cells that are

not required for survival in the short term (e.g., B cells) (7, 8).
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Indeed, there is little to suggest that TAA-directed AML

therapeutics, including CD33 CAR-Ts, can avoid the toxicities

caused by loss of key normal immune cells. This poses immediate

safety issues and longer-term risk of infection (20). Though the

precise cause of toxicities in individual patients can be complex and

difficult to elucidate, CD33-directed investigational cell therapies

can be severely toxic, and potentially fatal (21). This places drug

developers in a quandary: How can toxicities be mitigated while

maintaining the advantages of TAAs such as CD33?

One possibility involves cell therapeutics that respond to more

than one antigen to achieve better selectivity toward AML cells. An

interesting option is to engineer a NOT gate in immune cells to

protect normal CD33-expressing cells without compromising AML

cytotoxicity (22, 23). The best studied NOT gate is Tmod, a system

that has demonstrated robust activity in multiple preclinical settings

(24–26). Tmod is being developed to treat patients whose tumors

have lost one or both alleles at the HLA locus via deletion (25, 27).

This system employs T cells engineered to express an activating

receptor (i.e. CAR or TCR) paired with a “blocker” derived from the

LIR-1 (LILRB1) inhibitory receptor, the natural ligands of which are

HLA-I molecules (28) (Figure 1A). Tmod therapeutic constructs

have been shown to work in many tumor models of HLA deletion.

Here we describe a Tmod construct designed to improve the

safety of CD33 targeted therapeutics. The engineered Tmod cells

respond to CD33 only if a second antigen, CD16b, is absent.

Because CD16b is expressed on normal myeloid lineages and not

on AML, this approach offers the possibility of mitigating myeloid

compartment depletion and CRS by specifically blocking healthy-

cell-mediated activation of the CD33 | CD16b Tmod cells by

normal myeloid cells. We build on this construct by adding OR-
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FIGURE 1

Tmod can be adapted for blood cancer. (A) Diagram for Tmod system showing the two receptors that comprise the NOT gate targeting HLA loss of
heterozygosity (LOH) in solid tumors. (B) Diagram for Tmod utilizing tandem receptors for blood cancer. (C) CD33 and CD16b mRNA expression in
primary AML and healthy blood cells including T cells, neutrophils, monocytes, and hematopoietic stem cells (HSC) (data from sources shown; see
Supplementary Table 1). (D) mRNA expression of targets in AML cell lines (n=43; DepMap).
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gating capability through additional ligand-binding domains to

broaden the potential applicability of Tmod beyond monospecific

AML designs. These designs include bispecific receptors that target

2 activator antigens (CD33 and SPN) and 2 blocker antigens

(CD16b and CLEC9A) (Figure 1B). The results support further

investigation of the Tmod approach to improve the therapeutic

window of future blood cancer medicines and provide further

proofs of concept for the use of non-HLA-I proteins as blocker

antigens for Tmod constructs.
2 Results

2.1 CD16b is an attractive blocker antigen
for CD33 CAR-Ts

We sought to identify a blocker antigen compatible with Tmod

constructs that incorporate a CD33 CAR activator. A bioinformatic

search of RNA-Seq databases (29–40)(Supplementary Table 1)

revealed that CD16b (FCGR3B) expression not only corresponds

with CD33 expression in neutrophils but also is largely absent in

primary AML specimens (Figure 1C). CD16b, first identified as

Human Neutrophil Antigen-1, is a glycosylphosphatidylinositol-

anchored protein that functions as a low-affinity receptor for the Fc

region of IgG, with high surface expression limited to granulocytes

(41). The absence of FCGR3B expression in AML is not the

consequence of genetic deletion, but rather the epigenetic state of

the malignant cell (Supplementary Figure 1). Low expression of

FCGR3B is also observed in the large majority of AML cell lines,

suggesting that its transcriptional off-state is robustly maintained in

cell culture—much as the CD33 on-state is maintained (Figure 1D).

Thus, based on expression profile alone, CD16b is an attractive

blocker antigen for a Tmod construct directed at CD33.
2.2 Generation of CD16 scFvs that function
effectively in CD33 | CD16
Tmod constructs

To create CD33 | CD16b Tmod constructs, we began with a set

of 4 CD33 CARs (CAR1-4) that were sensitive enough to respond to

CD33 in AML-derived cell lines and two other cells lines (HeLa and

K562) transfected with CD33 mRNA (Supplementary Figure 2; see

Methods). We combined CAR1 with a blocker that uses an scFv

derived from a commercially available monoclonal antibody (mAb;

3G8) (42) that binds both human CD16 paralogs (CD16a and

CD16b) with high affinity. CD33 Tmod constructs using this CD16-

directed scFv demonstrated selective response in both Jurkat

reporter assays (Supplementary Figure 3A) and in primary T cell

cytotoxicity assays (Supplementary Figure 3B). These results

supported the feasibility of targeting CD16 via CD33 | CD16

Tmod constructs. However, because CD16a is expressed in a

higher percentage of AML samples than CD16b (Supplementary

Figure 4), a search for CD16b-specific binders was undertaken.
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Despite the high similarity of the two CD16 paralogs (98%

amino acid identity), a mouse immunization campaign, using

soluble recombinant CD16b protein as the antigen, yielded a

panel of CD16b-selective antibodies (Supplementary Figure 5A).

Selectivity was confirmed in ELISA assays and via flow cytometry

with engineered K562 cells that overexpress either CD16a or CD16b

(Supplementary Figure 5B,C). Diverse VH and VL sequences were

recovered from 32 CD16b-selective antibodies (Supplementary

Figure 5D; see Methods). The VH and VL sequences were used to

construct scFvs and fused to the LIR-1 (LILRB1) backbone to create

blocker receptors. Tmod constructs encoding the CD33 CARs and

CD16b blockers were tested in assays using engineered Jurkat cells

cocultured with K562 target cells that overexpressed CD33. mRNA

titration was used to estimate ligand-dependent inhibition

(Figures 2A, B). The initial screen focused on a single CD33 CAR

as the activator component of Tmod to measure percent-inhibition

in K562 cells. The 10 top-ranked blockers in this assay were selected

based on percent blocking and IC50 for further analysis

(Supplementary Figure 6A). These 10 blockers were screened

independently with 3 additional CD33 CARs (4 total) to identify

the most robust and modular blockers (Supplementary Figure 6B).

Finally, the top 6 blockers from this assay, plus the 3G8 clone

benchmark, were combined for further testing with a set of 3 top

CARs. These CD33 | CD16b Tmod combinations were profiled

using 8-point mRNA dose-response titrations. Fitted sigmoid

curves allowed selection of the CD33 | CD16b Tmod receptor

pairs with optimal performance, based on a combination of high

sensitivity (low IC50) and high maximum percent inhibition

(Figure 2C, Supplementary Figure 6C). From this analysis, 9 pairs

with varied functional profiles were advanced for further testing in

T cells.
2.3 CD33 | CD16 Tmod cells display
potent, selective cytotoxicity in vitro

To create constructs suitable for expression in primary human

T cells, we generated PiggyBac vectors with inserts that produce a

single transcript encoding bicistronic CD33 | CD16b Tmod. We

term these BA vectors because the blocker is encoded upstream of

the activator (Figure 2D), which helps to prevent activator-only

expression (Supplementary Figure 8A). Of 9 pairs that were chosen

to advance to the primary T cell stage, 7 expressed well as measured

by staining with labeled CD33 soluble protein. Though some

variability in the percent Tmod(+) cells was observed, the

expression system consistently produced 30-50% Tmod(+) cells,

depending on the CD33 | CD16b pair (Figure 2E).

We focused on two key parameters of Tmod function in

cytotoxicity assays: potency and selectivity (Figure 2D, right). To

measure these parameters, E:T titration experiments were

performed using two variants of K562 as the target cells: (i) CD33

(+)CD16b(-) cells that overexpress CD33, intended to represent

tumor cells; and (ii) CD33(+)CD16b(+) cells that overexpress both
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K562 target cells transfected with different amounts of CD16b mRNA. Tmod transgene expression in Jurkat cells was detected by staining with
recombinant human (rh) CD16b and CD33. (B) Diagram of functional parameters estimated from the Jurkat cell assay data. (C) Functional readout
from 8-point mRNA titration curves. Three CARs combined with 4 blockers, that were selected for further analysis, are shown in color. Data are
shown as mean ± standard deviation of technical replicates (n=2), normalized to each sample’s maximum activation. (D) Left, diagram of non-viral
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CD33 and CD16b, intended to model normal myeloid cells in this

experiment (Figure 2F). Potency was estimated by the E:T ratio at

50% maximum killing (ET50). As a rough gauge of potency, ET50s

of Tmod cells cocultured with CD33(+)CD16(-) target cells were

compared to the corresponding CAR T cells without the blocker. A

lead pair (CAR4 | Blocker17) was selected for further study based on

potency of the Tmod cells similar to the CAR control (Figure 2G).

We defined selectivity as a ratio of ET50 using surrogate normal

CD33(+)CD16b(+) cells divided by ET50 using tumor CD33(+)

CD16b(-) cells. The construct that had the best potency (CAR4/

Blocker17) also had the best selectivity window (Figure 2H). This

CD33 | CD16b Tmod construct also displayed robust on-target

activity and good normal cell selectivity in kinetic assays of

cytotoxicity (Figure 2I). Thus, the CAR4 | Blocker17 construct

displayed several desirable features of a CD33 | CD16b Tmod

candidate: high potency (low ET50) and high selectivity

window (22x).
Frontiers in Immunology 05
2.4 CD33 | CD16 Tmod cells selectivity kill
CD33(+)CD16(-) AML cells in vivo

To test CD33 | CD16b Tmod cells in vivo, we utilized a xenograft

model based on growth of the AML line MV-4-11 in NSG mice after

intravenous infusion of tumor cells (Figure 3A). MV-4-11 cells express

endogenous CD33 at levels similar to primary AML samples and within

the sensitivity range of our lead CAR (Supplementary Figure 7). Because

these cells do not express CD16b, we engineered a variant line to model

normal cells by exogenous expression of CD16b (Supplementary

Figure 8B). Both variants were further modified to express firefly

luciferase and green fluorescent protein (GFP) for detection. The pair

of MV-4-11 cell lines, when cocultured in vitro with a titration of

effector CD33 | CD16b Tmod cells, elicited the expected pattern of

cytotoxicity; i.e., a selectivity window of 7x (Figure 3B). CD33 | CD16b

Tmod cells generated via PiggyBac and cultured for 31 days showed

high expression of the Tmod components (Figure 3C).
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FIGURE 3

CD33 | CD16b Tmod cells selectively kill tumor but not “normal” cells in vivo. (A) Schema for in vivo experiment. 2 million MV-4-11 AML cells or MV-
4-11 cells that overexpress CD16b were injected into NSG-SGM3 mice and 6 days later 7.5 million T cells were injected. (B) Selectivity in vitro using
MV-4-11 cells. Surrogate normal cells were generated by overexpression of CD16b in the AML cells. E:T cytotoxicity curves were generated from
firefly luciferase bioluminescence at 48 hours. Data are shown as mean ± standard deviation of technical replicates (n=3). Inset: ET50 values of
depicted curves. Data shown are interpolated values with 95% CI. (C) Flow cytometry analysis of construct expression by staining with labeled
recombinant human CD16b and CD33. (D) Bioluminescence imaging (BLI) at 20 days post target-cell injection. (E) Flow cytometry analysis of MV-4-
11 cells in the bone marrow 27 days post target-cell injection. (F) Quantification of data shown in panel. (E) Statistics were calculated using a non-
parametric Kruskal-Wallis H test; *: 0.01 < adjusted p < 0.05; **: adjusted p value < 0.01; ns: not significant (adjusted p > 0.05).
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Six days after the grafts were introduced, T cells were injected

intravenously and MV-4-11 cells were monitored by BLI (Figure 3A).

As observed in vitro, CD33 | CD16b Tmod cells killed the CD33(+)

CD16b(-) tumor cells but not the CD33(+)CD16b(+) variant line in

vivo (Figure 3D). As an independent readout of graft cell number,

bone marrow was isolated from the mice at the end of the study (day

27 post MV-4-11 graft injection) and cells were analyzed by flow

cytometry. In mice bearing CD33(+)CD16b(+) surrogate normal

cells, numerous GFP(+) MV-4-11 cells were detected (Figures 3E,

F). In contrast, very few graft cells were detected in mice from the

CD33(+)CD16b(-) cohort, suggesting high selective killing in vivo of

tumor vs. surrogate normal cells. Whereas CD33 CARs killed both

MV-4-11 variant lines equally, CD33 | CD16b Tmod cells exhibited

over 100x-fold increased killing of tumor cells compared to surrogate

normal. Thus, in vivo AML tumor cells were killed by CD33 | CD16b

Tmod cells while the surrogate normal cells, differing only by their

expression of CD16b, were protected. These results provide a

preclinical proof of concept for a potential CD33-targeted cell

therapy gated by CD16b expression intended to eliminate AML

cells in patients while sparing healthy myeloid cell types.
Frontiers in Immunology 06
2.5 Tmod accommodates bispecific
activators and blockers

To extend the potential utility of Tmod beyond monospecific

designs, we first tested Tmod constructs with tandem activators and

blockers using previously validated binders (Figure 4). As an activator,

we tested a CD19-CD20 bispecific CAR (43) in Jurkat cell assays and

demonstrated that it was effectively inhibited by a previously studied

monospecific HLA-A*02 blocker (24, 25, 27) in a ligand-dependent

fashion (Figure 4A). The HLA-A*02 blocker inhibited the tandem

CAR as effectively as monospecific CARs. Importantly blocking of the

tandemCARwasmaintained with either one or both activator antigens

present. Next, to explore bi-specific blockers of more familiar design,

we showed that a mesothelin (MSLN) CAR (25) was blocked by a

bispecific blocker composed of one scFv directed at HLA-A*02 and a

second scFv in tandem directed at HLA-A*03 (25) (Figure 4B). Finally,

these two bispecific receptors were combined in a single cell to

demonstrate that the CD19-CD20 bispecific CAR was blocked by

the tandem HLA-A*02-A*03 blocker (Figure 4C). Thus, the double-

tandem Tmod NOT gate successfully integrated signals from 4
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FIGURE 4

Tandem construct proof of concept. (A) A*02 blocker inhibits CD19-CD20 bispecific CAR. Jurkat functional readout from activator titration curves
and blocker titration curves. (B) A*02-A*03 tandem blocker inhibits monospecific MSLN CAR. Jurkat (B2M KO) functional readout from blocker
titration curves (either A*02 or A*03). (C) Tandem A*02-A*03 blocker inhibits tandem CD19-CD20 CAR. Jurkat (B2M KO) functional readout from
blocker titration curves (either A*02 or A*03) with constant amounts of CD19 and CD20 mRNA. Data are shown as mean ± standard deviation of
technical replicates (n=2).
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antigens—2 activator and 2 blocker antigens—to regulate effector cell

activation and inhibition.
2.6 Multi-targeted Tmod applications for
AML and other blood cancers

To incorporate these ideas and findings in the context of AML

and other blood cancers, we tested a variety of bispecific

constructs targeting CD33, CD16b and other blood-related

antigens (Figures 5, 6A). These were intended to target antigens

expressed potentially on a broader population of blood cancers,

while protecting other key normal lineages, primarily by sparing

hematopoietic stem cells (HSCs). For AML, this approach also

provided an opportunity to address AML relapse caused by CD33

antigen loss. To this end, we identified one additional activator

antigen (SPN) and blocker antigen (CLEC9A) with expression

profiles consistent with our aims (Figure 6B, C, Supplementary

Table 1). SPN (CD43 or sialophorin) is a surface glycoprotein of

poorly understood function highly expressed on most

hematopoietic cells other than red blood cells (44). CLEC9A

(CD370) is a C-type lectin known to be expressed on myeloid

lineages (45) including HSCs (46, 47).

For SPN, two CARs with different scFvs directed at SPN were

tested against 4 CD16b blockers (Figure 6D). All the constructs
Frontiers in Immunology 07
performed well (>50% block). One of the SPN CARs was

converted to bispecific SPN-CD33 formats and tested with

various binders in different orientations (Supplementary

Figure 9A). The top-ranked 3 tandem CARs were paired with

CD16b Blocker17 (Supplementary Figure 9B) and shown to

regulate Jurkat-cell function effectively (see data from best-

performing pair in Figure 6E).

For CLEC9A, novel CLEC9A binders were identified and

screened as CARs (Supplementary Figure 10; see Methods). Two

top-ranked binders were then tested for responsiveness to

primary HSCs (Figure 6F). While controls and CD16b CAR-T

cells did not show HSC-dependent activation, the CLEC9A CAR-

Ts showed responses similar to a CD33 CAR-T, suggesting

sufficient target expression and binder sensitivity for response.

These top CLEC9A binders were then cloned as blockers and, in

tandem with CD16b Blocker17 scFv, shown to function well (see

best-performing construct in Figure 6G). Constructs that

contained the tandem activators and blockers (CD33-SPN |

CD16b-CLEC9A Tmod) expressed in Jurkat cells and

functioned as expected from the behavior of the individual

components; i.e., each scFv responded to antigen titration

without interference from the others (Figure 6H). Together,

these data showed that Tmod functions with tandem activators

and blockers directed at novel non-HLA-I antigens relevant to

blood cancer therapy.
Activator(s) Blocker(s) Indication Tmod construct 
properties

CD33 CD16b AML • Protect Neutrophils

CD33 CLEC9A AML • Protect HSCs

SPN CD16b AML+ • Protect Neutrophils

SPN CLEC9A AML+ • Protect HSCs

CD33
SPN

CD16b AML+ • Protect Neutrophils
• Mitigate relapse

CD33
SPN

CLEC9A AML+ • Protect HSCs
• Mitigate relapse

CD33
SPN

CLEC9A
CD16b

AML+ • Protect Neutrophils 
and HSCs

• Uncertain effect on 
relapse

Tmod construct applications

FIGURE 5

Blood cancer applications for Tmod constructs. SPN (CD43 protein); FCGR3B (CD16b protein); HSCs, hematopoietic stem cells; AML+ refers to
blood cancers beyond AML.
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3 Discussion

Tumor vs. normal selectivity is arguably the key problem in

cancer therapy and many approaches have been developed to

address it. These efforts include: (i) targeting critical functional

dependencies in tumors such as HER2 in breast cancer and BCR-

ABL in CML (48–51); (ii) targeting TAAs such as CD19 in NHL

and BCMA in multiple myeloma (52, 53); (iii) targeting tumor-

specific antigens such as HPV E7 and other neoantigens in solid

tumors (54–58); (iv) protease-cleavable masked cytotoxic proteins

designed to activate selectively in solid tumors (59); and (v) logic-

gated cell therapies that respond to antigen profiles rather than

single antigens (60–63).

The Tmod system was developed to address the problem of

tumor vs. normal tissue selectivity via a NOT gate (26). The NOT

gate conceptually allows a different set of antigens to be engaged to

confer selectivity—those that are absent from the tumor but present

in key normal tissues (26). In its original form, Tmod is intended to
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exploit a situation that arises in numerous cancer patients where

solid tumors lose one HLA-I allele via loss of heterozygosity (LOH)

in the founding clone of the tumor (24, 64). HLA LOH in these

patients confers a genetically identifiable, homogeneous difference

on the tumors that can in principle direct Tmod cells gated by, for

example, HLA-A*02 to selectively kill tumor cells that express a

TAA but have lost expression of HLA-A*02 (25, 27).

Here we extend this approach to tumor types such as AML that

do not undergo HLA LOH. To do this, we have developed a blocker

that targets a non-HLA-I molecule, in this case CD16b, and paired

it with a CD33 CAR to create a CD33 | CD16b Tmod construct that

selectively kills CD33(+)CD16b(-) AML cells, but spares isogenic

cells that express CD16b, in vitro and in vivo. The expression profile

of CD16b (very low in AML and high in myeloid cells) suggests that

CD33 | CD16b constructs can create a therapeutic window in AML

patients where CD33 is expressed on key normal tissues. In

addition, though the cause of CRS is debated, it is possible that

engagement of CD16b to block T cell activation by myeloid cells
Blood cancer tandem Tmod
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FIGURE 6

Tandem Tmod constructs for blood cancer. (A) Diagram of a Tmod cell with bispecific activator to target AML (CD33) and other blood cancers (SPN)
and bispecific blocker to protect HSCs (CLEC9A) and neutrophils (CD16b). (B) Target expression in primary blood cancers and healthy blood cells
(data from sources shown; see Supplementary Table 1). (C) Target expression in blood cancer cell lines (DepMap). (D) Jurkat cell (SPN KO) functional
readout of SPN | CD16b Tmod with blocker titration curves. (E) Jurkat cell (SPN KO) functional readout of SPN-CD33 tandem CAR activation and
blocking by CD16b blocker in the presence of SPN and CD33 antigens. (F) Jurkat functional readout of binders cloned as CARs with titration of
primary HSCs. (G) Jurkat functional readout of CD33 CAR4 blocked by tandem CLEC9A-CD16b blocker. (H) Jurkat functional readout of CD33 and/
or SPN monospecific or bispecific activators paired with CD16b and/or CLEC9A monospecific or bispecific blockers. Data are shown as mean ±
standard deviation of technical replicates (n=2).
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may mitigate the component of CRS that arises from reaction to

CD33-expressing normal cells (65, 66).

Creation of a functional CD33 | CD16b Tmod construct

required solution of two technical problems: (i) selection of a

blocker antigen that is compatible with blocker function and the

inverse of an AML TAA (i.e., with expression that is low in AML

and high in normal blood cells); and (ii) identification of an scFv

that can distinguish CD16b from its very close paralog, CD16a,

which is expressed in a subset of AML malignancies and thus could

limit efficacy. These challenges were overcome by a combination of

antigen selection with screens for binding and function.

To improve the CD33 | CD16b construct and address matters

that include relapse from single-antigen-loss in AML, blood cancers

beyond AML, and protection of HSCs, we created proof-of-concept

Tmod designs that incorporate 2 additional antigen-binding

domains directed at SPN and CLEC9A placed in tandem with the

CD33 scFv for the SPN activator and the CD16b scFv for the

CLEC9A blocker. Others have shown that a NOT gate targeting

endomucin (EMCN) to protect HSCs and a tandem CD33-FLT3

CAR to target AML cells functions in preclinical experiments (67).

Here we extend these concepts to include tandem blockers with

broader protection of normal cells and activators capable in

principle of targeting blood cancers beyond AML, including NHL

and multiple myeloma that express SPN.

It is not clear a priori which of the many possible multi-targeted

designs are optimal for AML and other blood cancers (see Figure 5).

Targeting 2 activator antigens should mitigate relapse, a common

problem with CD19 CAR-Ts in NHL and all AML therapies. Indeed

CD19-C20 bispecific CAR-Ts are under development in NHL for

this purpose (68). The advantage of using a broadly expressed

antigen such as SPN, whose expression is also maintained in most

blood-cancer-derived cell lines, is to not only address relapse in

AML but also potentially extend the product to patients with other

blood cancers. These additional antigens compound the risk of on-

target, off-tumor toxicity, challenges that may be addressed by

multi-antigen-targeted blockers. However, depending on the

propensities of tumors to up-regulate, rather than lose, expression

of genes, such blockers may introduce an additional mechanism for

tumor relapse. Note also that inclusion of activators that target

antigens expressed in T cells (e.g., SPN) may necessitate other

measures to reduce fratricide, e.g., inclusion of shRNA modules or

gene-disruption to reduce/eliminate expression of the target antigen

in the engineered T cells.

The flexibility and modularity of Tmod demonstrated here and

in other publications support exploration of the Tmod technology

in tumors that do not exhibit LOH. Although LIR-1 (LILRB1)

evolved to specialize in HLA-I antigens (69), it is now clear that,

providing certain design rules are followed, non-HLA-I antigens

can also function as redirecting ligands for LIR-1 (70, 71). These

results are important because many tumor types including blood

tumors and certain solid tumors such as prostate carcinoma (see

GISTIC database) do not exhibit high rates of HLA LOH. In

addition, even among solid tumors that exhibit significant rates of

LOH, a large segment (>75%) remains that do not have HLA LOH.

Patients with these tumors require a different therapeutic approach.
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The demonstration that non-HLA-I antigens can robustly control

CAR activation in Tmod cells suggests that it may be possible to

exploit instances where antigen expression is absent in tumors for

reasons other than HLA LOH.
4 Materials and methods

4.1 Tissue culture

All cell lines were purchased from ATCC, except for the NFAT-

firefly luciferase reporter Jurkat cell line that was purchased from

BPS bioscience (#60621). K562 cells were maintained in RPMI

supplemented with 10% heat inactivated FBS and 1% penicillin-

streptomycin. HeLa cells were maintained in EMEM with 10% FBS.

Jurkat cells were cultured in RPMI supplemented with 10% heat-

inactivated FBS, 1% penicillin-streptomycin and 0.4% geneticin to

maintain reporter expression. MV-4-11 cells were cultured in RPMI

with 10% heat-inactivated FBS and 1% penicillin-streptomycin.

PBMCs were obtained from STEMCELL. Enriched T cells were

derived from Leukopaks apheresed from healthy donors (Charles

River), followed by enrichment using CD56 depletion and CD4/

CD8 enrichment using a CliniMACS Prodigy prior to freezing. T

cells were cultured in X-VIVO15 (Lonza) supplemented with 5%

human AB serum, 1% penicillin-streptomycin and 300 IU/ml of IL-

2 (STEMCELL). For functional assays IL-2 was not included. For

HSC experiments, human CD34(+) HSPCs derived from bone

marrow were purchased from Charles River Laboratory.

Cryopreserved cells were thawed and cultured in StemSpan

SFEMII medium (STEMCELL) supplemented with StemSpan™

CC110 (STEMCELL).
4.2 Construct design and cloning

CAR and blocker constructs were synthesized (IDT) and cloned

via Golden Gate assembly into lentivirus or PiggyBac transposon

vectors containing flanking inverted terminal repeats for

transposase recognition and insulators to prevent epigenetic

silencing of transgene expression. CAR and blocker transgenes

were designed as described previously (25, 72). Briefly, third-

generation CARs were created by fusing nucleotide sequences

encoding VL-(G4S)3GG-VH scFvs to sequences encoding a CD8a

hinge, CD28 transmembrane domain, and CD28, 4-1BB, and CD3z

intracellular domains. Blockers were generated by fusing VL-(G4S)

3GG-VH scFvs to the hinge, transmembrane, and intracellular

domains of LIR-1 (LILRB1). For tandem designs, additional scFvs

were fused to these constructs using a (G4S)4 linker in Fv

orientations as described in Supplementary Figure 9. The 2

receptors were cloned into single “BA” vectors with the blocker

(B) in the first position, T2A cleavage site, followed by the CAR (A).

When indicated, a puromycin resistance gene was included to

enable puromycin-driven selection of stably integrated transgenes.

Plasmid DNA maxipreps were performed by Aldevron. Cloned

products were verified using Sanger sequencing (Azenta) or
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Nanopore sequencing (Primordium). Antigen mRNA was

synthesized by in vitro transcription as previously described

(25, 72).
4.3 Hybridoma IgG discovery

CD1 mice (n=5; Charles River) were immunized with either

recombinant CD16b (NA2) (Acro Biosystems) or Clec9a-Fc (R&D)

emulsified in Complete Freund’s Adjuvant (Thermo) and/or Sigma

Adjuvant System (Sigma) according to a modified Repetitive

Immunization at Multiple Sites (RIMMS) schedule targeting the

inguinal, axial, brachial, and popliteal lymph nodes. Lymph nodes

were harvested, non B cells depleted using a B cell isolation kit

(STEMCELL) and fused to P3X.653 myeloma cells to generate

hybridomas. 384-well based ELISA screens utilizing soluble CD16b,

Clec9a-Fc, CD16a (AcroBiosystems) or KLRG1-Fc (R&D)

biotinylated with NHS-PEG12-biotin (Thermo) were completed

12 days after hybridoma fusion. Primary ELISA hits were

subsequently screened in mixed-culture flow cytometry binding

assays. For CD16b specific binders, K562 cells were transfected with

CD16b and loaded with 1uM CMFDA (Thermo #C2925) following

manufacturer protocols. These cells were then mixed in the same

well with WT K562 cells transfected with CD16a. For Clec9a

binders, K562 cells were transfected with Clec9a and mixed

together with CMFDA dye loaded WT K562 cells. Hybridoma

supernatants were added to the appropriate antigen expressing cell

wells, incubated, washed, and detected with a polyclonal Goat anti-

mouse IgG Fc-specific AF 647 conjugate (Jackson) by flow

cytometry (BD Fortessa). Results were analyzed using FlowJo

software to generate MFI values and plotted using GraphPad Prism
4.4 VH and VL recovery

Hybridomas were sequenced using Mouse BCR profiling kit

(Takara) and cDNA was sequenced using next generation

sequencing (Azenta).
4.5 Surface-molecule quantification

Quantification of CD33 levels on the surface was done using

QIFIKIT quantitative analysis kit (Agilent) with the CD33 antibody

clone WM53 (BD Biosciences). The protocol was previously

described (25, 27).
4.6 Jurkat cell reporter assay

The Jurkat functional assay was performed as previously

described (72). Briefly, NFAT-luciferase reporter Jurkat cells were

harvested and washed in PBS and transfected with DNA plasmids

using the Neon transfection system for 100 µL reactions (#

MPK10096). Electroporation conditions were set to 3 pulses at
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1500V for 10 ms. Cells were rested overnight in 1 mL of media in 24

well plates. The next day Jurkat cells were combined with target cells

and cocultured for 6 hrs before the ONE™ step luciferase firefly

assay system (BPS Bioscience) was used to determine luminescence

intensity on a Tecan Infinite M1000. For mRNA titration

experiments, target cells were either HeLa or K562 cells that were

also transfected one day before with mRNA titration using the 4D

nucleofector (Lonza). For HSC cell titration experiments, target

human CD34(+) HSPCs were thawed, rested overnight, collected,

counted, and seeded ranging from 675 to 15,000 cells/well in a 384-

well plate in a 2-fold dilution series.
4.7 Primary T cell engineering

Human PBMCs or enriched T cells were thawed into warm T

cell media, washed and resuspended in T cell media supplemented

with recombinant human IL-2 and stimulated with TransAct

(Miltenyi Biotec) at 1:100 titer according to manufacturer

recommendations. T cells were plated into a 24 well plate at 1

million/mL in 2 mL/well for 48 hrs. After 48 hrs, cells were

harvested, washed with PBS and resuspended in Lonza P3 buffer

(# V4XP-3032) at 20 mL/reaction. 1 mg of PiggyBac transposase

mRNA (Hera Biolabs) and 1.6 mg of transposon plasmid DNA were

added to 1 million T cells which were then electroporated using the

4D nucleofector (Lonza) program EO-115 in 16-well cuvette strip.

Cells were immediately transferred to 200 mL of warm media in a 96

well round-bottom plate and cultured overnight, re-stimulated with

TransAct at 1:100 titer, then transferred to 500 mL in 48 well plates.

After 1-3 days, cells were transferred to GREX24 (Wilson Wolf) for

expansion until use in assays. For the in vivo study, transgene

positive cells were enriched with puromycin selection (0.5ug/mL)

beginning 4 days after transfection.
4.8 Target cell engineering

K562 cells were transfected with transposon plasmids encoding

CD33 and CD16b in the presence of transposase mRNA to establish

stable cell lines. Two million K562 cells, 1.6 mg of DNA plasmid and

(0.125-1) mg of transposase mRNA were combined in 20 mL of Lonza
SF buffer (# V4XC-2032) and then electroporated using the 4D

nucleofector (Lonza) program FF-120 in 16-well cuvette strip. Cells

were transferred to warm media in a 12-well plate for recovery.

CD16b+ MV-4-11 cells were created by lentiviral transduction

followed by cell sorting using a FACSMelody (BD). CD33 and

CD16b expression was confirmed by flow cytometry using CD33

antibody clone WM53 (BD Biosciences) and CD16 antibody clone

3G8 (BD Biosciences). GFP-firefly luciferase or GFP-renilla luciferase

was introduced to engineered MV-4-11 or engineered K562,

respectively, via lentiviral transduction followed by cell sorting

using a FACSMelody. To generate B2M-, SPN-, or CD33- variants

of cell lines, genetic modification using CRISPR-Cas9 was performed.

Streptococcus pyogenes HiFi Cas9 protein (IDT) were mixed at 1:3

molar ratio to form ribonucleoprotein complex then transfected into
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desired cell lines using 4D-Nucleofector (Lonza). Knockout cells were

enriched by cell sorting using a FACSMelody using appropriate

antibodies (B2M: W6/32, SPN: 1G10, CD33: WM53).
4.9 Cytotoxicity assays

Cytotoxicity was assessed via imaging on the IXM system

(Molecular Devices) and endpoint luciferase activity was recorded

as a secondary measurement (26). Target cells, K562 or MV-4-11,

were plated in a 384-well plate with transparent bottom coated with

poly-D-Lysine (Greiner #781946) in T cell media and allowed to

adhere for 1 hr. Engineered T cells were profiled via flow cytometry

for construct expression using recombinant human CD33 (Acro

Biosystems) and recombinant human CD16b (NA2) (Acro

Biosystems). T cells were normalized to a single transgene-

positive percentage by addition of untransposed cells. T cells were

washed with PBS, resuspended in T cell media without IL-2, and

combined with the target cells at a titration of effector to target (E:T)

cell ratios.
4.10 Mouse in vivo assay

NSG-SGM3 mice were purchased from Jackson Laboratories

and housed at the Charles River Accelerator and Development Lab.

Post acclimation, mice were injected with 2 million target cells in

100uL via tail vein. MV-4-11 target cells were harvested during log-

phase growth, washed with HBSS and resuspended in HBSS at 2

million cells/100 mL. Six days later, engineered T cells were injected

at 7.5 million cells per mouse in 200 mL of HBSS. In vivo

Bioluminescence imaging (BLI) was performed twice a week.

Briefly, 150 mL of D-luciferin (150 mg/ml, Perkin Elmer) was

injected intraperitoneally into each animal. After 15 minutes, and

additional time points, mice were imaged belly up. At the end of the

study femur and tibia bones were collected and bone marrow was

extracted from one bone per mouse for flow cytometry analysis. The

following antibodies were used to profile bone marrow by flow

cytometry: anti-mouse CD45-BV421 (Biolegend), anti-human

CD8-PerCP-Cy5.5 (Biolegend), anti-human CD4-PE-Cy7

(Biolegend) and anti-human CD3-APC-e780 (Thermo Fisher).

Recombinant human CD33 and CD16b were also included to

stain transgene-positive T cells. Xenograft MV-4-11 cells were

measured via GFP fluorescence.
4.11 Statistical analysis

Statistical analyses were performed using GraphPad Prism 10.1.

Data from Jurkatcell-based experiments are shown as mean ±

standard deviation of technical replicates. Curve fitting was

performed using four-parameter non-linear regression analysis,
Frontiers in Immunology 11
with EC50 and IC50 values calculated directly from best-fit

curves. Maximum % inhibition values are calculated from

interpolated values of these best-fit curves at the top blocker

mRNA titration point. All Jurkat assay summary metrics are

reported in Supplementary Table 2. In vivo data were analyzed

using a Kruskal-Wallis H test followed by a post hoc Dunn’s

multiple comparisons test to correct for multiple comparisons;

adjusted p-values were reported and the null hypothesis was

rejected for adjusted p <0.05.
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