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Tuberculosis (TB) is the leading cause of death in the world from an infectious

disease. Its etiologic agent, theMycobacterium tuberculosis (Mtb), is a slow-growing

bacterium that has coexisted in humans for thousands of years. According to the

World Health Organization, 10.6 million new cases of TB and over 1 million deaths

were reported in 2022. It is widely recognized that patients affected by chronic

autoimmune arthritis such as rheumatoid arthritis (RA), psoriatic arthritis (PsA), and

ankylosing spondylitis (AS) have an increased incidence rate of TB disease compared

to the general population. As conceivable, the risk is associated with age ≥65 years

and is higher in endemic regions, but immunosuppressive therapy plays a pivotal

role. Several systematic reviews have analysed the impact of anti-TNF-a agents on

the risk of TB in patients with chronic autoimmune arthritis, as well as for other

biologic disease-modifying immunosuppressive anti-rheumatic drugs (bDMARDs)

such as rituximab, abatacept, tocilizumab, ustekinumab, and secukinumab.

However, the data are less robust compared to those available with TNF-a
inhibitors. Conversely, data on anti-IL23 agents and JAK inhibitors (JAK-i), which

have beenmore recently introduced for the treatment of RA and PsA/AS, are limited.

TB screening and preventive therapy are recommended in Mtb-infected patients

undergoing bDMARDs and targeted synthetic (ts)DMARDs. In this review, we

evaluate the current evidence from randomized clinical trials, long-term extension

studies, and real-life studies regarding the risk of TB in patients with RA, PsA, and AS

treated with bDMARDs and tsDMARDs. According to the current evidence, TNF-a
inhibitors carry the greatest risk of TB progression among bDMARDs and tsDMARDs,

such as JAK inhibitors and anti-IL-6R agents. The management of TB screening and

the updated preventive therapy are reported.
KEYWORDS

tuberculosis disease, TB infection, rheumatoid arthritis, psoriatic arthritis, ankylosing
spondylitis, biologic DMARDs, JAK inhibitors, preventive therapy
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1 Introduction

Tuberculosis (TB) is the leading cause of death in the world

from an infectious disease. Its etiologic agent, the Mycobacterium

tuberculosis (Mtb), is a slow-growing bacterium that has coexisted

in humans for thousands of years. According to the World Health

Organization (WHO), 10.6 million new cases of TB and over 1

million deaths were reported in 2022 (1).

As a respiratory pathogen, the transmission occurs through

inhalation of aerosols or droplets containing bacilli expelled by a

person with TB disease. An estimated quarter of the world population

has been infected with Mtb (1). Most TB cases are reported in low- and

middle-income countries. In particular, more than two-thirds of people

with TB live in Bangladesh, China, India, Indonesia, Nigeria, Pakistan,

Philippines and South Africa (1). This heterogeneous distribution is due

to the differences between countries in terms of social and economic

development and health-related factors, such as alcohol use disorders,

diabetes, HIV infection, smoking and undernourishment, which are

known to increase the risk of TB disease (2). In addition to health

conditions, immunosuppressive therapies affecting the immune system,

including those used for rheumatoid arthritis (RA), psoriatic arthritis

(PsA) and ankylosing spondylitis (AS), increase the risk of TB disease in

Mtb-infected individuals (3).

Following infection, the majority (90%) control Mtb replication

through innate and adaptive immunity establishing a state referred to

as TB infection (TBI), and in the past called latent TB infection (4). On

the other hand, 5-10% of the infected subjects can develop TB disease;

half of them within the first 5 years, and half during their lifetime.

TB is traditionally classified as primary or secondary according to

the time between the initial infection and the onset of the clinical disease.

Primary TB occurs in previously uninfected subjects after de novo

infection, whereas secondary TB develops in a previously sensitized

host, and it may occur following reactivation of Mtb infection or

reinfection from external source. Indeed, secondary TB usually, but

not always, develops in a person with a weakened immune system (5).

In the context of Mtb infection, a dynamic equilibrium between

the host and the microbe is present, with bacilli that can switch from

a dormant state to intermittent or active replication depending on

the capability of the host immune system to contain or not Mtb

replication (6, 7). Therefore, TB is referred to as a “continuum

process” characterized by different stages between TB infection and

TB disease, as described elsewhere (8, 9).

In this review, we revised the current evidence from randomized

clinical trials (RCTs), long-term extension studies (LTEs), and real-

life studies regarding the risk of TB in patients with chronic

autoimmune arthritis including rheumatoid arthritis (RA),

psoriatic arthritis (PsA), and ankylosing spondylitis (AS), treated

with biologic and targeted disease-modifying immunosuppressive

anti-rheumatic drugs (bDMARDs; tsDMARDs).
2 Immunopathogenesis of TB

The immune response to Mtb infection is multifaceted and it

involves both innate and adaptive immune response (4, 10). Upon

infection, bacilli are phagocytosed by alveolar macrophages, which
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represent the first defense line against Mtb due to their

antimicrobial mechanisms (11, 12). However, Mtb has evolved

different mechanisms to avoid its elimination by inhibiting

phagosome maturation and acidification, and escaping autophagy

in macrophages (13–15), which become a permissive niche for

Mtb replication.

As the infection progresses, macrophages migrate into the lung

interstitium where they recruit other innate cells such as neutrophils,

monocytes, macrophages, and dendritic cells due to the release of

cytokines, including TNF-a, IL-1a, IL-6, IL-1b and IFN-g, thus
favouring the dissemination of mycobacteria to uninfected cells.

Once activated, T and likely B cells are recruited to the site of

infection contributing to the formation of the organized granuloma, a

structure known as the hallmark of TB (10). The immune

microenvironment within the granuloma influences the prognosis

and outcome of TB disease leading to different scenarios: Mtb

clearance, bacterial replication causing primary TB, bacterial

dormancy, or reactivation of the infection (16–19).

CD4+ Th1 cells producing cytokines such as IFN-g and TNF-a
have been identified as the most important cell subset to control

Mtb infection. The differentiation of naïve CD4+ T cells to Th1 cells

is promoted by IL-12, a cytokine released by antigen presenting cells

(APCs) (20). IFN-g and TNF-a enhance the antibacterial activity of

macrophages by increasing autophagy, promoting phagosome

maturation, and inducing the production of antimicrobial

peptides. Besides macrophages, IFN-g and TNF-a activate B cells

and the cytotoxic CD8+ T cells. Both cytokines are of utmost

importance for the formation and maintenance of a well-

organized granuloma (21).

The role of Th17 cells, whose differentiation is induced by IL-23,

is controversial. Th17 response seems to be involved in the early

steps of protection from Mtb infection, and the recruitment of

neutrophils, macrophages, and Th1 cells to the site of infection

(22, 23). Th17 cells enhance the expression of cytokines (IL-17A,

IL-17F, IL-21 and IL-22) and antimicrobial peptides that lead to

phagocytosis of Mtb (23). IL-17 may be released by either innate

lymphocytes of the ILC3 class or Th1/Th17, and it seems to be

implicated in the maturation process of granulomas (24). However,

an overproduction of IL-17 was also associated with exaggerated

recruitment of neutrophils and inflammation leading to

immunopathology (25, 26). As with IL-17, also the excessive

production of other pro-inflammatory cytokines such as TNF-a,
IL-1, IFN-g may result in tissue damage and bacterial growth. A

balance is crucial to control progression to TB disease (27).

The pivotal role of IL-12, IFN-g, and TNF-a in controlling Mtb

infection is corroborated by the higher susceptibility to TB disease

of the individuals treated with immunosuppressive therapies like

TNF-a inhibitors (28–30), or individuals with innate defects of the

IL-12/IFN-g axis (31–33), with HIV infection (34) or with primary

immunodeficiencies associated with T-cell deficiency (35).

Mendelian susceptibility to mycobacterial disease (MSMD) is

an inborn error of immunity associated with a selective

predisposition to mycobacterial infections. MSMD involves

specific mutations in 18 genes (IFNG, IFNGR1, IFNGR2, STAT1,

IL12B, IL12RB1, IL12RB2, IL23R, RORC, TBX21, IRF8, SPPL2A,

ISG15, TYK2, JAK1, ZNFX1, NEMO, CYBB), which are associated
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with an impaired IFNg/IL-12 response/production (35). Moreover,

patients with defects of CD40 ligand (CD40L) and NF-kB signaling

are more susceptible to mycobacterial disease, as this pathway is

involved in the IL-12 production (36).

A number of distinct Mendelian disorders are also caused by

inborn errors in components of the IL-6 family of cytokines and

their signaling pathways (STAT3 and GP130) (37). The majority of

patients with TYK2 defects, one of the three Janus kinases (JAKs)

associated with GP130 signaling, shows defects in type I antiviral

and mycobacterial immunity (38).

In addition to the use of TNF-a inhibitors, the inherited TNF

deficiency has been identified as a genetic aetiology of recurrent

pulmonary TB in adults observed within 1 year of the end of

treatment. TNF deficiency seems to be responsible for the selective

impairment of reactive oxygen species (ROS) production by

alveolar macrophages. The ROS production is crucial for the

phagocytic control of Mtb (39).

Regarding B cells and antibodies (Abs), initially there was some

scepticism about their effective contribution to the host defense against

Mtb due to the intracellular nature of the pathogen (40, 41). However,

although B cells and Abs may not be able on their own to counteract

Mtb, the accumulating evidence shows that they can favour and

enhance cell-mediated immunity (42). Indeed, Abs binding to Mtb

can mediate different processes such as antibody-dependent cellular

cytotoxicity, antibody-dependent cellular phagocytosis, and

complement activation, thus helping to reduce the mycobacterial

burden (42). However, B cells are not limited to antibody

production. They can act as antigen-presenting cells by presenting

mycobacterial antigens to T cells, thereby inducing their activation. In

addition, once activated, B cells can release cytokines, thus affecting the

activity of different immune cells (43, 44). The role of B cells in

controlling Mtb infection is corroborated by the association of TB

disease with reduced B cell count and function (45, 46).

Considering the pivotal role played by the host immune response

in controlling Mtb replication, risk factors for the progression to TB

disease include immunosuppressive therapies (Figure 1).
3 Patients with chronic autoimmune
arthritis and TB risk

Patients with chronic autoimmune arthritis such as RA, PsA

and AS are at higher risk of infections and related complications,

which are the main cause of mortality in these conditions (47).

It is widely recognized that patients affected by RA, PsA, and AS

have an increased incidence rate of TB disease compared to the

general population, primarily related to immunosuppressive

therapy rather than the disease itself. As conceivable, the risk is

associated with age ≥65 years and is higher in endemic regions, but

the use of immunosuppressive therapy plays a key role also in low

TB endemic countries (3, 48). There is evidence that corticosteroids

(CCS) can increase the risk of TBI reactivation in a dose-dependent

manner (49, 50).

Among csDMARDs commonly used for the management of

RA, PsA, and AS, leflunomide and azathioprine have emerged as
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having the highest risk, whereas sulfasalazine and methotrexate

appear to confer only low to moderate risk (50, 51). In the last 20

years, biologic DMARDs (bDMARDs) have significantly improved

the treatment of rheumatologic diseases, including RA, PsA, and

AS, contributing to introduce the ambitious target of remission/

minimal disease activity.

Anti-TNFa agents were the first bDMARDs to be adopted and

are still the most used worldwide. Currently, 4 anti-TNF

monoclonal antibodies and one receptor fusion protein are

available: adalimumab (ADA), etanercept (ETN), infliximab

(IFX), golimumab (GOL), and certolizumab (CTP). Other

bDMARDs are used exclusively for the treatment of RA,

including the anti-IL6 receptors tocilizumab and sarilumab, as

well as the anti-CD20 rituximab. In contrast, the anti-IL12/23

ustekinumab, anti-IL23 guselkumab and risankizumab, and IL-17

inhibitors secukinumab and ixekizumab are used only for PsA and

AS. Finally, the CTLA4-Ig abatacept and JAK inhibitors (JAK-i) are

approved for both RA and PsA/AS. The increased risk of TB in

patients with chronic autoimmune arthritis undergoing anti-TNF

agents is widely recognized (3, 52–55). Although the data are less

robust, there are also substantial data available for other bDMARDs

such as rituximab, abatacept, tocilizumab, ustekinumab, and

secukinumab (56–58).

Conversely, data on anti-IL23 agents and JAK inhibitors (JAK-i),

which have been more recently introduced for the treatment of RA

and PsA/AS, are scarcer.
4 Specific biological therapy for
autoimmune arthritis and TB risk

In the following section, we describe the mechanism of action of

bDMARDs and tsDMARDs used for the treatment of RA, PsA, and

AS, and analyze how inhibiting specific pathogenic pathways might

affect the integrity of the TB granuloma. We then summarize the

main data on TB risk associated with these therapeutic agents from

RCTs, LTE, and real-world studies in these pathologies (Table 1).

Indeed, it is important to underline that RCTs provide very reliable

and complete data, but patients with TB disease were not included,

and patients with TBI could be enrolled only after having received

TB preventive therapy according to local guidelines. On the other

hand, real-life studies (registries and observational studies) are

affected by a higher risk of bias, but can also report cases of TBI

patients who did not receive preventive treatment; thus, they are

particularly relevant for inferring the impact of b/tsDMARDs on

the natural course of TBI.
4.1 TNF-a inhibitors

TNF-a is a pivotal cytokine in the pathogenesis of RA, PsA,

and AS, as it acts on different cells such as synoviocytes,

macrophages, chondrocytes, and osteoclasts. It induces local

inflammation and pannus formation, contributing also to

cartilage degradation and bone erosions (59, 60). High TNF-a
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levels have been observed in the synovial fluid and synovium of

patients with RA and PsA (60).

As previously mentioned, TNF-a is also critical for the

formation and maintenance of Mtb granulomas. TNF-a enhances

the phagocytic capacity of macrophages, promotes the production

of reactive nitrogen and oxygen species to kill intracellular bacteria,

and facilitates the recruitment of immune cells at the site of

infection (21).

TNF-a inhibitors neutralize TNF-a activity, by disrupting the

immune response necessary for granuloma integrity, and leading to

mycobacterial growth and dissemination with progression to

TB disease.

There are remarkable differences among anti-TNF-a agents in

their ability to inhibit TNF-a, that can explain the reported
Frontiers in Immunology 04
differences in TB risk. Anti-TNF-a mAbs target and neutralize

both soluble and membrane-bound TNF-a with high affinity, and

also have some cross-reactivity with Lymphotoxin (LT)-a (61). On

the other hand, ETN, being a dimeric fusion protein, binds to the

trimeric form of soluble TNF-a and, only to a lesser extent, to

membrane-bound TNF-a and LT-a (62, 63).

The more comprehensive blockade of TNF-a activity and

functions in immune defense mechanisms by anti-TNF-a mAbs

may contribute to the observed higher risk of TBI reactivation.

The early clinical trials of IFX and ETN revealed a significant

risk of TB, leading to the introduction of mandatory TB screening

guidelines for patients starting anti-TNF-a therapy.

In particular, in the ATTRACT and ASPIRE RCTs there were

70 cases of TB disease among patients receiving IFX for an
FIGURE 1

Schematic representation of the immune response targets of disease-modifying immunosuppressive anti-rheumatic drugs used for the management
of IMID patients. Both innate and adaptive immunity (B and T cells) play a key role in controlling Mtb infection. Immunosuppressive therapies
targeting host immune factors increase the risk for progression to TB. IMID, immune-mediated inflammatory disease; IFN, interferon; IL, interleukin;
JAK, Janus kinase; MHC, major histocompatibility complex; PDE4, phosphodiesterase-4; TCR, T cell receptor; TGF, tumor growth factor. Created
with BioRender.com.
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incidence rate (IR) of approximately 0.5-1.0/100 patient-years (PY);

the majority of these cases occurred within the first few months of

therapy (64).

ETN showed a lower incidence of TB in its pivotal ERA trial;

however, the risk was still significant enough to warrant concern

with an IR of 0.02-0.1/100PY (65). By the early 2000s, both the Food

and Drug Administration (FDA) and the European Medicines

Agency (EMA) had issued guidelines recommending TB

screening before starting treatment with anti-TNF-a agents.

The subsequent implementation of screening protocols has

significantly reduced TB rates, contributing to the lower incidence

observed in LTE studies and real-world applications of IFX, ADA,

and ETN, as well as with newer anti-TNF-a agents like golimumab

and certolizumab pegol (52). Indeed, the IR of TB reactivation in

clinical trials and LTEs conducted after the introduction of TB

screening, decreased to 0.2-0.3 for IFX and to 0.1-0.2/100PY for

ETN and ADA (66–79).

Also, golimumab and certolizumab pegol trials reported

relatively low rates of TB. Indeed, the GO-BEFORE and GO-

FORWARD golimumab studies found an IR of 0.2/100PY,

whereas the RAPID 1-2 certolizumab trials found an IR of 0.1/

100PY (80–84).

Different registries evaluated the incidence of TB in patients

receiving TNF-a inhibitors after the introduction of TB screening

protocols with similar results. Among these, the RABBIT registry

reported an IR of 0.14/100PY, the BIOBADASER found an IR of

0.05-0.1/100PY, while the ARTIS registry reported an IR of 0.15/

100PY (85–87).

Data from previous systematic reviews and meta-analyses

showed similar data, with an IR of 0.18/100PY in rheumatic
Frontiers in Immunology 05
patients receiving anti-TNF-a, 4 times higher compared to

rheumatic patients not receiving these therapies (88). Rigorous

screening and prophylactic treatment are required on the

summary of product characteristics (SmPC) of anti-TNF-a agents.
4.2 Anti-IL6R

Tocilizumab (TCZ) is a humanized monoclonal antibody

targeting the human IL-6 receptor (IL6R). It was approved by

EMA in 2009 for the treatment of RA patients. Sarilumab is another

fully human monoclonal antibody targeting the IL-6R, more

recently approved for RA treatment.

IL-6 is a versatile cytokine with a wide array of functions,

including modulation of acute phase reactant pathways, B and T

lymphocytes, blood-brain barrier permeability, synovial

inflammation, and hematopoiesis. This cytokine plays a crucial

role in bridging innate and adaptive immune responses, and in

facilitating the recruitment of macrophages. Dysregulation of the

IL-6 axis is implicated in the inflammatory pathways of various

autoimmune disorders, such as RA.

Previous studies on experimental mice models showed that IL-6

plays a significant role in the protection against Mtb, and the

absence of IL-6 leads to an early increase in bacterial load with a

concurrent delay in the IFN-g induction. However, IL6 knockout

mice contained and controlled bacterial growth and developed a

protective memory response to secondary infection, demonstrating

that while IL-6 is involved in stimulating early IFN-g production, it
is not essential for the development of protective immunity against

Mtb. The role of IL-6 in human TB remains controversial, and the
TABLE 1 TB risk associated to the different biological drugs used for rheumatic patients.

Mechanism of Action Biologic Rheumatologic
indications

TB risk TB screening
mandatory

TNF Inhibitors Infliximab
Adalimumab
Etanercept
Golimumab
Certolizumab Pegol

RA, PsA, SpA High
High
Medium/High
Medium/High
Medium/High

Yes

IL-6R Inhibitors Tocilizumab
Sarilumab

RA Medium Yes

JAK Inhibitors Tofacitinib
Baricitinib
Upadacitinib
Filgotinib

RA, PsA, SpA
RA
RA, PsA, SpA
RA

Medium Yes

CTLA4-Ig Abatacept RA, PsA Low Yes

IL-12/23 Inhibitor Ustekinumab PsA Low Yes

IL-23 Inhibitors Guselkumab
Risankizumab

PsA Low Yes

IL-17 Inhibitors Secukinumab
Ixekizumab

PsA, SpA Low Yes

CD20 Inhibitor Rituximab RA Low No

PDE4 Inhibitor Apremilast PsA Low No
*Risk based on mechanism of action and TB IR before the introduction of systematic TB screening.
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specific functions of the IL-6 produced by B cells are still poorly

understood, despite its abundance in TB-infected lungs. Some

studies have reported increased concentrations of IL-6 in the sera

of patients with advanced pulmonary TB compared to healthy

controls, as well as elevated IL-6 gene expression in peripheral

blood cells of TB patients, supporting a potential pathophysiological

role (89, 90).

Furthermore, a recent study demonstrated that treatment with

in vitro TCZ does not inhibit IFN-g-specific response on whole

blood from patients with TB disease stimulated with two different

Mtb antigens, differently from the effects observed with ETN and

IFX, both of which led to a reduced IFN-g response (57, 91, 92).
A comprehensive safety analysis and systematic review

published in 2014 assessed the incidence of TB in patients treated

with TCZ from RCTs and LTE studies, and found no cases of TB

disease among 15485 RA patients (29). A meta-analysis of RCTs

trials and LTEs found 9 cases of TBI reactivation on 12509PY for an

IR of 0.069/100PY (93). Data from the British Society for

Rheumatology Biologics Register for Rheumatoid Arthritis

(BSRBR-RA) showed one case of TB disease among 2171 RA

patients treated with TCZ, resulting in an IR of 0.026/100PY (94).

Observational studies from European countries and a Japan

nationwide study did not detect TB cases in TCZ users (95). Finally,

a recently published nationwide observational study on RA patients

from Korea, an intermediate TB burden country, reported 10 TB

cases on 2185PY for an IR of 0.45/100PY (96).

The IR was similar to ETN and higher in TBI patients than

those without TBI, indicating different effects between de novo

infection and TB reactivation. Screening for TBI is mandatory in the

SmPC of IL6R inhibitors.
4.3 Anti-IL-17

The IL-17 family encompasses six proteins (IL-17A to IL-17F)

and five receptors (IL-17RA to IL-17RE). While IL-17A and IL-17F

individually possess limited inflammatory potency, their robust

inflammatory effects primarily stem from their ability to recruit

immune cells and synergize with other pro-inflammatory cytokines

like TNF-a, IL-1b, and IL-22. Through the recruitment and

activation of neutrophils, IL-17A and IL-17F serve as pivotal

components in the innate immune response against extracellular

bacteria and fungi. Their protective role is particularly important on

mucosal surfaces and skin, where they are rapidly released upon

appropriate stimulation, thereby serving as a crucial link between

innate and adaptive immune responses.

The involvement of IL-17 in TB pathogenesis has been debated,

raising concerns and uncertainties about TB risk. Indeed, early

granuloma formation may depend on IL-17A, but IL-17A-induced

neutrophil recruitment may also increase pathological lesions and

bacterial burden in chronic pulmonary infections. Notably, an in

vitro study on a microgranuloma human model demonstrated that

anti-TNF-a treatment could induce Mtb reactivation, whereas anti-

IL17 treatment was comparable to control, indicating a lack of effect

on Mtb dormancy. Moreover, mice lacking both IL-17RA and IL-22
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pathways still managed to control TB, suggesting no compensatory

relationship between these pathways. In contrast, TNF-a-deficient
mice succumbed rapidly (97). In a series of studies by Khader and

Cooper, low-dose aerosolized bacteria were delivered to the lower

airways of the lungs in IL-17/IL-23 deficient mice (98, 99). Notably,

the absence of IL-23 and IL-17 in the lung leads to more severe

inflammation, suggesting that these cytokines help maintaining the

granuloma integrity in later stages of Mtb-induced inflammation by

limiting neutrophil death.

Secukinumab (SEK), a fully human monoclonal IgG1 antibody,

specifically targets and inhibits IL-17A. Following the

demonstration of its significant efficacy in phase 3 studies in

2015, it was approved for treating PsA and AS in 2016. Pooled

data from 5 phase III trials on PsA (FUTURE program), and 4

phase III trials (MEASURE program) on AS, on a total of 2523 and

977 patients respectively, reported 5 cases of new TBI (one PsA and

2 AS patients), and no cases of TB disease (100). In LTE studies (1–5

years) in patients with PsA and AS, the safety profile was consistent

with that of previous phase III studies, and no new TB infections or

TB disease reactivations were observed (101). Notably, Liu et al.

reported zero cases of reactivation among 3 PsA/AS patients with

TBI who did not receive TB preventive therapy (102). Ngoc et al. in

2022 described a case of TB disease from Vietnam in a 19-years-old

man affected by AS after two years of SEK treatment (103).

Ixekizumab (IXE) also neutralizes IL-17A but, differently from

SEK, it is a humanized IgG4 monoclonal antibody. This structural

variation contributes to its higher affinity for IL-17. Its approval for

PsA and AS was granted in 2018. No TB disease cases from pooled

analysis of 3 RCTs (SPIRIT program) on PsA patients were

recorded. In the PsA studies, 32 (2.9%) patients resulted in TBI

during the study, of whom 20 were discontinued per-protocol.

Interestingly, among the remaining 12 patients continuing IXE

treatment, no cases of TB reactivation were reported, even though

only 7 patients received TBI therapy (104).

Finally, bimekizumab (BMK) represents a humanized IgG1

monoclonal antibody with dual neutralizing effects against both

IL-17A and IL-17F. It has been very recently approved for the

treatment of PsA and AS. A total of 267 PsA patients from BE

COMPLETE trial and its open-label extension 1-yr follow-up (BE

VITAL trial), reported no cases of TB disease (105). Data from two

phase III BE MOBILES trials on AS, did not report TB disease cases

at 1-yr follow-up. Finally, a total of 303 patients with active AS from

BE AGILE trial and its open-label extension study reported no cases

of TB disease (106, 107). We still need data from real-life studies

and longer follow-ups. TB screening is only suggested in the SmPC

of anti-IL17 agents.
4.4 Anti-IL-23 and IL-12/23

IL-12 and IL-23 are heterodimeric cytokines containing p35 and

p40 subunits, and p19 and p40 subunits, respectively. IL-12 and IL-23

are produced by APCs, such as dendritic cells, macrophages, and

monocytes. IL-12 plays a key role in the differentiation of naïve CD4+

T cells into Th1 cells, whereas IL-23 is involved in the expansion and
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maintenance of Th17 cells. A role for IL-12 and IL-23 dysregulation

in the pathophysiology of PsA has been suggested (108).

Ustekinumab (UST) is a human monoclonal antibody that binds

the p40 subunit shared by both IL-12 and IL-23, effectively

suppressing their functions. It was approved for the treatment of

PsA patients in 2013. No TB disease cases were observed neither in

pivotal studies (PSUMMIT program) on a total of 1073 PsA patients,

nor in their LTE data (109, 110). Few data from available real-life

observational studies on PsA patients did not report cases of TB

reactivation, and previous reviews have assessed the risk of TB

reactivation as very low (111). A case of peritoneal TB in a PsA

patient from Philippines, on UST treatment, with multi bio-failure,

and after having been treated for latent TB, was observed (112).

Screening and treatment of TBI are recommended in the SmPC

supplied with UST.

Guselkumab (GUS) is a fully human IgG1l monoclonal

antibody, which specifically binds to the p19 subunit of IL-23. It

stands as the first of its class to gain approval for the treatment of

PsA patients.

Risankizumab (RSK) is a humanized immunoglobulin G1

monoclonal antibody that specifically inhibits IL-23 by binding to

its p19 subunit, and it has been recently approved to treat PsA.

Pooled data from DISCOVER 1 and 2 trials on 748 patients with

active PsA for GUS reported zero cases of TB reactivation at 1-year

follow-up (113, 114). RSK safety data sets from 4 phase II and III

trials (KEEPsAKE program) in PsA on a total 1542 patients

representing 2741.6PY, reported one case of TB disease in a

patient from Taiwan previously treated with a 9-month course of

isoniazid prophylaxis (115, 116). There is still very little real-life

data on anti-IL-23 in PsA patients with RSK. Takeda et al. reported

the case of a 64-year-old man affected by PsA who developed active

pulmonary TB after two months of GUS therapy (the patient was

negative at baseline TB screening) (117).

Notably, several real-world data are available for patients with

psoriasis. A total of 68 and 25 TBI patients, who did not receive any

or adequate TBI preventive therapy, were treated with RSK and

GUS, respectively (118–122). Remarkably, there were no

documented cases of TB reactivation, which corroborates the

safety profile of anti-IL-23 agents in patients with TBI who did

not receive prophylactic care. In the SmPC of anti-IL-23 agents is

indicated that patients should be evaluated for TBI before

starting treatment.
4.5 Anti-CD20

Rituximab (RTX) is a chimeric monoclonal antibody targeted

against CD20, which is expressed on the surface of normal and

malignant B lymphocytes. It was first approved by the FDA in 1997

for the treatment of malignancy, and in February 2006 for the

treatment of patients with moderately to severely active RA, who

did not adequately respond to one or more anti-TNF-a agents. RTX

binds via its F(ab0)2 portion to the CD20 antigen expressed on B

lymphocytes, whereas its Fc domain plays immune effector functions
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to mediate B cell lysis in vitro. RTX cytotoxicity is mediated by three

different mechanisms including antibody-dependent cellular

cytotoxicity, complement-dependent cytotoxicity, direct disruption

of signaling pathways, and triggering of apoptosis (123, 124).

RTX’s targeted action on B cells, which spares the critical TNF-

a pathways necessary for TB containment, likely explains its lower

associated risk of TB reactivation compared to anti-TNF-a
therapies as reported by several data (125–127). No cases of TB

disease have been reported in patients receiving RTX in 9 RCTs

conducted in 3623 RA patients. In two LTEs in RA patients, two

cases of TB disease have been reported during a follow-up time of

9.5 years (IR 0.018/100PY) (29, 128). Data from real-life studies and

registries found very few cases of de novo TB infection or TB disease

reactivation during RTX treatment (129–132).

Data from observational studies and registries reported very few

cases of TB disease. In particular, only one TB case was reported in

2484 RA patients treated with RTX in the German GENIRIS study,

and 2 cases from the BSRBR-RA registry during 17154PY (0.012/

100PY) (127, 133).

Finally, a meta-analysis including data from several clinical trials

and LTEs reported that the IR of TB disease was high (>0.040/100PY)

for patients treated with tofacitinib and all biologics but RTX (0.020/

100PY) (93). Overall RTX emerged as having one of the lowest

pooled IR of TB among bDMARDs. In line with this evidence, the

summary of product characteristics of RTX does not specifically

mandate routine screening for TB before initiating therapy.
4.6 CTLA-Ig

Abatacept (ABT) is a fully human recombinant fusion protein

composed of the extracellular binding domain of human cytotoxic T

lymphocyte-associated antigen-4 (CTLA-4), fused to a modified

segment of human IgG1. Its mechanism of action involves blocking

the CD80/CD86 costimulatory pathways, thus preventing the

activation of naïve T cells. ABT binds to CD80 and CD86 on APCs

with higher affinity compared to CD28 on T cells, effectively interfering

with the interaction between CD28 and CD80/CD86 (134). ABT has

been approved by the EMA for the treatment of RA since 2007, 10

years later it received approval for the treatment of PsA patients.

Its peculiar mechanism of immune modulation, which avoids

direct cytokine inhibition, seems to be a key factor that likely

contributes to its safer profile compared to anti-TNF-a regarding

the overall risk of infections and, in particular, TB reactivation.

Pooled data from 8 RCTs and LTE studies on RA patients

revealed an overall IR of 0.0066/100PY (135). A recent 10-year

international post-marketing study found a very low IR across

different registries (ARTIS, FORWARD, RABBIT) with only one

event on a total of 9652PY of exposure (136). TB rates were low but

slightly higher in two Canadian and USA registries, with 9 cases on

1067PY and 17 cases on 3994PY, respectively (137). Finally, a recent

meta-analysis of LTEs showed a low estimated pooled IR of 0.07/

100PY (93). Despite these reassuring data, screening for TBI is

recommended in the SmPC of abatacept.
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4.7 Apremilast

Apremilast, an oral phosphodiesterase-4 (PDE4) inhibitor that

effectively modulates various inflammatory mediators, has

demonstrated efficacy with a favorable safety profile in several

RCTs involving PsA patients with peripheral involvement (138).

These trials excluded patients with TB disease, but they did not

require TBI screening for enrolment. This finding is noteworthy:

patients with TBI treated with apremilast without preventive

therapy showed no instances of reactivation (139).

Analysis of pooled data from the PALACE I–II–III studies

involving a total of 1493 PsA patients, reported zero cases of TB

disease (140). A comprehensive retrospective analysis using a large

US-based claims database, including patients diagnosed with

psoriasis and/or PsA who were administered at least one dose of

apremilast between 2014 and 2018, identified only two cases of TB

disease among 10074 patients (141).

Overall, available data highlight the minimal association of

apremilast with TB reactivation. Notably, the prescribing

information for apremilast does not mention the necessity for TB

screening before initiation of treatment.
4.8 JAK inhibitors

Janus kinase inhibitors (JAK-i) are non-receptor tyrosine

kinases associated with the cytoplasmic domain of type I and II

cytokine receptors, which are activated after the engagement by

their cognate ligands. Once phosphorylated, they phosphorylate

signal transducers and activators of transcription (STATs), which

then induce gene activation essential for cellular functions like

signaling, growth, and survival (142).

The JAK family comprises four cytoplasmic non-receptor

tyrosine kinases: JAK1, JAK2, JAK3, and TYK2. JAK-i are

categorized into two generations. The first generation includes

small molecules like baricitinib (BAR) and tofacitinib (TOF),

which act as non-selective inhibitors of JAKs. In contrast, second-

generation drugs such as filgotinib (FLG) and upadacitinib (UPA)

exhibit more selective inhibitory activity against JAK1 than other

JAK (143, 144). UPA and TOF are approved for the treatment of

RA, PsA, and AS, whereas FLG and BAR are approved for RA only.

It can be speculated that the broad immunosuppressive effects

exerted by the mechanism of action of JAK inhibitors, particularly

through the downregulation of IFN-g, TNF-a, and IL-6, could

disrupt critical host defenses, including macrophage activation,

granuloma formation, and Mtb containment.

Notably, in a BALB/c mice model, TOF was shown to diminish

the control of Mtb, leading to increased bacterial replication in the

lungs during chronic paucibacillary TB. This model is designed to

replicate latency in a manner analogous to human TBI (145).

Screening for TBI is recommended in the SmPC of all JAK-i.

Data on TOF and TB were pooled from 7061 patients across the

completed 2 phase I, 10 phase II, 6 phase III, 1 phase IIIb/IV index

studies, and 2 open-label LTE studies (total exposure 22875PY). TB

disease was reported in 36 (0.5%) patients, with an IR of 0.2/100PY.
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Pulmonary and non-pulmonary TB occurred in 17 and 19 patients

respectively, with most cases occurring in geographical regions

endemic to TB (146). Twenty-six cases of TB disease were

identified from a post-marketing surveillance analysis of TOF, on

a total of 5671 RA patients for an IR of 0.21/100PY, most of which

were from regions with high background IR for TB (147). Finally, a

retrospective, single-center analysis from Western India reported 4

TB cases on a total of 102 RA patients treated with TOF (148).

Regarding baricitinib, an integrated study from 9 RCTs

conducted over 20 countries in patients with RA and one LTE

study with a follow-up period of up to 7 years, showed a total IR for

TB disease of 0.2/100 PY (15 out of 3770 patients; 14744 PY) (149,

150). The IR did not increase with prolonged exposure and the

events occurred mainly in endemic countries.

Data on TB risk in patients receiving UPA are pooled from 12

clinical trials (SELECT program) on 3209 patients with RA

(9079.1PY), 907 patients with PsA (1872.3PY) and 182 with AS

(320.1PY), showed only one case of TB reactivation (151–153). The

long-term extensions analysis on 3209 RA patients for 11661.5PY,

recorded one case of disseminated TB, one case of peritoneal TB, two

cases of pulmonary TB, one case of female genital tract TB and 174

cases of TBI reactivation (154). No cases of TB disease were recorded

in the RCTs and LTE studies conducted in PsA and AS patients,

whereas a total of 51 cases of TBI reactivation were reported

(155–157). We still have a few real-life data on UPA. In two recent

prospective longitudinal multicenter Italian studies in RA patients

enrolling 71 and 60 patients respectively, neither TB disease nor new

TBI were detected during the 6 months follow-up (158, 159).

The FINCH programme, a 52-week phase 3 RCT evaluated FLG

in 833 RA patients, recorded no cases of TB disease (160).

Ninenty-one cases of TB disease reactivation and no new onset

TB disease cases were reported in the DARWIN clinical trial and its

LTE analysis on 739 RA patients (161). Overall, these findings suggest

that JAK-i carry a risk of TB, particularly in endemic regions.
5 Screening strategies and preventive
therapy for TB

It is estimated that approximately one-fourth of the global

population has an immune response to Mtb, indicating previous

exposure or infection with the bacterium (1). Since 2015, the WHO

has recommended screening and treating TBI in populations at

higher risk of progression to the disease, within preventive actions

of the WHO End TB Strategy (3, 162).

Patients with autoimmune diseases candidates for biological

treatment are considered at risk of progressing to TB. Therefore,

International guidelines (163) recommend screening and TBI

preventive treatment of those with a TBI diagnosis who are

candidates for biological treatment. Patients are screened for TBI

either using skin tests, or interferon-g release assays (IGRAs) based
on the national guidelines in place (6, 164). Skin tests are based on

the intradermal inoculation in the forearm of the purified protein

derivative (PPD) as in the tuberculin skin tests (TST), or on ESAT-6

and CFP-10, as in the new generation of skin tests (165).
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IGRAs are blood tests based on in vitro stimulation with ESAT-6

and CFP-10; the read-out is based on IFN-g or IP-10 detection that can
be performed in automated or semi-automated ways (6, 164).

In countries with BCG vaccination, where TST may show false

positives, ESAT-6 and CFP-10 based assays (IGRAs or skin tests)

are preferred. If either the skin test or IGRA is positive, the patient is

considered with TBI (162, 166) and will undergo a chest X-ray

(CXR) to exclude TB disease (162). A baseline CXR can be useful

also for those who score negative on skin tests or IGRA to evaluate

lung apical scores compatible with spontaneously healed TB, such

as non-calcified nodules with distinct margins and fibrotic linear

opacity (167). If TBI is diagnosed from a positive skin test or IGRA

without lung lesions, or based solely on lung apical scars, preventive

treatment is offered to those at high risk to develop TB (162).

TB preventive therapy aims to eliminate the remaining replicating

mycobacteria in the body, thus resulting in a lower risk of developing

the disease. This has proven to be effective in preventing TB in several

populations, including children (162, 168, 169).
6 TB preventive therapy drugs and
drug regimens

TB preventive therapy comprises one or two antibiotics and is

different from the therapy used for TB disease, in which four antibiotics

are used to reduce the likelihood of acquired drug resistance. This

assumes that in TBI the acquired drug resistance is unlikely, given the

small number of viable bacteria present.

Drugs commonly used for TB preventive therapies may cause

adverse reactions such as liver or neuro-toxicities (Table 2).

Isoniazid (INH) is an oral antibiotic with intracellular and

extracellular activity against Mtb. Isoniazid has been used

globally, with an average protective effect for TB of 60% during

the observation period (170). The duration is 6 months, although, in
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1982, a randomized trial in subjects with fibrotic pulmonary lesions

showed that the risk for developing TB disease compared with

placebo was reduced by 21%, 65%, and 75%, respectively for 3-, 6-,

or 9-months therapy, after 5 years of follow-up (171). However, a 6-

month regimen was shown to be more cost-effective than 3 or 12

months for the reduction of side effects, regimen adherence and

increased adherence (162, 172–174). Neuropathy can arise as an

isoniazid side effect due to the inhibitory effect of isoniazid on the

function of pyridoxine metabolites; therefore, pyridoxine (vitamin

B6) supplementation is recommended especially in those with

alcohol abuse, malnourished, and pregnant women (175).

Rifamycins, a group of oral antibiotics such as rifampin and

rifapentine, inhibit bacterial RNA synthesis by binding to the DNA-

dependent RNA polymerase. These antibiotics are used to treat TBI

by themselves or in combination with isoniazid to limit the side

effects and the poor adherence to the long treatment duration of

isoniazid (162).

Rifampicin regimens, like the 4-month course of rifampicin (4R)

(162) or even shorter regimens, like the 3-month course of isoniazid

and rifampicin (3HR), showed good safety and completion rates,

particularly among children, with dispersible fixed-dose

combinations aiding administration (176–178). For adults,

however, liver toxicity and completion rate are comparable to those

of longer isoniazid preventive therapy (177, 179). Administering a

once-weekly dose of isoniazid and rifapentine for 12 weeks (3HP) is

associated with lower rates of hepatotoxicity and higher completion

rates when compared with isoniazid, although it was linked with the

incidence of a hypersensitivity systemic immune response (177).

Conversely, a recent meta-analysis indicated an increased incidence

of grade 3 and 4 adverse events as well as a greater rate of treatment

discontinuation for the 3HP regimen when compared with the 6–9

month isoniazid preventive therapy (IPT) (180).

A regimen of one-month daily INH and rifapentine (1HP) is an

alternative for HIV-infected patients, and WHO conditionally
TABLE 2 TB preventive therapies and their side effects.

Drug(s) Dosage Time Major side effects Pyridoxine
supplementation

INH 5 mg/kg/die
(max 300 mg/die)

6 months Liver, peripheral neuropathy Recommended

INH 5 mg/kg/die
(max 300 mg/die)

9 months Liver, peripheral neuropathy Recommended

Rifampicin 10 mg/kg/die
(max 600 mg/die)

4 months Liver

INH+ Rifampicin 3 months Liver, peripheral neuropathy Recommended

Rifapentine+ INH Isoniazid 900 mg/weekly
Rifapentine 900 mg/weekly

3 months Liver, peripheral neuropathy, SDR* Recommended

Rifapentine+ INH Isoniazid 300 mg/day Rifapentine
600 mg/day

1 month Liver, peripheral neuropathy Recommended

Levofloxacin <45 kg 750 mg/day;
> 45 kg, 1g/day

Tenosynovitis, QT elongation,
gastrointestinal symptoms
SDR, systemic drug reaction, defined as either (1) hypotension, urticaria, angioedema, acute bronchospasm, or conjunctivitis; or (2) >4 flu-like symptoms, Age Impact on 3HP with >1 being
grade 2 or higher.
The name of the drugs is highlighted in bold.
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recommended it for people aged above 13 years, although

additional evaluations of safety and efficacy are needed in people

without HIV (162).

For contacts of people with MDR-TB, WHO recommends

using levofloxacin daily for six months to protect contacts

following exposure to MDR-TB (181, 182).

For isoniazid and rifamycin therapies, as liver damage and

neurotoxicity are the main side effects, conditions such as diabetes

mellitus or alcoholism predisposing to neuropathy development, or

chronic hepatitis B and C predisposing to liver injuries need to be

carefully evaluated. Therefore, especially in patients with

rheumatological disorders that often experience a metabolic

syndrome (183), at baseline before starting therapy, we need to

evaluate fast glycemia, glycated hemoglobin, HBsAg/Ab, hepatitis C

virus Ab, and transaminase levels. To evaluate the risk of side effects

to preventive therapies based on rifapentine, new strategies based

on Whole-Blood Gene Signature have been proposed (184).

In patients treated with biological therapies, few studies

are available regarding the side effects of preventive TB therapy

(3, 185–187). A moderate and transient increase of isoniazid-

induced liver damage has been reported (186, 188). Similarly,

in a large Italian study, it was shown that 95% (280/295) of

rheumatological patients completed TB preventive therapy with

isoniazid and 96% with rifampicin (27/28). Importantly, patients

who stopped taking isoniazid due to side effects successfully finished

their treatment with rifampicin, showing that switching

medications can still provide a good option for completing TB

preventive therapy (3, 186, 187).

Although the data available are limited, this evidence suggests

that patients undergoing biological therapy generally tolerate

preventive treatments and complete the full course.
7 Management of preventive therapy
in rheumatological patients

Before initiating preventive therapy, the physician needs to

conduct a thorough medical history asking for previous exposure

to TB cases and for previous liver disease, alcohol use, and

concurrent treatments (to identify potential drug interactions).

Patients should be informed about the symptoms of potential

liver damage and should also be advised on whom to contact if

these symptoms appear.

Blood control intervals of blood count, transaminases, gGT, and
bilirubin should be fixed at initially 2-weekly then 4-weekly.

Methotrexate, commonly used for RA and PsA, carries a risk of

liver toxicity (189). During TB treatment, it is crucial to balance the

risk of arthritis flares with potential liver damage in patients taking

methotrexate (190). Although specific guidelines are lacking,

sw i t ch ing to l e s s hepa to tox i c c sDMARDs , such as

hydroxychloroquine or sulfasalazine, may be advisable,

particularly for patients with stable disease activity. Patients with

pre-existing liver conditions require even greater caution due to

their increased susceptibility to toxic effects.
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If preventive therapy is not tolerated, the rheumatologist should

consider prescribing anti-rheumatic treatment with a low risk of TB

disease reactivation. This procedure must be written and shared

with the patient. Afterward, both the rheumatologist and the patient

need to carefully monitor the occurrence of possible symptoms of

mycobacterial reactivation to promptly isolate the patient to avoid

further transmission, diagnosis, and treatment.

Importantly, after a fully completed therapy for TB disease or

TBI, no further TB therapy needs to be given. It is assumed that

preventive therapy kills all mycobacteria, and therefore no further

preventive TB treatment is needed. IGRA results can remain

positive, even after preventive therapy (191, 192), because these

tests indicate the presence of an immune response against Mtb,

not the presence of Mtb itself (193). Few data are present on the

importance of repeated annual TB screening in a non-endemic

area (185, 194). Evidence suggests that serial IGRA testing among

low-risk patients on DMARDs results in a very low incidence of

newly diagnosed TBI. Consequently, it is recommended to

conduct targeted TBI screening based on risk factors related to

TB —such as geographical origin, comorbidities like diabetes, or

travel to endemic areas— before IGRA testing, rather than

implementing universal annual screening in non-endemic

regions (185, 194).
8 Conclusions

In conclusion, based on the available evidence, patients with

chronic autoimmune arthritis under immunosuppressive treatment

have an increased risk for TB reactivation. Among bDMARDs,

TNF-a inhibitors are associated with an increased risk of TB

progression compared to other treatments; however, the risk is

not negligible, especially for JAK-i and anti-IL-6R agents.

Based on the WHO recommendations, either skin tests or IGRAs

are acceptable for TBI screening. Stratification of TB risk is important

to drive the bDMARDs choice. The preventive treatment for TB is

well tolerated in patients undergoing b and tsDMARDs.
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Rudwaleit M, et al. Sustained efficacy, safety and patient-reported outcomes of
certolizumab pegol in axial spondyloarthritis: 4-year outcomes from RAPID-axSpA.
Rheumatol (Oxford). (2017) 56:1498–509. doi: 10.1093/rheumatology/kex174

84. Mease PJ, Fleischmann R, Deodhar AA, Wollenhaupt J, Khraishi M, Kielar D,
et al. Effect of certolizumab pegol on signs and symptoms in patients with psoriatic
arthritis: 24-week results of a Phase 3 double-blind randomised placebo-controlled
study (RAPID-PsA). Ann Rheum Dis. (2014) 73:48–55. doi: 10.1136/annrheumdis-
2013-203696
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