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Microglia play a fundamental role in maintaining central nervous system 
homeostasis by monitoring brain tissue for physical, structural, and biochemical 
alterations. Its involvement in the pathogenesis of various neurological disorders is 
well documented. However, the role of microglia in cerebral malaria, a disease 
associated with high mortality and long-term neurological sequelae, remains 
poorly understood. In this study, we utilized the classical model of experimental 
cerebral malaria (Plasmodium berghei ANKA-infected C57BL/6 mice) to 
investigate the dynamics and response of resident brain cell populations, 
particularly microglia, and the influx of other leukocytes during the development 
of experimental cerebral malaria. By employing flow cytometry and established 
markers for different leukocyte populations, we were able to discern and 
document an increase in the number of Ly6C+ T cells (CD45hiCD11b-CD3+ 

cells), inflammatory monocytes (CD45hiCD11b+TMEM119-CD206- cells), resident 
-macrophages (CD45hiCD11b+TMEM119 CD206+ cells), and microglia 

(CD45lowCD11b+ TMEM119+CD206- cells) following infection. Moreover, our ex 
vivo analysis demonstrated an increment in the overall number of inflammatory 
monocytes, resident macrophages and microglia expressing inducible nitric oxide 
synthase (iNOS), in addition to those producing interleukin-1b or TNF. These 
findings highlight the pronounced reactivity of microglia in experimental cerebral 
malaria and provide valuable information on cell dynamics and immune responses 
in the brain. 
KEYWORDS 

experimental cerebral malaria, macrophages, malaria, microglia, nitric oxide, IL-1b, 
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1 Introduction 

Despite advancements in the diagnosis and treatment of cerebral 
malaria (CM), this severe form of the disease continues to represent a 
significant public health challenge. CM is a complication associated 
mainly with infection by the protozoan parasite Plasmodium 
falciparum infection, affecting primarily children under five years of 
age and nonimmune individuals (1). The condition presents as an 
encephalopathy, which is characterized by seizures and coma (2). 
Despite treatment, the mortality rate for patients with this 
complication exceeds 20% (3, 4). However, even if an individual’s 
CM episode is reversed, they may still experience neurological and 
cognitive sequelae that can persist for years (5). 

The data derived from post-mortem studies in humans (6, 7) 
and the extrapolations based on studies employing experimental 
cerebral malaria (ECM) models (8, 9) indicate that CM results from 
a complex interplay of mechanisms that perpetuate a vicious cycle. 
The key mechanisms involved include the adhesion of infected red 
blood cells (iRBCs) to the endothelium of microvessels in the 
central nervous system (CNS) (6, 8) and the production of 
systemic and local inflammatory mediators (10). These mediators 
activate endothelial cells and increase the expression of adhesion 
molecules, thereby facilitating the recruitment of immune cells to 
the brain and exacerbating RBC adhesion (11, 12). This can result in 
microvascular obstruction, hypoxia, and disruption of the blood-
brain barrier (BBB) (13, 14). 

In addition to the migration of cells from the innate and 
adaptive immune systems to the brain, which coincides with the 
onset of neurological signs of ECM and has been documented in 
post-mortem analyses of CM patients (7, 15–17), the literature also 
explores the role of resident immune cells of the brain parenchyma, 
such as microglia, and their involvement in the course of brain 
disease (18, 19). Microglia are derived from embryonic yolk sac 
precursors that occupy the embryonic region of the CNS during the 
early stages of embryogenesis, preceding the formation of the BBB 
(20, 21). Following the embryonic period, during homeostasis, these 
cells are able to maintain their constant population through self-
renewal, independently of the influx of blood monocytes (22). 
Microglia play a crucial role in numerous physiological processes, 
including neurogenesis (23), blood vessel development (24), and the 
maintenance of the BBB (25). Furthermore, these cells are under 
constant surveillance, detecting and responding to alterations in the 
microenvironment, and are essential for the removal of cellular 
debris and metabolic waste (26, 27). 

Morphological alterations in microglia have been documented 
days prior to the emergence of ECM, indicating that these cells 
possess the capacity of perceive and promptly respond to changes in 
the host environment driven by infection (28). The transcriptomic 
analysis of microglia conducted by Capuccini et al. (29) indicates that 
in the brains of mice subjected to P. berghei ANKA-induced ECM, 
these cells respond to infection by initially activating cell cycle 
pathways. As ECM signs become apparent, there is an increase in 
the expression of genes associated with immune responses and 
chemokine production. Furthermore, an in vitro study has 
demonstrated that microglial interaction with P. berghei ANKA­
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iRBCs results in the production of TNF and interferon gamma 
inducible protein 10 (IP10) (18). Additionally, the incubation of 
synthetic hemozoin with a microglia cell line has been demonstrated 
to induce the production of TNF, IL-6, IL-1b, and nitric oxide 
(NO) (30). 

The present study, conducted with the P. berghei ANKA­

C57BL/6 murine ECM, aims to expand the knowledge base 
regarding the immune cells present and flowing into the brain 
parenchyma in a temporal kinetic that precedes the development of 
ECM and during its establishment. Our observations indicated a 
notable accumulation of T cells and inflammatory monocytes 
concomitant with the onset of ECM. Additionally, our findings 
revealed a significant increase in the number of microglia, 
inflammatory monocytes, and resident macrophages expressing 
iNOS and producing IL-1b or TNF. 
2 Materials and methods 

2.1 Mice, parasite, and infection 

Six-to-eight-week-old female C57BL/6 mice, weighing between 
16 and 20g, were provided by the Institute of Science and Technology 
in Biomodels (ICTB) of the Oswaldo Cruz Foundation (Fiocruz). 
Mice were housed in a specific pathogen-free room at the Oswaldo 
Cruz Institute (IOC), with free access to food and water, kept on a 12/ 
12-hour light/dark cycle and at a constant temperature. All animal 
experiments were conducted in accordance with the guidelines and 
regulations set forth by the Animal Welfare Committee of the IOC-
Fiocruz and were approved by the Committee. The experiments were 
performed under license (L-029/2020). 

Infections were performed using P. berghei ANKA parasite that 
express green fluorescent protein (GFP; MR4 number: MRA-865) 
(31). The experimental group was infected intraperitoneally with 1 
× 106 iRBCs in a final volume of 100 µl per animal, with the source 
of the iRBCs being fresh blood from an infected mouse. 
2.2 Parasitemia and temperature 

On days 4 and 6 after infection, parasitemia and rectal 
temperature of the mice in the experimental groups were 
evaluated. The uninfected mice (Control group) were evaluated in 
parallel. Parasitemia level was determined via flow cytometric 
analysis of a diluted blood sample, prepared in phosphate-
buffered solution (PBS). The percentage of iRBCs (GFP+ cells) 
was calculated after acquiring data from 20,000 RBCs. A 
thermocouple probe (Oakton® Acorn TM; Oakton Instruments, 
IL, USA) was utilized for measuring rectal temperature. 
2.3 Blood-brain barrier permeability assay 

To evaluate the BBB permeability, mice were anesthetized 
intraperitoneally with a combination of ketamine (100mg/kg) and 
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xylazine (10mg/kg), using a final volume of 100 µl per animal. 
Subsequently, 100 µl of a 2% solution of Evans Blue dye (Sigma) in 
PBS was injected intravenously through the orbital sinus. After one 
hour of dye circulation, the mice were euthanized and perfused 
transcardiacally with 20 mL of cold PBS. The brains were collected, 
weighed, and incubated in 3 mL of Formamide (Sigma) for 48 hours 
at 37°C. The concentration of Evans Blue dye in the formamide 
solution was determined by measuring its absorbance at a 
wavelength of 620 nm using a spectrophotometer. Calculations 
were based on a standard curve with a range of 1285 to 1.25mg/mL. 
The amount of dye was divided by the weight of the animal brain to 
express the concentration of dye per gram of tissue. 
 

2.4 Tissue processing 

Following the administration of anesthesia, mice were 
euthanized by exsanguination followed by transcardiac perfusion 
with 20 mL of cold PBS. The brain of each animal was removed, 
weighed and mechanically dissociated using the plunger of a syringe 
and a 70 µm cell strainer (Falcon) in 20 mL of PBS supplemented 
with 5% fetal bovine serum (FBS). The cell suspension was then 
centrifuged for 10 minutes at 500 g, after which the cells were 
resuspended in 5 mL of PBS containing 30% isotonic Percoll 
solution (Sigma) at room temperature. A new centrifugation was 
then carried out for 10 minutes at 700 g without break, at room 
temperature. The myelin layer was removed with a Pasteur pipette, 
and the cells in the pellet were washed three times with 10 mL of 
PBS containing 5% FBS. 
2.5 Immunophenotyping 

The cells obtained following the processing of brain tissue were 
incubated with the Live/Dead Fixable Violet Dead Cell Stain Kit 
(Invitrogen), in accordance with the manufacturer’s instructions. 
Subsequently, an incubation step was performed with a pool of 
antibodies, including anti-FCgR III/II (CD16/32) (2,4G2, BD 
Biosciences), Alexa Fluor 700 anti-mouse CD11b (M1/70, BD 
Biosciences), FITC anti-mouse CD45 (30F11, BD Biosciences), 
Texas-Red anti-mouse F4/80 (T45-2342, BD Biosciences), PE 
anti-mouse CD3 (145-2C11, Invitrogen), APC-Cy7 anti-mouse 
Ly6C (AL-21, BD Biosciences), PerCP-eFluor 710 anti-mouse 
TMEM119 (V3RT1GOsz, Invitrogen) and/or PeCy7 anti-mouse 
CD206 (MR6F3, Invitrogen) for 30 minutes at 4°C in the dark. After 
immunolabeling of the surface molecules, cells were fixed and 
permeabilized with the Fixation/Permeabilization Kit (BD 
Biosciences) and incubated for 40–45 minutes at room 
temperature with the following fluorochrome-conjugated 
antibodies for intracellular targets: APC-eFluor 780 anti-mouse 
NOS2 (CXNFT, Invitrogen), APC anti-mouse IL-1b (NJTEN 3, 
Invitrogen) and PE anti-mouse TNF (MP6-XT22, BD Biosciences) 
diluted in perm/wash solution. Samples were acquired on a 
CytoFLEX S flow cytometer (Beckman Coulter) and the data was 
analyzed using the FlowJo Software (BD Biosciences). 
Frontiers in Immunology 03 
2.6 Statistical analysis 

All statistical analyses were performed using Prism 8 
(GraphPad). Data are presented as means with standard error of 
the mean (mean ± SEM). Survival rates were analyzed using the 
Long-Rank (Mantel-Cox) test. Comparisons between two groups 
were made by unpaired t-test assuming statistical significance as 
p<0.05. Comparisons between more than two groups were made by 
one-way ANOVA with Tukey’s multiple comparisons test. The 
criterion for determining a significant difference was set at p < 0.05. 
3 Results 

3.1 Assessment of disease progression in 
an experimental cerebral malaria model 

To corroborate prior literature data on the susceptibility of 
C57BL/6 mice to the development of ECM, we inoculated the 
animals with 1 × 106 P. berghei ANKA-iRBCs and evaluated 
them at days 4 and 6 post-infection. The parasitemia of all 
infected C57BL/6 mice increased progressively (Figure 1A), 
accompanied by significant hypothermia (Figure 1B) and  a
breakdown of the BBB (Figure 1C) at day 6 post-infection, 
consistent with the development of ECM. In our experimental 
setting, infection of C57BL/6 mice with P. berghei ANKA resulted 
in 100% mortality between days 6 and 9 post-infection (Figure 1D). 
3.2 Dynamics of cell populations in the 
brain during experimental cerebral malaria 

To identify the leukocyte populations present in the cerebral 
environment during homeostasis and those that infiltrate during 
ECM development, flow cytometry analyses were conducted. The 
expression profile of the markers CD45 (expressed in various 
leukocytes) and CD11b (expressed in myeloid-lineage cells) 
enable the identification of three distinct cell populations within 
the brain tissue. These cell populations were designated as 
CD45hiCD11b- cells (region 1), CD45hiCD11b+ cells (region 2), 
and CD45lowCD11b+ cells (region 3) (Figure 2A). In naive animals, 
a pronounced presence of CD45lowCD11b+ cells was observed, 
representing 15-25% of the cells. Additionally, CD45hiCD11b+ 

cells (0.4-2%) and CD45hiCD11b- cells (0.5-2.5%) were present to 
a lesser extent (Figure 2A). Following infection with P. berghei 
ANKA, the numbers of these cell populations remained constant at 
day 4 post-infection (Figure 2B), a time point preceding the 
development of clinical signs of ECM (Figure 1B). However, at 
day 6 post-infection, a change in the dynamics of these cells 
occurred, characterized by a significant increase in the number of 
these three cell populations (Figure 2B). 

The notable expansion of the CD45hiCD11b- cell population, 
representing 15 to 25% of brain cells by day 6 post-infection, 
prompted further investigation into additional markers for 
enhanced identification. To specifically characterize this subset, we 
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included CD3, a definitive T cell marker (Figure 2C, Supplementary 
Figure S2B), and Ly6C, also known as lymphocyte-6 antigen 
(Supplementary Figure S1) in our analysis. The Ly6C molecule is 
frequently expressed by specific subpopulations of T cells, monocytes 
and neutrophils (32, 33). A high proportion of the CD45hiCD11b­

cells expressed both CD3 and Ly6C, indicating that this particular cell 
subset, which increases in the brain at day 6 post-infection is 
predominantly formed by Ly6C+ T cells. 

On the other hand, a distinct Ly6C expression (Figure 2D) was 
evident in the CD45hiCD11b+ cell population, while CD3 was not 
expressed (Supplementary Figure S1). Furthermore, our findings 
revealed that both CD45hiCD11b+ and CD45lowCD11b+ cells are 
F4/80+ (a marker of cells of monocytic origin), as the majority of 
cells within these populations express this molecule (Supplementary 
Figure S1D). However, a notable distinction in expression levels was 
observed. In particular, the CD45hiCD11b+ cell population 
Frontiers in Immunology 04
displayed a markedly elevated level of F4/80 molecule expression 
on their surface, in comparison to the CD45lowCD11b+ cell 
population (Figure 2E). 
3.3 Phenotypic characterization of brain 
myeloid cell populations in homeostasis 
and experimental cerebral malaria 

To provide a more comprehensive characterization of the 
myeloid cell populations (CD45hiCD11b+ and CD45lowCD11b+ 

cells), we conducted an analysis utilizing the cellular markers 
TMEM119 and CD206. Previous studies have demonstrated that 
under homeostatic conditions, microglia exhibit elevated levels of 
TMEM119 expression (34) and low expression of CD206, a 
mannose receptor (35). 
FIGURE 1 

Progression of cerebral malaria in C57BL/6 mice infected with Plasmodium berghei ANKA. C57BL/6 mice were inoculated with 1x106 iRBCs. 
Parasitemia (percentage of GFP+ cells) (A), body temperature (B), extravasation of Evans Blue dye to the brain parenchyma (C), and survival rate (D) 
were assessed in naive and infected C57BL/6 mice at various time points. Significant differences between groups were analyzed using the following 
statistical tests: unpaired t-test (A), one-way ANOVA (B, C), and the Long-Rank test (D). The results were statistically significant at p < 0.0006 (***) 
and p < 0.0001 (****). Graphs A and B: 10 mice per group. Graph C: 4–5 mice per group. Graph D: 10–22 mice per group. The data were pooled 
from two independent experiments (A, B, D) or are representative of two independent experiments (C). 
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It was observed that a small fraction (less than 10%) of 
CD45hiCD11b+ cells exhibited the TMEM119 marker (Figure 3A). 
In contrast, CD206 expression was detected on nearly half of the 
CD45hiCD11b+ cells in naive animals (Figure 3D). By day 6 post-
infection, a slight increase was observed in the percentage of 
CD45hiCD11b+ cells expressing CD206. In the meantime, the 
majority of CD45lowCD11b+ cells expressed the TMEM119 marker 
(Figure 3B), with these values remaining consistent throughout the 
infection. Approximately 10% of CD45lowCD11b+ cells in naive mice 
expressed the CD206 marker, with a slight increase observed by day 6 
Frontiers in Immunology 05 
post-infection (Figure 3E). The mean fluorescence intensity (MFI), as 
illustrated by representative histograms and by bar plots overlaid with 
individual data points for TMEM119 and CD206, highlights 
statistically significant differences in expression between the cell 
populations. In CD45lowCD11b+ cells, TMEM119 expression is 
predominant, while in CD45hiCD11b+ cells, CD206 expression is 
more significant (Figures 3C, F). 

Therefore, based on our analyses and the findings of previous 
literature (36, 37), we identified (Supplementary Figure S2) and

quantified the total number (Figures 4A–C) and  percentage
FIGURE 2 

Plasmodium berghei ANKA infection alters the dynamics of cell populations in the mouse brain during ECM. C57BL/6 mice were inoculated with 
1x106 iRBCs. Representative dot plot of CD45 and CD11b cells, gated on live cells, in naive animal and at different stages of infection (A). Absolute 
numbers of CD45hiCD11b-, CD45hiCD11b+ and CD45lowCD11b+ cells (B). Representative histograms illustrating the expression of CD3 on 
CD45hiCD11b- cells (C) and Ly6C on CD45hiCD11b+ cells (D) on day 6 post-infection. Median fluorescence intensity (MFI) of F4/80 on the 
CD45hiCD11b+ and CD45lowCD11b+ cells (E). Significant differences between the groups were analyzed by one-way ANOVA with results indicated 
for p = 0.0002 (***) and p < 0.0001 (****). The number of mice per group ranged from 9 to 11. The data were obtained from a pool of two 
independent experiments. 
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(Figures 4D–F) of inflammatory monocytes (CD45hiCD11b+ 

TMEM119-CD206-), resident macrophages (CD45hiCD11b+ 

TMEM119-CD206+) and microglia (CD45lowCD11b+TMEM119+ 

CD206-) in the brain of naive and infected animals. This refined 
characterization, based on the expression or not of CD206 and 
TMEM, indicates that by day 6 of ECM development in P. berghei 
ANKA-infected mice, the number of microglia rose from 2 × 103 to 
6 × 103 cells, representing a dramatic 300% expansion (Figure 4C). 
Additionally, the number of inflammatory monocytes and resident 
macrophages in the brain exhibited a significant increase, from a 
minimal quantity to 1 × 103 cells (inflammatory monocytes; 
Figure 4A) and 2.7 × 103 cells (resident macrophages; Figure 4B). 
The percentage of inflammatory monocytes (Figure 4D) and resident 
macrophages (Figure 4E) followed a similar trend, corresponding to 
the observed changes in cell numbers. However, the percentage 
elevation of microglia (Figure 4F) was less pronounced, likely 
attributable to the concurrent increase in other cell types within the 
brain. These findings indicate that, at the onset of ECM, the brain 
experiences a robust inflammatory response. 
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3.4 IL-1b, TNF and iNOS expression by 
inflammatory monocytes, resident 
macrophages and microglia 

Next, we assessed the production of IL-1b, TNF, and  the
expression of iNOS by inflammatory monocytes (CD45hiCD11b+ 

TMEM119-CD206-), resident macrophages (CD45hiCD11b+ 

TMEM119-CD206+), and microglia (CD45lowCD11b+TMEM119+ 

CD206-) (Supplementary Figure S3). On day 6 post-infection, the 
increase in the total number of inflammatory monocytes, resident 
macrophages, and microglia, as previously described in Figures 4A–C, 
was accompanied by a rise in the number of cells from these same 
populations expressing iNOS (Figures 5A–C), and producing IL-1b 
(Figures 5D–F) or TNF (Figures 5G–I). 

It is important to note that while the total number of iNOS+, IL­
1b+, and TNF+ inflammatory monocytes, resident macrophages 
and microglia increased over the course of infection, the percentage 
of iNOS+ cells among each population (inflammatory monocytes, 
macrophages and microglia) either remained constant or decreased 
FIGURE 3 

Expression of TMEM119 and CD206 by monocytes/macrophages and microglia. C57BL/6 mice were inoculated with 1x106 iRBCs. Percentage of 
TMEM119+ cells within CD45hiCD11b+F4/80+ (A) and CD45lowCD11b+F4/80+ (B) populations. Representative histogram and bar plots showing the 
median fluorescence intensity (MFI) of TMEM119 on the CD45hiCD11b+ and CD45lowCD11b+ cells (C). Percentage of CD206+ cells within 
CD45hiCD11b+F4/80+ (D) and CD45lowCD11b+F4/80+ (E) populations. Representative histogram and bar plots showing the MFI of CD206 on the 
CD45hiCD11b+ and CD45lowCD11b+ cells (F). The dashed line in the histograms represents the FMO (fluorescence minus one) control. Significant 
differences between groups were analyzed by one-way ANOVA, with the results indicated for p = 0.03 (*), p = 0.007 (**), p = 0.0006 (***) and p < 
0.0001 (****). The number of mice per group ranged from 9 to 11. The data were obtained from two independent experiments. 
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(Supplementary Figure S4A-C). Conversely, the percentage of IL­
1b+ and TNF+ microglia increased by day 6 post-infection 
(Supplementary Figure S4F, I). However, given the low number of 
inflammatory monocytes and resident macrophages in the brains of 
naive animals, which resulted in high variability in the percentage 
analysis, no significant difference was observed in the percentage of 
IL-1b+ and TNF+ inflammatory monocytes and resident 
macrophages between naive and infected animals (Supplementary 
Figure S4D, E, G, H). 
4 Discussion 

The data presented herein provide knowledge of the dynamics of 
the inflammatory response of mononuclear cells in the CNS, 
including microglia and other populations associated with and 
Frontiers in Immunology 07 
recruited to the brain during P. berghei ANKA infection of C57BL/ 
6 mice, an experimental model of ECM. 

The initial investigations into microglia activation during CM in 
humans (38) and  in  experimental  models  (28) were conducted in the 
late 1990s and revealed several important aspects, including local 
inflammation, which should be considered in the quest to 
understand the pathophysiological mechanisms of CM. In these 
studies, microglia activation was described through changes in their 
morphology and expression of MRP8 and MRP14, calcium-binding 
sensor proteins of activated monocytes. At that time,  the  identification 
of the cell of interest was achieved through the use of classical histology 
and immunohistochemistry, employing markers that are currently 
known to be inadequate for distinguishing microglia from other 
resident and recruited CNS mononuclear cells (28, 38). 

Two additional studies from the mid-2000s employing distinct 
methodologies have corroborated the activation of microglia during 
FIGURE 4 

Total number and percentage of inflammatory monocytes, resident macrophages and microglia in the mouse brain following infection with Plasmodium 
berghei ANKA. C57BL/6 mice were inoculated with 1x106 iRBCs. The absolute number (A-C) and percentage (D-F) of inflammatory monocytes 
(CD45hiCD11b+TMEM119-CD206-), resident macrophages (CD45hiCD11b+TMEM119-CD206+), and microglia (CD45lowCD11b+TMEM119+CD206-). 
Significant differences between groups were analyzed by one-way ANOVA, with results indicated for p < 0.04 (*), p < 0.001 (**), p < 0.0005 (***), and 
p < 0.0001 (****). The number of mice per group ranged from 8 to 11. The data were obtained from a pool of two independent experiments. 
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ECM. The initial study employed automated histological analysis, 
which considered Iba1 expression and morphological changes in its 
conclusions (39). The second study utilized transcriptomic analysis 
of microglia isolated from the brains of C57BL/6 mice infected with 
P. berghei ANKA. This analysis was conducted at two distinct time 
points, prior to and during the clinical manifestations of ECM. The 
Frontiers in Immunology 08
results demonstrated that genes are differentially expressed at these 
two time points following infection (29). 

In the present study, a combination of distinct cell markers was 
employed to identify specific cell populations in the brains of C57BL/ 
6 mice infected with P. berghei ANKA, utilizing flow cytometry. The 
differential expression of the CD45 and CD11b molecules enable the 
FIGURE 5 

Total number of inflammatory monocytes, resident macrophages and microglia expressing iNOS, and producing IL-1b or TNF during ECM. C57BL/6 
mice were inoculated with 1x106 iRBCs. The absolute number of iNOS+ (A-C), IL-1b+ (D-F), and TNF+ (G-I) cells among inflammatory monocytes, 
resident macrophages and microglia. Significant differences between groups were analyzed by one-way ANOVA, with results indicated for p < 0.03 
(*), p < 0.002 (**), and p < 0.0001 (****). The number of mice per group ranged from 4 to 6. Representative data from two independent 
experiments. 
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identification of distinct cell populations. The observed differences in 
CD45 expression levels (CD45hi and CD45low) between myeloid cells 
(CD11b+) indicate the existence of two distinct myeloid cell 
populations. However, previous studies have indicated that CD45 
expression can be altered during infections (40, 41), and thus we 
included additional markers to more accurately identify and 
characterize these cells. These included the transmembrane protein 
TMEM119 and the mannose receptor CD206. 

Bennett et al. (42) demonstrated that TMEM119 is exclusively 
expressed by microglia during homeostasis in both humans and 
mice. This protein has been identified as a potential microglial 
marker that is capable of differentiating resident microglia from 
blood-derived macrophages in the brain (42). This finding has been 
corroborated by several subsequent studies (43–46). Furthermore, 
Hattori et al. (37) employed the molecule CD206 to distinguish 
microglia (CD206- cells) from resident macrophages (CD206+ cells) 
(37), a strategy also employed in other studies (36, 47, 48). 

The combination of the aforementioned markers with more 
traditional ones revealed that the majority of CD45lowCD11b+ cells 
were TMEM119+, and this population was identified as microglia. 
Conversely, CD45hiCD11b+ cells were predominantly negative for 
TMEM119. A subset of these TMEM119- cells were also CD206-, 
thus classifying them as inflammatory monocytes, while the 
remaining  subset  expressed  CD206,  resulting  in  their  
classification as resident macrophages. Following the precise 
characterization of these three mononuclear phagocyte 
populations, the findings indicate that C57BL/6 animals infected 
with P. berghei ANKA exhibit an influx of inflammatory monocytes 
from the periphery to the brain, detectable on day 6 post-infection. 
Furthermore, a notable increase in the overall number of resident 
macrophages and microglia was observed at this same time, 
indicating that all these cell types can sense and respond 
dynamically to the infectious process, potentially contributing to 
the local immune landscape during ECM progression. However, 
while the present study provides unequivocal evidence of the 
expansion of these CNS-resident and infiltrating phagocytes 
during ECM, it does not establish a causal link between these 
changes and disease pathogenesis. This is acknowledged as a 
limitation of the current study. Upcoming experimental 
approaches employing depletion or inhibition strategies (e.g., 
clodronate liposomes or genetic models) at the correct stage of 
disease will be essential to determine the functional contribution of 
these cell populations to ECM progression. 

The observed increase in the number of microglia in the acute 
phase of ECM may be attributed to the proliferation of these cells. 
These findings are consistent with those previously reported by 
Capuccini et al. (29), who observed an increase in the expression of 
genes related to cell proliferation before the onset of ECM, as well as 
an increase in the number of these cells in the brain during ECM. At 
the onset of ECM clinical signals, the transcriptomic analysis also 
demonstrated an upregulation of genes involved in the immune 
response and chemokine production (29). 

Data from our experimental model revealed that, in addition to 
inflammatory monocytes and resident macrophages, microglia also 
exhibited a significant increase in the total number of IL-1b+ and TNF+ 
Frontiers in Immunology 09
cells at day 6 post-infection, thereby highlighting the activation of pro-
inflammatory pathways within the CNS. The production of IL-1b and 
TNF in the brain during Plasmodium infection has important 
functional implications for the pathogenesis of both ECM and CM. 
In murine models, TNF is essential for endothelial activation, BBB 
breakdown, and neuroinflammation, largely through upregulation of 
ICAM-1/VCAM-1 and recruitment of leukocytes to brain microvessels 
(49–51). Although IL-1b is not required for ECM development (52), it 
may exacerbate vascular permeability and inflammatory signaling once 
inflammation is established (53). In human CM, elevated levels of TNF 
and IL-1b have been found in brain tissue and plasma, correlating with 
vascular damage, immune cell infiltration, and neuronal injury (54, 55). 
These cytokines likely contribute to both endothelial dysfunction and 
neuronal pathology in CM, reinforcing their relevance as potential 
targets for therapeutic intervention. 

Interestingly, studies conducted in mice deficient in NLRP3, 
caspase-1, the adaptor protein ASC, or the IL-1 receptor 
demonstrated that these mice exhibited comparable disease outcomes 
to wild-type mice, indicating that the activation of the inflammasome 
pathway does not play a significant role in the immunopathology 
caused by P. berghei ANKA (52, 56). However, Strangward P. et al. (57) 
observed that IL-33 therapy, in conjunction with antimalarial drugs, 
selectively inhibited the NLRP3-IL-1b inflammasome axis in microglia 
and monocytes, resulting in a significant  reduction in IL-1b production 
in both cell types (57).  This, in turn,  led to an improvement  in  the
treatment success of established ECM (57). In addition, a recent study 
showed that mice with combined deficiencies of caspases-8/1/11 or 
caspase-8/gasdermin-D (GSDM-D) exhibited impaired capacity to 
produce both TNF and IL-1b, and demonstrated high resistance to 
the development of ECM (58). 

Despite the observed increase in the absolute number and 
percentage of IL-1b- and TNF-producing microglia throughout the 
course of infection, as well as an increase in the absolute number of cells 
expressing iNOS, the inducible form of the nitric oxide (NO)­
producing enzyme, the percentage of cells expressing iNOS was 
found to be reduced. NO plays a fundamental role in the 
functioning of the brain, regulating blood flow and maintaining 
vascular integrity (59, 60). Furthermore, NO prevents the excessive 
adhesion of leukocytes and platelet aggregation in cerebral 
microvasculature, thereby preventing blockages and inflammation 
(61–63). 

Nevertheless, the role of NO in malaria remains a topic of 
debate (64). A number of studies have demonstrated that the 
production of NO by immune cells is of significant importance in 
regulating the blood-stage parasite (65, 66), although it may 
potentially contribute to the development of CM (67). In 
contrast, it appears that in African children with malaria, NO 
exerts a protective effect rather than contributing to pathology 
(68). This observation is further supported by in vivo experiments 
conducted on mice deficient in iNOS or eNOS, which indicated that 
the low bioavailability of NO is associated with the development of 
ECM. The iNOS-/- or eNOS-/- animals exhibited parasitemia and 
ECM development course comparable to that of the control group 
(69, 70), while administration of exogenous NO protected the 
animals from ECM (63, 70). Indeed, several mechanisms have 
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been described in malaria that result in a decrease in the 
bioavailability of NO (70, 71). 

Curiously, our observation of the relative reduction 
(percentage) of iNOS expression in microglia throughout 
infection may be directly correlated with increased proliferation 
during ECM development. This hypothesis is consistent with the 
findings of Maksoud et al. (72), who describe that microglia exhibit 
basal iNOS activity and that the iNOS/NO signaling pathway 
inhibits microglial cell proliferation by activating protein kinase G 
(PKG) (72). However, this remains speculative and should be 
interpreted with caution. Validation of this potential mechanism 
will require experiments using proliferation markers, such as Ki-67. 

Although not the primary focus of this study, we were able to 
observe a significant increase in the number of T cells (CD45hiCD11b­

CD3+) expressing the lymphocyte-6 antigen (Ly6C) on their surface in 
the brain during the acute phase of ECM, a potentially novel and 
intriguing finding. The migration and adhesion of CD8 T cells to the 
cerebral vascular endothelium and their association with pathology 
have been previously described in CM and ECM (7, 15, 73). It is of 
interest to note that this is the first report, to the best of our knowledge, 
in which T cells expressing Ly6C have been observed in the brain 
during ECM. Our current analysis, however, did not determine the 
specific T cell lineage of these Ly6C+ T cells, but it is plausible that they 
belong to the CD8 T cell subset. Prior studies have established a 
correlation between Ly6C expression by CD8 T cells and augmented 
activation, cytotoxic effector function, and cytokine production (74– 
76). In particular, Kusaka et al. demonstrated that Ly6C+ CD8 T cells 
constitute a major source of IFN-g during Legionella pneumophila 
infection, thereby emphasizing their role in regulating the 
inflammatory response. Prospective studies employing additional 
markers such as CD8, combined with functional assays to evaluate

cytokine secretion and cytotoxic activity, will be essential to determine 
whether this subset of Ly6C+ T cells contributes to immunopathology 
in ECM. Such analyses may provide key insights into the cellular 
mechanisms underlying neuroinflammation and vascular damage in 
ECM, and open the opportunity to explore this population in the 
context of human CM.In conclusion, our findings revealed a notable 
elevation in the number of distinct immune cells, indicating their 
reactivity to P. berghei ANKA infection, which may be associated with 
the pathogenesis of ECM. Furthermore, we underscore the activation of 
microglia through an increase in the total number of cells expressing 
iNOS and producing TNF or IL-1b. Collectively, our results provide 
valuable insights into the potential role of microglial reactivity in 
contributing to neuroinflammation during ECM. Future studies 
should focus on analyzing intermediate time points, such as days 5 
and 5.5 post-infection, and employ monocyte and microglia depletion 
strategies to delineate their specific roles  in  the  pathogenesis of ECM.  
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