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Background:Mutations in cancer cells can result in the production of neoepitopes

that can be recognized by T cells and trigger an immune response. A reliable

pipeline to identify such immunogenic neoepitopes for a given tumor would be

beneficial for the design of cancer immunotherapies. Currentmethods, such as the

pipeline proposed by the Tumor Neoantigen Selection Alliance (TESLA), aim to

select short peptides with the highest likelihood to be MHC-I restricted minimal

epitopes. Typically, only a small percentage of these predicted epitopes are

recognized by T cells when tested experimentally. This is particularly

problematic as the limited amount of sample available from patients that are

acutely sick restricts the number of peptides that can be tested in practice. This led

our group to develop an in-house pipeline termed Identify-Prioritize-Validate (IPV)

that identifies long peptides that cover both CD4 and CD8 epitopes.

Methods: Here, we systematically compared how IPV performs compared to the

TESLA pipeline. Patient peripheral bloodmononuclear cells were cultured in vitro

with their corresponding candidate peptides, and immune recognition was

measured using cytokine-secretion assays.

Results: The IPV pipeline consistently outperformed the TESLA pipeline in

predicting neoepitopes that elicited an immune response in our assay. This

was primarily due to the inclusion of longer peptides in IPV compared to TESLA.

Conclusions: Our work underscores the improved predictive ability of IPV in

comparison to TESLA in this assay system and highlights the need to clearly define

which experimental metrics are used to evaluate bioinformatic epitope predictions.
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1 Introduction

Somatic mutations in cancer cells can generate neoepitopes that

are distinct from self and can be recognized by neoepitope specific-

T cells in order to initiate downstream anti-tumor immune

responses (1). Personalized neoepitope-based vaccines have been

developed in order to leverage the anti-tumor properties of said T

cells and have shown broad efficacy in a number of studies (2–8). A

major limitation in the development of personalized cancer

vaccines is the challenging nature of the identification of

immunogenic neoepitopes (9). Somatic mutations are present in

both cancer cells and cells within normal tissues. Additionally, not

all somatic mutations yield epitopes that can be successfully

recognized by T cells (10–12). As a result, a major area of

research has been the development of tools to predict the

immunogenic neoepitopes that can be generated by somatic

mutations within patients’ tumors (12–17).

Several groups have developed computational pipelines that

harness sequencing data from cancer patients to predict the

neoepitopes that can elicit an immune response, i.e. immunogenic

neoepitopes (13, 15, 18–20). Typically, these pipelines input RNA

and/or exome sequencing data to identify the somatic variants that

are present in a tumor. Following this, the identified variants are

translated into peptides and ranked based on pipeline-specific

metrics to generate a list of neoepitope candidates (21).

For a neoepitope to generate a T cell response, it must be

presented by an HLA molecule and recognized by a T cell. Because

of this, prediction pipelines often rank neoepitope candidates based

on their potential to be presented by the specific HLA molecules

present in the patient. Additionally, CD8 T cells are the primary

subset of T cells that are thought to recognize neoepitopes and exert

anti-tumor effects (22). As a result of this, neoepitope prediction

pipelines typically focus on generating HLA class I peptides which

are 8-12 amino acid residues in length (23). A prominent example

of this is the workflow proposed by the Tumor Neoantigen Selection

Alliance (TESLA) (19). TESLA is a consortium that evaluated a

number of different neoepitope prediction tools and assessed

features associated with neoepitope immunogenicity. The best

performing pipelines in this study were those that placed an

emphasis on features associated with peptide presentation and

recognition. As a result, TESLA proposed neoepitope selection

criteria which include thresholds for HLA binding affinity,

abundance of the mutation in the tumor, binding stability,

agretopicity (the ratio of the mutant peptide’s HLA binding

affinity to wild-type peptide’s binding affinity), and foreignness (19).

Because current pipelines like TESLA only consider CD8 T cell

peptides and generate a large amount of peptide candidates that

cannot reasonably be tested in the limited samples typically

available to us in practice, our group developed Identify-

Prioritize-Validate (IPV), our in-house neoepitope prediction

pipeline (24). IPV identifies the somatic variants that are highly

expressed within a tumor sample using exome and RNA

sequencing. Unlike other current prediction tools, IPV does not

take into consideration the HLA typing of a patient, nor does it

attempt to generate predictions of exact minimal epitope sequences.
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Here, we assessed the ability of the IPV pipeline to identify

tumor specific immunogenic peptides – regardless of the HLA

restriction or CD4/CD8 phenotype – in a practical setting with

limited blood volumes from patients. Additionally, we compared

the performance of IPV to the TESLA pipeline. TESLA serves as an

example of the metrics that are routinely being applied by current

epitope prediction tools and was thus selected as the baseline

comparator to IPV (25). We generated epitope predictions from

tumor samples from a cohort of 11 patients with Head and Neck

Squamous Cell Carcinoma (HNSCC) using the TESLA and the IPV

pipelines and assessed the immunogenicity of the candidates in

vitro with patient-matched peripheral blood mononuclear cells

(PBMC). We found that in this setting, peptide candidates

identified by IPV were found to be immunogenic more often

than those identified by the TESLA pipeline. We validate the

performance of IPV in a second cohort of patients with HNSCC

and identify additional neoepitope-specific T cell responses. We

have identified and discussed the likely underlying factors of this in

this work.
2 Materials and methods

2.1 Sample collection

The following inclusion and exclusion criteria were considered

for this study:

Inclusion criteria:
1. Adult patient (≥ 18 years old).

2. Immunocompetent patient.

3. Patient with squamous cell carcinoma of the head and neck

who a r e unde r go in g su r g i c a l t r e a tmen t f o r

their malignancies.

4. Included subsites are oropharynx, oral cavity, larynx, and

hypopharyngeal, and sinonasal.

5. Typically, these are patients who are undergoing composite

resection with reconstruction with osseocutaneous

free flap.

6. Subjects previously treated with radiotherapy or

chemotherapy will be included in the study, unless they

present with a severe immunocompromised state.
Exclusion criteria:
1. Patient with autoimmune diseases, HIV.

2. Patient with chronic use of steroids.

3. Patient with frank immunocompromised state.
Samples were collected after patients were examined and offered

participation in the Vanderbilt Head and Neck Biorepository and

Clinical Database. Tissue specimens were acquired at time of

surgical resection or biopsy. A section of tumor was flash frozen

by placing it into a previously labeled 1.5ml cryovial and then into a

portable thermoflask containing liquid nitrogen (LN2). Frozen
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1494453
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chihab et al. 10.3389/fimmu.2025.1494453
tissue was stored in a vapor-phase LN2 storage unit until use.

PBMC specimens were acquired from patients using BD Vacutainer

CPT tubes (BD #362761) before surgery or before the start

of treatment.
2.2 HLA typing

Patient exome sequencing and RNA sequences were used to

computationally determine each patient’s HLA genotype using the

OptiType tool (26).
2.3 Whole-exome and RNA sequencing
and prioritization of antigens

RNA was extracted from frozen squamous cell carcinoma of the

head and neck using the Promega Maxwell Simply RNA kit

(Promega #AS1390) and Promega Maxwell 16 nucleic acid

extraction automated instrument (Promega #AS2000). RNA

sequencing was performed by Novogene Corporation Inc. using

the Illumina Platform PE 150. Sequence reads from the WES of the

tumor and normal samples were aligned to the reference genome

GRCh38 using SpeedSeq Align (RRID: SCR_000469) (27). Variants

were then identified and annotated using SpeedSeq Somatic and

SNPeff (RRID: SCR_005191) (27, 28). Variants were then filtered by

selecting for mutations fulfilling the following criteria:
Fron
1. Tumor variant frequency ≥ 2%.

2. Nonsynonymous as defined by SNPeff in the

hgvs_protein annotation.

3. Higher frequency of the variant in the tumor than the

normal sample (ratio ≥ 1).

4. Variant is observed in RNA at least once.

5. Variant is present at a frequency ≤ 5% in the normal sample

and ≥ 5% in the tumor sample.

6. Position is covered with at least 10 reads in both the tumor

and normal sample.
Variants were then ranked based on the variant allele frequency

(VAF) in RNA (descending order), gene expression levels in

transcripts per million (descending order), and tumor genotype

rank (ascending order), with tumors homozygous for the single-

nucleotide polymorphism receiving the highest rank, homozygous

for the reference allele receiving the lowest rank, and intermediate

genotypes receiving a rank in between.
2.4 Generation of neoepitope candidates

From the prioritized set of antigens, neoepitopes were generated

using the metrics from IPV or TESLA. For IPV peptides, two 20-

mer peptides were generated for each somatic variant with the

single nucleotide variant at position 6 and 15 of the peptide

respectively (29). We elected to use 2 overlapping 20mers with

the mutation at those positions to cover the majority of possible
tiers in Immunology 03
MHC class I and class II epitopes (24). To generate the

corresponding IPV short peptides, NetMHCPan4.0 was used and

the top predicted binders were selected (30).

As TESLA does not provide any platform to identify somatic

variants, the same variants identified using the IPV method were

used to generate epitopes to be ranked by TESLA. The TESLA

ranking method was implemented as described in its publication

(19). The identified variants were translated into all possible 8-

12mers. The 8-12mers were then filtered according to the TELSA

metrics (MHC binding affinity less than 68 nM, binding stability

greater than 1.7 hours, tumor abundance above 10 TPM,

agretopicity less than 0.1, and foreignness above 10-16) (19). HLA

binding affinity and binding stability were determined using

NetMHCPan4.0 and NetMHCstabpan, respectively (30, 31).

Foreignness and agretopicity were calculated as described by

TESLA (19). The TESLA long peptides were then generated by

using the sequence of the IPV 20mer containing the corresponding

TESLA 8-12mer. The workflow for neoepitope selection is outlined

in Supplementary Figure 1. The neoepitope candidates selected for

each pipeline can also be found in the Supplementary Table 2.
2.5 In vitro culture with
neoepitope candidates

To screen the neoepitope candidates, patient PBMC were

expanded in vitro with peptide pools containing the top ten

neoepitope candidates per prediction method. Cryopreserved

PBMC were thawed and counted, and samples with viability

greater than 70% were used to screen neoepitope candidates. 2 x

106 PBMC/well were plated in a 24 well plate (GenClone #25-107)

in 1X RPMI medium (Fisher Scientific #11-875-093) supplemented

with 5% human serum AB (Gemini Bio Products #100-512), 1%

100X Glutamax (Gibco #35-050-061), and 1% Penicillin:

Streptomycin (Gemini Bio Products #400-109). PBMC were

stimulated on day 0 with 5 ug/mL of a given peptide pool and

subsequently fed with 10U/ml IL-2 (Prospec Bio #Cyt209) on days

4, 7, and 10. PBMC were harvested on day 14 and re-stimulated

with the peptide pool of interest. DMSO stimulation was used as a

negative control and PHA-L stimulation at 20 ug/mL was used as a

positive control (Sigma Aldrich #431784-5MG). IFNg and IL-5

Fluorospot was utilized to assess PBMC activation by candidate

peptides for the first cohort of patients and IFNg and IL-5 ELISpot

was used for the second cohort.
2.6 IFNg and IL-5 ELISpot

ELISpot assays were performed in MultiScreenHTS filter plates

(Fisher Scientific #MSBVN1B50) that had been coated with 5 ug/

mL of IL-5 capture antibody (50uL/well, clone TRFK5 Mabtech

#3391-3-250 diluted in PBS) and 5 ug/mL of IFNg capture antibody

(50uL/well, clone 1-D1K Mabtech #3420-3-250 diluted in PBS).

After the harvest on day 14, PBMC were plated on IFNg and IL5

coated ELISpot plates at a concentration of 100,000 cells/well in the

same cell culture media described above. The PBMC were
frontiersin.org
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restimulated either with peptide pools or individual peptides for 24

hours. The final concentration of peptide pools and individual

peptides was 5 ug/mL and 10 ug/mL respectively. Each ELISpot

plate was washed five times with PBS containing 0.05% Tween 20

(MP Biomedicals #MO1TWEEN201) and then incubated for two

hours at 37°C with anti-Hs IFNg-HRP Ab (Mabtech #3420-9H) at

1:200 dilution and anti-Hs IL5-HRP (Mabtech #3490-6-1000) at

1:1000 dilution. Next, each plate was washed six times with PBS and

incubated for 1 hour with Dual Vectastain (Vector Laboratories

#PK-6200) (100uL/well), followed by six washes with ddH2O. Each

plate was then developed by adding 100ul/well of vector blue

solution at room temperature for five to ten minutes followed by

six washes with ddH2O and then adding 100uL/well of AEC

substrate for ten minutes at room temperature. The reaction was

stopped by rinsing thoroughly with cold tap water. After they

completely dried, each ELISPOT plate was scanned and counted

using an ImmunoSpot plate reader and associated software

(Cellular Technologies).
2.7 IFNg and IL-5 fluorospot

PBMC were harvested and plated at a concentration of 100,000

cells/well in the same cell culture media defined above on Millipore

MultiScreen-IP plates (Millipore Sigma #MSIPS4510) that had been

coated with 5 ug/mL of IFNg antibody (clone 1-D1K Mabtech

#3420-3-1000) and 5 ug/mL of IL-5 antibody (TRFK5 Mabtech

#3490-3-1000). The PBMC were restimulated with peptide pools or

single peptides at a concentration of 5 ug/ml for pools or 10 ug/ml

for individual peptides on the fluorospot plates and left at 37°C

overnight. To develop the plate, cells were removed and the plate

was washed 5 times with 0.05% PBS Tween and the detection

antibodies anti-IFNg 7-B6-1-BAM (Mabtech #3420-12) and anti-

IL-5 5A10-WASP (Mabtech #3490-15) were added to each well of

the plate at a 1:200 dilution in PBS containing 0.1% bovine serum

albumin (BSA). The antibodies were incubated for 2 hours in the

dark at room temperature. Following the incubation, the plates were

washed again 5 times with the PBS Tween solution. The antibodies

anti-BAM-490 (Mabtech #3640-2) and anti-WASP-640 (Mabtech
Frontiers in Immunology 04
#3640-6) were then added to each well at a 1:200 dilution in the PBS

BSA solution and incubated in the dark for 1 hour at room

temperature. The plates were washed 5 more times with PBS

Tween and then Fluorescence enhancer-II (Mabtech #3641-F10)

was added to each well at 50 uL/well and incubated for 15 minutes

at room temperature. Following the incubation, the plates were left

to dry. Once completely dry, the plates were read on the

Mabtech IRIS.
2.8 Neoepitope screen analysis

Raw spot forming cell counts (SFC) from ELISpot and

Fluorospot assays were converted and analyzed as SFC per 106

PBMC (this reflects the number of spot forming cells per 106

PBMC). Duplicate and triplicate SFC values were averaged for a

given condition. SFC/106 PBMC values from the negative control

(culture media and DMSO) from each assay was subtracted from

the signal from each peptide pool or single peptide stimulation.

PHA was used as a positive control. SFC/106 PBMC values above

100 were considered positive.
2.9 Statistical analysis

P values displayed in 2x2 tables were derived using Fisher’s

exact test. Statistical analyses performed to compare IPV and

TESLA ranking metrics were done using Prism 9 (GraphPad, La

Jolla, CA). Mann Whitney tests were conducted and results were

considered significant at p-values ≤ 0.05 (*).
3 Results

3.1 Generation of epitope candidates for
TESLA and IPV pipeline comparison

PBMC and tumor tissue were obtained from 11 HNSCC

patients. DNA was isolated from blood samples and both DNA
FIGURE 1

Overview of project workflow. Schematic outlining the workflow of the project. Whole blood and tissue were isolated from each patient. Blood
samples were used for whole exome sequencing and tumor samples were used for exome and RNA sequencing. IPV was used to identify highly
expressed, tumor-specific mutations from this sequencing data. The prioritized mutations were then used to generate neoepitope candidates either
using IPV or TESLA ranking metrics. Finally, epitope candidates were cultured in vitro with patient PBMC and an IFNg and IL-5 fluorospot was used
to assess reactivity.
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and RNA were isolated from the tumors and used for sequencing as

outlined in the methods. Whole exome sequencing (WES) and

RNA sequencing from patients’ whole blood and tumor tissue were

used to identify somatic variants present in each patient (Figure 1).

We used our in-house pipeline to detect somatic variants and

considered all expressed variants for this study (as described in

the methods). We identified a median of 372 (min-max = 196-990)

tumor associated variants per patient which is within the range of

what has been reported in the literature (Supplementary Table 1)

(32, 33). These variants were then filtered for highly expressed

mutations in the tumor as described before (24). Using an in-house

pipeline, the filtered mutations were translated to amino acid

sequences in order to identify neoepitope candidates to be tested

with autologous PBMC in vitro (29). We used two in silico epitope

prediction methods to generate neoepitope candidates: our in-

house pipeline, IPV, and the TESLA pipeline (19, 24).

The two pipelines differ in the way neoepitope predictions are

generated. The IPV pipeline uses patient exome sequencing data to

identify all nonsynonymous mutations. Following this, it ranks

somatic variants based on variant allele frequency (VAF) in DNA

and RNA and expression levels of source genes as measured in

transcript per million (TPM) in the tumor. The IPV pipeline then

generates two 20mer peptides for each mutation with the mutation

at positions 6 and 15 (as detailed in the methods section). In

contrast, the TESLA pipeline does not provide guidelines for

detecting and ranking variants. Instead, the TESLA pipeline

requires a list of predetermined somatic variants as an input.

From the variants, the TESLA pipeline generates all possible 8-

12mers and ranks the peptides per the TESLA metrics as published

in the publication and implemented by us as described in the

methods (19). Here, we used the IPV and TESLA pipelines to

identify epitope candidates to test. We used the IPV pipeline for the

somatic mutation identification step (which is lacking from

TESLA), and then applied both IPV and TESLA to generate a set

of peptides to test as epitope candidates.
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3.2 Experimental testing of epitope
candidates shows that IPV identifies
immunogenic peptides at higher frequency
than TESLA

To compare the predicted epitope candidates by the two

pipelines, we tested their ability to activate autologous PBMC

from cancer patients in vitro. The top ten peptides identified by

each pipeline for each of the patients were selected for in vitro

screening. Of the peptides selected for testing, 9 of the epitopes

identified by TESLA were also found within the sequences of 20mer

peptides identified by IPV. The remaining epitope sequences did

not overlap between the two pipelines (Supplementary Table 3).

Patient PBMC were stimulated with the candidate neoepitope

pools and expanded in culture for 14 days in vitro, and then re-

stimulated with the same peptide pools. Following expansion and

re-stimulation, a dual IFNg/IL-5 FluoroSpot was used to determine

the frequency of cytokine secreting cells in response to the pools of

epitope candidates and thus quantify their immunogenicity. This

culture and assay format was established for the sensitive detection

of low frequency T cell responses (34). In the cancer setting, the

primary readout is IFNg, secreted by CD8+ T cells and Th1 cells,

but inclusion of IL-5 as a second cytokine comes with only minor

additional costs in the Fluorospot assay and can provide insights on

the presence of epitope specific Th2 cells. Strikingly, the TESLA

peptides did not yield IFNg responses by any PBMC (Figure 2A).

However, 5 out of the 11 patient PBMC cultured with IPV epitope

candidates had a positive response for IFNg (Figures 2A, C). In

addition, no PBMC secreted IL-5 more than the background level

when stimulated with TESLA peptides (Figure 2B). In contrast, 3

out of 8 patients had a frequency of IL-5 producing cells above the

background level following stimulation with IPV peptides

(Figures 2B, C). Thus, the IPV pipeline identified a significantly

higher fraction of peptide candidates that induced cytokine

secretion by patient PBMC.
FIGURE 2

Systematic comparison of the immunogenicity of IPV and TESLA peptides. (A) The magnitude of the IFNg response from patient PBMC (one dot
represents one patient) to neoepitope pools containing the top 10 TESLA and IPV peptides. The magnitude is represented as the number of spot-
forming cells (SFC) per 106 PBMC. A threshold of 100 SFC (dotted line) is used to distinguish between positive and negative responses. (B) IL-5
fluorospot data represented as SFC per 106 PBMC. The same threshold as above is applied for the IL-5 data. (C) IFNg and IL-5 fluorospot-detected
responses to IPV peptides from each patient within the cohort. IFNg responses are displayed as black bars and IL5 responses as grey bars.
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3.3 Peptide length is an
important determinant of
neoepitope immunogenicity

To determine the role that peptide length played in the

outperformance of TESLA peptides (which are 8-12mers, “TESLA

short”) by IPV (which are 20-mers, “IPV long”), two additional

pools were generated: one pool of 20mers from the TESLA pipeline

and one pool of 8-12mers from IPV (Table 1). NetMHCpan was

used to generate 8-12mers from the 20mer IPV peptides by

selecting the top predicted HLA class I binders from the 20mers

(“IPV short”). The top 10 peptides were selected to generate this

pool. Overlapping 20mer peptides generated by the IPV pipeline

that contained the 8-12mers from the TESLA pipeline were used to

generate the pool of TESLA 20mers (“TESLA long”). The top 10

20mers for each patient were selected based on the rank of the

original 8-12mer in the TESLA pool. Due to the limited number of

PBMC from each patient, we prioritized testing the TESLA short

and IPV long peptides (i.e., the original peptide length for the

pipelines) in each donor and tested the additional pools when

enough PBMC were available. We were able to test the IPV short

pool in 4 donors and the TESLA long pool in 8 donors. The 14-day

expansion method outlined previously was used to screen both of

the additional pools.

None of the 4 PBMC cultures stimulated with the IPV short pool

yielded positive IFNg or IL5 responses (Figure 3A), whereas 2 of the 8

PBMC cultures, from patients 11057 and 11095, secreted IFNg and

IL5 in response to TESLA long peptide stimulation (Figure 3A).

While PBMC from donor 11057 only responded to the TESLA long
Frontiers in Immunology 06
pool, PBMC from patient 11095 had positive IFNg and IL5 responses

as a result of stimulation with both the TESLA long and IPV long

pools (Figure 3B). Interestingly, both pipelines prioritized neoepitope

candidates from the gene ATR for patient 11095 and thus the two

pools both contained the ATR 20mers. In contrast, there was no

overlap between the peptides included in the TESLA and IPV long

pools for patient 11057 which may have contributed to the lack of

response to the IPV long pool in this donor.

The Fluorospot data from the 14-day stimulation of the PBMC

from our cohort of 11 patients with the four peptide pools were

grouped and re-stratified based on the peptide length to compare

the responses originating from long peptides (20mers) versus short

peptides (8-12mers). A total of 7 IFNg and 5 IL-5 positive responses

were detected from long peptide stimulation, while no positive

responses were detected from stimulation with short peptides

(Figure 3C). Thus, for both IFNg and IL-5, irrespective of the

pipeline used to generate them, long peptides significantly

outperformed the short peptides (Fisher’s test p-value=0.011 for

IFNg and 0.048 for IL-5, Figures 3D, E). Taken together, this

suggests that peptide length is a key determining factor for in

vitro immunogenicity of epitope candidates in the experimental

system used in our study. As a result of this finding, and our

previous finding that the IPV long pool generated a greater

frequency of cytokine positive responses compared to the TESLA

long pool (Table 2), we solely focused on the IPV long pool for the

remainder of this study.
3.4 Deconvolution of positive IPV
responses identifies neoepitopes that elicit
cytokine responses

A subset of cancer patient PBMCs that showed positive

responses to IPV long peptides and had a sufficient number of

remaining PBMC was utilized to deconvolute the peptide pool

signal. PBMC from three of the five patients (patients 11043, 11095,

and 11098) who responded to IPV (Figure 2C) were thus used for

deconvolution experiments. Following a 14-day expansion with the

patient-specific peptide pools, PBMCs were re-stimulated with the

peptides from each somatic variant included in the IPV pools to
TABLE 2 Summary of fluorospot data from the first cohort of patients.

IFNg response Il5 response Percent
positive

Performance
comparison to

TESLA short pool

Pool Number of patients tested Positive Negative Positive Negative IFNg IL5 IFNg IL5

TESLA short 11 0 11 0 11 0% 0% N/A N/A

IPV short 4 0 4 0 4 0% 0% p = 1 p = 1

TESLA long 8 2 6 2 6 25% 25% p = 0.16 p = 0.16

IPV long 11 5 6 3 8 45% 27% p = 0.035 p = 0.21
fr
Positive and negative fluorospot responses from the neoepitope screen. The percent positive column was calculated by dividing the number of positive responses for a given pool by the number of
times the pool was tested and representing that value by a percentage. The improvement in performance by a given pool in comparison to the TESLA short pool was calculated by performing a
two tailed fisher’s test comparing the positive and negative responses of a pool to the TESLA short pool.
TABLE 1 Description of peptide pools generated for each patient.

Pool Peptide
length

Description

TESLA short 8-12mers Original TESLA output

IPV short 8-12mers Best predicted binders from
IPV pipeline

TESLA long 20mers Lengthened TESLA peptides

IPV long 20mers Original IPV output
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FIGURE 4

IPV long peptide pool deconvolution identifies immunogenic variants. (A) List of peptides generated from each somatic variant for patients 11043,
11095, and 11098. (B) Positive responses from the IPV peptide pool for patients 11043, 11095, and 11098 were deconvoluted to identify the variants
contributing to IFNg and IL-5 signals. Magnitude of responses are displayed as SFC per 106 PBMC for both IFNg and IL-5.
FIGURE 3

Peptide length plays an important role in peptide in vitro immunogenicity. (A) The magnitude of the IFNg and IL5 responses from patient PBMC to
neoepitope pools containing the top 10 IPV short and TESLA long peptides. The magnitude is represented as the number of spot-forming cells (SFC)
per 106 PBMC. A threshold of 100 SFC (dotted line) is used to distinguish between positive and negative responses. (B) The magnitude of IFNg and
IL5 responses from patients 11057 and 11095 PBMC in response to stimulation with the TESLA long and IPV long pools. (C) IFNg and IL5 fluorospot
data from short and long neoepitope candidate pool stimulation. IFNg responses are displayed as black bars and IL5 responses as grey bars. (D) 2x2
contingency table comparing the performance of short and long peptides for IFNg. (E) 2x2 contingency table comparing the performance of short
and long peptides for IL5.
Frontiers in Immunology frontiersin.org07

https://doi.org/10.3389/fimmu.2025.1494453
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chihab et al. 10.3389/fimmu.2025.1494453
identify the somatic variants that were predominantly inciting

cytokine release (peptide pools listed for each patient in

Figure 4A). These deconvolution experiments allowed us to

determine that peptides from the Ajuba LIM protein (AJUBA)

variant were responsible for the positive cytokine response

measured in patient 11043’s PBMC (Figure 4B). Additionally,

epitope candidates from mitochondrial NADH dehydrogenase 2

(MT-ND2) and the serine/threonine-protein kinase ATR from

patient 11095 were responsible for the positive response measured

in patient 11095’s PBMC (Figure 4B). Interestingly, the 20mer

peptides from the ATR mutation that elicited a response in PBMC

from patient 11095 included the sequence of a 9mer ATR peptide

identified by the TESLA pipeline (Supplementary Table 3).

However, the PBMC from patient 11095 did not significantly

respond to the TESLA peptide pool that included this peptide

despite the response induced by the 20mer epitope. Additionally,

the 20mer ATR peptides were included in both the TESLA long and

the IPV long peptide pools. This may have contributed to the

positive responses detected from both pools for this patient

(Figure 3B). None of the peptides from individual somatic

variants within patient 11098’s peptide pool sufficiently

stimulated the PBMC on their own (Figure 4B). In conclusion,

the IPV pipeline is able to provide insights into the immunogenicity

of neoepitope peptide pools in cancer patients’ PBMC and identify
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the individual somatic variants that are responsible for

this response.
3.5 IPV ranking metrics can successfully
rank immunogenic epitope candidates
higher than non-immunogenic
epitope candidates

To more broadly assess what variables are associated with

specific immunogenic peptides, we needed more peptides

identified than those from the 3 individuals described above. We

thus applied the IPV pipeline to an additional cohort of six HNSCC

patients. Whole blood and tumor samples were obtained from each

patient and, similarly to our previous cohort, the IPV pipeline was

used to identify somatic variants and predict neoepitope candidates

from exome and RNA sequencing. Patient PBMC were cultured

with IPV pools of the top ten epitope candidates (20mers) per

patient, similarly to the first cohort of patients. After 14 days, PBMC

were re-stimulated with the same epitope pool initially used for

expansion, and an IFNg and IL-5 ELISpot was used to measure

cytokine release. 4 of the 6 patients had a positive IFNg response

and 3 patients had a positive IL-5 response following stimulation

with IPV peptide pools (Figure 5A). Additionally, the four positive
FIGURE 5

Application of IPV to an additional cohort of patients identifies additional immunogenic variants. (A) IFNg and IL-5 ELISpot was used to detect
responses to IPV peptides in a second cohort of HNSCC patients (n=6) (one dot represents one patient). (B) List of peptides from each somatic
variant used to deconvolute the second cohort responses. (C) Deconvolution data for patients 10193, 10197, 10198, and 10203.
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responses (patients 10193, 10197, 10198, and 10203) were

deconvoluted as described previously (list of peptides outlined in

Figure 5B). Patient 10193 PBMC were activated by peptides

encoded by interleukin 13 receptor alpha 1 (IL13RA1) and Fc-

gamma receptor 3B gene (FCGR3B) variants, patient 10197

responded to peptides from solute carrier family 7 member 5

(SLC7A5), patient 10198 responded to peptides from ATP

binding cassette subfamily E (ABCE1), and patient 10203

responded to peptides from XK related 9 (XKR9) (Figure 5C).

Thus, our IPV pipeline was successfully applied to an additional

cohort of patients and was able to identify, for each of the patients,

individual cancer neoepitopes that showed in vitro reactivity.

We analyzed all the tested variants from both patient cohorts to

assess the performance of the individual ranking metrics included

in the IPV pipeline for their ability to accurately rank immunogenic

epitopes (i.e., those that incited a positive cytokine response in vitro)

higher than the epitope candidates that were not immunogenic (i.e.,

those that did not induce a cytokine response in vitro). TPM, DNA

VAF, and RNA VAF are the metrics used by IPV. When

investigating the TPM percentile rank of the epitopes, the TPM

rank placed 5 of the 8 positive epitopes higher than the negative

epitopes and the median of the positive epitopes’ TPM percentile

rank was significantly higher than the median of the negative

epitopes (Figure 6A). Neither the DNA VAF or the RNA VAF

had a significant difference between the positive peptides and the

negative peptides, and summing the ranks together for each epitope

also did not significantly distinguish positive epitopes from

negatives (Figures 6B–D). This suggests that the TPM expression

level of a given mutation had the strongest impact on the

immunogenicity of the peptide encoding it in this setting.

As a comparison, we also investigated how effective the TESLA

metrics were in prioritizing positive epitopes. HLA typing was solely

performed on the samples from the first cohort of patients, so the

TESLA metrics were only compared for the epitopes tested from

this cohort since HLA typing is required for the TESLA pipeline.

The HLA binding affinity of the positive epitopes was stronger (i.e.,

lower IC50) than the negative epitopes, but the difference was not
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significant. In contrast, there was no difference in the agretopicity or

stability of the positive and negative epitopes and the foreignness

scores of multiple negative epitopes were higher than the

foreignness of the positive (Supplementary Figure 2). The finding

that the HLA binding affinity is stronger in positive epitopes than

negative epitopes is not surprising as previous work by many

groups, including ours, has shown that the majority of

neoepitopes have strong predicted binding affinities (35). The

analysis of the agretopicity, stability, and foreignness of the

epitopes, however, does not support that these metrics contribute

to the abil ity of distinguishing between positive and

negative epitopes.
4 Discussion

In this study, we compared the performance of our in-house

pipeline, IPV, and the TESLA pipeline to predict the

immunogenicity of neoepitope candidates present within HNSCC

patients with limited blood sample available. Our results highlight

the challenges intrinsic to such comparisons, and the importance of

considering the experimental system used to evaluate

immunogenicity predictions. The features included in the TESLA

prediction pipeline were picked based on an evaluation of

neoepitope prediction pipelines in their performance, where

pMHC-multimer assays using minimal HLA class-I restricted

epitopes were used to evaluate immunogenicity and establish the

ground truth (19). The identification of minimal epitopes with

defined HLA-restriction is however not necessary to test peptides

for T cell immunogenicity. Moreover, the TESLA approach ignores

the potential contribution of HLA class II restricted epitopes to

anti-tumor responses. In a cancer setting, limited blood samples

and limited time make it desirable to have a fast and sensitive

approach to screening, which informed our development of IPV.

IPV ranks somatic mutations based on their level of expression and

their tumor association (i.e. the expression of a given mutation in a

tumor sample compared to a normal sample) due to previous
FIGURE 6

Ranking metrics and epitope immunogenicity. The percentile ranks for TPM, DNA VAF, and RNA VAF values for all peptide candidates were
calculated on a per donor basis. The percentile ranks for the ranking metrics employed by IPV to rank positive epitopes higher than negative
epitopes was assessed. The TPM (A), DNA VAF (B), RNA VAF (C) and sum of all metrics (D) for all the variants tested in this study are plotted. One dot
represents one variant. ‘*’ indicates a p-value less than 0.05. ‘ns’ indicates non-significant p-values.
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literature that suggests that the magnitude of expression of a

particular antigen significantly correlates with its ability to be

recognized (36). From the ranked variants, IPV then generates

2 overlapping 20mers per variant to allow for all possible class I

and class II epitopes to be investigated rather than predicting

minimal epitope sequences using HLA typing and HLA binding

predictions. Due to the significant differences in the two

approaches, we sought to compare the performance of the TESLA

pipeline to IPV and determine which of the two is the more

appropriate pipeline to use.

Here, we report that the in-house IPV pipeline significantly

outperformed TESLA in the ability to predict epitope candidates that

stimulate cytokine release by autologous PBMC in vitro. From the first

cohort of patients, the IPV pipeline 20mers (IPV long) elicited IFNg

responses in about half of the patient PBMC and IL5 responses with 3

patients’ PBMCs while no PBMC secreted IFNg or IL-5 in response to

stimulation by any of the TESLA short peptides. We hypothesized that

peptide length (i.e., having longer peptides that can include both class I

and class II restricted epitopes) played a role in this finding, and thus

we investigated how peptide length influenced the in vitro activation of

PBMC by candidate peptides.We found that no short peptides (neither

TESLA short nor IPV short) generated IFNg responses while long

peptides (either TESLA long or IPV long) generated IFNg responses 7

of the 18 times they were tested). Overlapping long peptides that

encompass both class I and class II peptides have been shown to

generate strong T cell responses in numerous studies and many groups

have reported that anti-tumor immunity is highly dependent on the

presence of CD4 T cells (37–39). Interestingly, a small subset of TESLA

epitopes were derived from mutations that were also prioritized by the

IPV pipeline (Supplementary Table 3). In the case of patient 11095,

both TESLA and IPV predicted epitopes from a single nucleotide

variant in the gene ATR. The 20mer epitope predicted by IPV

encompassed the 9mer predicted by TESLA. However, only the IPV

20mer elicited an immune response. This highlights the benefit in

generating overlapping 20mers, as IPV does, as it eliminates the

possibility of prioritizing the wrong minimal epitope sequence for a

given mutation and provides the opportunity to activate CD4+ T cells.

In consideration of the results from other groups as well as the positive

cytokine responses in our study, it becomes evident that in addition to

HLA class I epitopes, HLA class II epitopes must also be considered in

in silico neoepitope prediction tools.

To further study responses to IPV, we screened neoepitope

candidates in an additional cohort of 6 HNSCC patients using the

IPV pipeline and deconvoluted the positive responses from both

cohorts of patients. Deconvolution from the first cohort identified

that peptides from the mutations in AJUBA activated PBMC from

patient 11043 and peptides from ATR andMT-ND2 activated PBMC

from patient 11095. Peptide pool deconvolution in the second cohort

successfully identified that neoepitopes from the variants IL3RA1,

FCGR3B, SLC7A5, ABCE1, and XKR9 activated PBMCs from patient

10193, 10197, 10198, and 10203, respectively. Importantly, elevated

expression and mutations in these genes have been reported to

promote tumor cell growth and inhibit apoptosis in various cancer

types (40–44). For example, ATR is a serine/threonine kinase that is

involved in sensing DNA damage and mutations in this kinase

contribute to the genomic instability of cancer cells (45, 46).
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Additionally, mutations in ND2 (the subunit of mitochondrial

NADH dehydrogenase), have been shown to confer increased

metastatic potential to cancer cells (47). The immunogenicity of

these variants serves as evidence that our pipeline can effectively parse

through patient somatic data and prioritize mutations that are

biologically relevant and may have therapeutic benefits.

Although we show here that IPV can be used to identify

immunogenic overlapping peptides, we did not identify the

minimal epitope sequences of the immunogenic peptides.

However, because our pipeline can identify 20mer peptides that

are immunogenic, one can use the IPV pipeline and various

available computational tools to predict the minimal epitope

sequence if that is of interest. For example, one could use the

sequences of IPV 20mers that induce cytokine responses in a given

patient and the patient’s HLA typing and use tools such as TepiTool

to predict the HLA binding affinity of the possible minimal epitopes

to a patient’s HLA alleles (48). With this information, one could

conduct immunogenicity assays with the minimal epitope

sequences that have strong predicted HLA binding affinity.

Overall, the IPV pipeline could serve as an excellent first step in

identifying the exact sequences of immunogenic epitopes while

conserving the amount of patient sample needed.

Finally, we found that the percentile rank of the TPM of the

variants, a feature considered by the IPV pipeline, can successfully rank

the variants whose peptides induced cytokine responses (positive

epitopes) higher than those that did not (negative epitopes). The

percentile ranks for both TPM and DNA VAF effectively ranked

positive epitopes higher than negative epitopes, although the difference

in DNA VAF was not significant. Interestingly, RNA VAF ranked the

positive epitopes lower than the negative epitopes. The low RNA VAF

in some of the recognized epitopes could be a result of a number of

factors. Firstly, this could be indicative of a tumor undergoing immune-

editing to evade immune recognition. Tumors rely on immune-editing

to deplete the expression of neoepitopes that are being recognized by

immune cells (49). Additionally, this could indicate a low purity tumor

sample or a genetically diverse tumor (50). The sum of the ranking

metrics employed by IPV appropriately ranked positive peptides higher

than negative peptides, but this difference was not statistically

significant. TPM and VAF are influenced by the depth and quality

of the sequencing methods employed to detect tumor antigens.

Additionally, all the neoantigens selected for this study ranked highly

for these metrics, which may be the cause for the lack of a statistically

significant difference between positive and negative epitopes. None of

the TESLA metrics were able to discern statistically significant

differences between positive and negative peptides. While our work

suggests that our selection approach is effective, additional research is

necessary to further identify and understand the features that differ

between positive and negative peptides and the features that are useful

for neoepitope prediction tools.

There are several caveats to our study. First, we have only compared

the IPV pipeline to the TESLA pipeline, but a number of additional

pipelines and ranking features exist. For example, several tools take into

account the biophysical properties of epitope candidates to predict which

sequences are more likely to contribute to strong TCR-peptide

interactions (51, 52). This shortcoming can be addressed in future

studies in which we provide further comparison of our pipeline to other
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tools that focus on alternative features. An additional limitation of our

study is that the experimental method we used to compare the pipelines

could influence the types of responses that are more easily detected.

Here, we used a 14-day expansion method in which patient PBMCwere

cultured with neoepitopes candidates for 14 days and fed with IL-2 on

days 4, 7, and 10. Subsequently, we utilized a IFNg and IL-5 Fluorospot

or ELISpot to measure the amount of cytokine release occurring as a

result of stimulation with epitopes. The amount of cytokine detected via

Fluorospot and ELISpot is thought to correlate with epitope

immunogenicity and antigen-specific responses (53). We elected to

use this method as it circumvents the need to know the exact

sequences of HLA-restricted epitopes and allows for the expansion of

low-frequency memory cells in peripheral blood samples. However,

alternative methods to test neoepitope recognition exist. For instance,

peptide-MHC multimers can be used to detect neoepitope-specific T

cells as was done byWells et al. (19) This experimental method presents

biases for certain HLA alleles and works better for peptides with shorter

length and known exact epitope sequences (54, 55). The use of tandem

minigenes (TMG) is also a method that is routinely used to screen

antigens. In this method, multiple antigen candidates are strung together

in a single DNA or RNA construct to be processed and presented by

antigen-presenting cells to T cells. While TMGs allows for multiple

antigen candidates to be screened at once in an HLA-independent

manner, it has been recently suggested that the order of sequences within

minigenes can influence screening outcomes (56, 57). Thus, the

experimental method elected by a researcher could influence the

results of neoepitope screening. Therefore, this should be taken into

consideration in studies moving forward and highlights the need for

clear experimental standards to be used when evaluating neoepitope

prediction tools.

Our findings strongly suggest that IPV is a pipeline that can be

used to predict the neoepitopes that generate robust T cell responses

in vitro and that the pipeline described by TESLA is not as effective

in this experimental setting. The outperformance of TESLA by IPV

is a significant finding as the approach used in the TESLA pipeline

(i.e. ranking class I peptides based on HLA binding affinity,

agretopicity, HLA binding stability, and foreignness) are metrics

that have been routinely included in a number of neoepitope

prediction tools (51, 58–61). Furthermore, our study provides a

comprehensive pipeline that can be used to identify neoepitope

candidates from patients with a limited sample size.
Data availability statement

Fluorospot data presented in the study are available in the

supplementary data. Whole exome and RNA sequence

data are deposited in the BioProject repository, accession

number PRJNA1229652.
Ethics statement

The studies involving humans were approved by La Jolla

Institute for Immunology Institutional Review Board. The studies
Frontiers in Immunology 11
were conducted in accordance with the local legislation and

institutional requirements. The participants provided their written

informed consent to participate in this study.
Author contributions

LC: Conceptualization, Data curation, Formal Analysis,

Validation, Visualization, Writing – original draft, Writing –

review & editing. JB: Conceptualization, Supervision, Writing –

original draft, Writing – review & editing. AM: Conceptualization,

Methodology, Resources, Writing – review & editing. LW: Data

curation, Formal Analysis, Writing – review & editing. BB: Writing

– review & editing. JG: Conceptualization, Methodology,

Supervision, Writing – review & editing. MK: Writing – review &

editing. SS: Conceptualization, Funding acquisition, Methodology,

Resources, Supervision, Writing – review & editing. SJ: Funding

acquisition, Resources, Writing – review & editing. YK: Funding

acquisition, Resources, Writing – review & editing. ZK-Y:

Conceptualization, Investigation, Methodology, Supervision,

Writing – review & editing. BP: Conceptualization, Funding

acquisition, Investigation, Methodology, Resources, Supervision,

Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. LC is

supported by the National Science Foundation Graduate Research

Fellowship Program under Grant No. DGE-2038238. Any opinions,

findings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the

views of the National Science Foundation. This work is supported

by the National Institutes of Health (R01DE027749, U24

CA248138). SJ is a VA Research Career Scientist supported by

IK6 BX004595-05.
Conflict of interest

AM, BP, and SS are inventors on a pending US Patent

application 16/816,160, “Methods of neoantigen identification,”

submitted by the La Jolla Institute for Immunology and UCSD

that covers the IPV platform as described herein. YK was employed

by Regeneron Pharmaceuticals.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1494453
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chihab et al. 10.3389/fimmu.2025.1494453
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Frontiers in Immunology 12
Supplementary material
The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1494453/

full#supplementary-material
References
1. Türeci Ö, Vormehr M, Diken M, Kreiter S, Huber C, Sahin U. Targeting the
heterogeneity of cancer with individualized neoepitope vaccines. Clin Cancer Res.
(2016) 22:1885–96. doi: 10.1158/1078-0432.CCR-15-1509

2. Johanns TM, Miller CA, Liu CJ, Perrin RJ, Bender D, Kobayashi DK, et al.
Detection of neoantigen-specific T cells following a personalized vaccine in a patient
with glioblastoma. Oncoimmunology . (2019) 8:e1561106. doi: 10.1080/
2162402X.2018.1561106

3. Perumal D, Imai N, Laganà A, Finnigan J, Melnekoff D, Leshchenko VV, et al.
Mutation-derived neoantigen-specific T-cell responses in multiple myeloma. Clin
Cancer Res. (2020) 26:450–64. doi: 10.1158/1078-0432.CCR-19-2309

4. Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R, et al. Personalized
cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci
Transl Med. (2018) 10:eaao5931. doi: 10.1126/scitranslmed.aao5931

5. Hos BJ, Camps MGM, van den Bulk J, Tondini E, van den Ende TC, Ruano D,
et al. Identification of a neo-epitope dominating endogenous CD8 T cell responses to
MC-38 colorectal cancer. Oncoimmunology. (2019) 9(1):1673125. doi: 10.1080/
2162402X.2019.1673125

6. Palmer CD, Rappaport AR, Davis MJ, Hart MG, Scallan CD, Hong SJ, et al.
Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA
neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim
results. Nat Med. (2022) 28:1619–29. doi: 10.1038/s41591-022-01937-6

7. Rojas LA, Sethna Z, Soares KC, Olcese C, Pang N, Patterson E, et al. Personalized
RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. (2023)
618:144–50. doi: 10.1038/s41586-023-06063-y

8. Yamamoto TN, Kishton RJ, Restifo NP. Developing neoantigen-targeted T cell–
based treatments for solid tumors. Nat Med. (2019) 25:1488–99. doi: 10.1038/s41591-
019-0596-y

9. Katsikis PD, Ishii KJ, Schliehe C. Challenges in developing personalized
neoantigen cancer vaccines. Nat Rev Immunol. (2024) 24:213–27. doi: 10.1038/
s41577-023-00937-y

10. Martincorena I, Campbell PJ. Somatic mutation in cancer and normal cells.
Science. (2015) 349:1483–9. doi: 10.1126/science.aab4082

11. Rahal Z, Scheet P, Kadara H. Somatic mutations in normal tissues: calm before
the storm. Cancer Discovery. (2024) 14:605–9. doi: 10.1158/2159-8290.CD-23-1508

12. Boegel S, Castle JC, Kodysh J, O’Donnell T, Rubinsteyn A. Bioinformatic
methods for cancer neoantigen prediction. Prog Mol Biol Transl Sci. (2019) 164:25–
60. doi: 10.1016/bs.pmbts.2019.06.016

13. Schenck RO, Lakatos E, Gatenbee C, Graham TA, Anderson ARA. NeoPredPipe:
high-throughput neoantigen prediction and recognition potential pipeline. BMC
Bioinf. (2019) 20:264. doi: 10.1186/s12859-019-2876-4

14. Bulik-Sullivan B, Busby J, Palmer CD, Davis MJ, Murphy T, Clark A, et al. Deep
learning using tumor HLA peptide mass spectrometry datasets improves neoantigen
identification. Nat Biotechnol. (2018) 37:55–63. doi: 10.1038/nbt.4313

15. Hundal J, Carreno BM, Petti AA, Linette GP, Griffith OL, Mardis ER, et al.
pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens.
Genome Med. (2016) 8:11. doi: 10.1186/s13073-016-0264-5

16. Diao K, Chen J, Wu T, Wang X, Wang G, Sun X, et al. Seq2Neo: A
comprehensive pipeline for cancer neoantigen immunogenicity prediction. Int J Mol
Sci. (2022) 23:11624. doi: 10.3390/ijms231911624

17. Richman LP, Vonderheide RH, Rech AJ. Neoantigen dissimilarity to the self-
proteome predicts immunogenicity and response to immune checkpoint blockade. Cell
Syst. (2019) 9:375–82. doi: 10.1016/j.cels.2019.08.009

18. Kim S, Kim HS, Kim E, Lee MG, Shin EC, Paik S, et al. Neopepsee: accurate
genome-level prediction of neoantigens by harnessing sequence and amino acid
immunogenicity information. Ann Oncol Off J Eur Soc Med Oncol. (2018) 29:1030–6.
doi: 10.1093/annonc/mdy022

19. Wells DK, van Buuren MM, Dang KK, Hubbard-Lucey VM, Sheehan KCF,
Campbell KM, et al. Key parameters of tumor epitope immunogenicity revealed
through a consortium approach improve neoantigen prediction. Cell. (2020)
183:818–834.e13. doi: 10.1016/j.cell.2020.09.015

20. Duan F, Duitama J, Al Seesi S, Ayres CM, Corcelli SA, Pawashe AP, et al.
Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to
predict anticancer immunogenicity. J Exp Med. (2014) 211:2231–48. doi: 10.1084/
jem.20141308
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