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Identification of genes involved
in energy metabolism in
preeclampsia and discovery
of early biomarkers
Ruohua Li , Cuixia Zhou, Kejun Ye, Haihui Chen
and Mengjia Peng*

Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Wenzhou Medical
University, Rui’an, China
Background: Preeclampsia is a complex pregnancy condition marked by

hypertension and organ dysfunction, posing significant risks to maternal and fetal

health. This study investigates the role of energy metabolism-associated genes in

preeclampsia development and identifies potential early diagnostic biomarkers.

Methods: Preeclampsia datasets from Gene Expression Omnibus were analyzed

for batch correction, normalization, and differential expression. Enrichment

analyses using gene ontology, Kyoto Encyclopedia of Genes and Genomes,

and gene set enrichment were performed. Protein-protein interaction networks

were constructed to identify key genes, and regulatory networks involving

transcription factors, miRNAs, and RNA-binding proteins were established.

Differential expression was validated with receiver operating characteristic

curve analyses, and immune infiltration was assessed.

Results: Six energy metabolism-related genes were identified. Enrichment

analyses revealed their involvement in glycolysis, gluconeogenesis, lipid

transport, bone remodeling, and glucagon secretion. Key differentially

expressed genes included CRH(Corticotropin-Releasing Hormone), LEP

(Leptin), PDK4(Pyruvate Dehydrogenase Kinase Isozyme 4), SPP1(Secreted

Phosphoprotein 1), and SST(Somatostatin). PDK4 exhibited moderate accuracy

in receiver operating characteristic analysis. Immune infiltration analysis

indicated significant differences between preeclampsia and control samples.

qRT-PCR confirmed LEP and CRH increased, while SPP1 expression in

preeclampsia samples.

Conclusion: Dysregulated energy metabolism-related genes may contribute to

preeclampsia throughmetabolic and immune changes. Identifying these genes aids

in understanding preeclampsia’s molecular basis and early diagnosis. Future studies

should validate these markers in larger cohorts and explore targeted treatments.
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1 Introduction

Preeclampsia (PE) is a complex condition that affects various

bodily systems and occurs in 2%–8% of pregnancies worldwide. It

continues to be a significant cause of maternal and fetal morbidity

and mortality (1). It is believed that PE is responsible for

approximately 76,000 maternal and 500,000 fetal fatalities

annually (2). It is a pregnancy-related disease that usually occurs

after 20 weeks of gestation, characterized by high blood pressure

and proteinuria. According to the definition of the World Health

Organization, PE refers to a pregnant woman with a blood pressure

≥140/90 mmHg in the later stages of pregnancy and urine

containing ≥300 milligrams of protein. It poses significant health

hazards, including the potential onset of eclampsia, hemolysis,

elevated liver enzymes, and low platelet count (HELLP)

syndrome, and enduring cardiovascular issues (3). The

pathophysiological mechanism of PE is intricate, encompassing

various factors such as placental insufficiency, vascular endothelial

dysfunction, and immune dysregulation. Research has

demonstrated that in a normal pregnancy, the placenta releases

specific signaling molecules to facilitate maternal blood vessel

dilation and increased blood flow to accommodate the fetal

growth requirements. However, in individuals with PE, there is

often inhibition of placental development and function, resulting in

damage to endothelial cells and a systemic inflammatory response,

ultimately leading to elevated blood pressure and other

complications (4). Despite advancements in prenatal care, the

primary method for diagnosing PE is to monitor blood pressure

and protein levels in the urine. The clinical physician also takes into

consideration other potential symptoms, such as cephalalgia, visual

impairments, epigastric discomfort, and renal function

irregularities. The presence of these symptoms is typically

associated with the severity of the condition and holds prognostic

significance. Treatment includes using antihypertensive drugs to

control the mother’s blood pressure and early low-dose aspirin and

calcium supplements to reduce the risk of developing PE. In severe

cases, termination of pregnancy is frequently required; however,

this generally results in premature birth. Although these

interventions are necessary, treatment options for PE are

significantly limited, focusing primarily on symptom management

rather than addressing the underlying cause of the condition (5).

Current treatments have potential limitations, including side effects

from antihypertensive drugs and early delivery-associated risks,

emphasizing the importance of improving our understanding of PE

management strategies.

The disruption of metabolism and metabolites in PE

pathogenesis is becoming an essential component of the disease

pathophysiology. Studies have reported that carbohydrate and lipid

metabolism abnormalities are essential in the etiology and clinical

progression of PE (6, 7). Previous studies have indicated a

connection between the diverse expression of energy metabolism-

related genes (EMRGs) and the emergence of several pregnancy

complications, including gestational diabetes mellitus and fetal

obesity. This suggests that these conditions can have a common

pathophysiological foundation and can be potential targets for
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treatment (8). Furthermore, differential expression of EMRGs has

been associated with altered mitochondrial function and oxidative

stress (9), which are characteristic features of the placental

pathology in PE (10). Despite the preceding insights, there are

significant gaps in understanding the complex energy metabolic

pathways and their interactions in PE pathogenesis.

A comprehensive comprehension of the pathogenesis,

biomarkers, and associated complications of PE is imperative for

enhancing early diagnosis and treatment efficacy. Our study aimed

to identify and analyze EMR differentially expressed genes (DEGs)

in PE and determine their functional significance. Using

bioinformatics methods, including data collection, differential

gene expression analysis, functional pathway enrichment, protein-

protein interaction (PPI) network creation, regulatory network

visualization, and immune infiltration assessment, we provide a

new perspective on molecular alterations in PE. This integrated

genomic and bioinformatics approach aims to develop novel

diagnostic markers and therapeutic targets, increasing our

understanding of the molecular foundation underlying PE and

aiding in personalized medical strategies to mitigate its impact on

mothers and offspring.
2 Materials and methods

2.1 Data download

The gene expression omnibus (GEO) database (11) (https://

www.ncbi.nlm.nih.gov/geo/) provided the PE datasets GSE60438

(12) and GSE75010 (13–18), which were retrieved using the R

package “GEOquery”. Dataset GSE60438 was derived from Homo

sapiens, originating from decidua basalis tissue, with chip platforms

GPL10558 and GPL6884. Dataset GSE75010 was derived from

Homo sapiens placental tissues using the chip platform GPL6244.

Detailed information is provided in Table 1. Additionally, dataset

GSE60438 contained 42 control and 35 PE samples on the

GPL10558 platform and 23 control and 25 PE samples on the
TABLE 1 GEO Microarray Chip Information.

GSE60438 GSE60438 GSE75010

Platform GPL10558 GPL6884 GPL6244

Species Homo sapiens Homo sapiens Homo sapiens

Tissue Decidua Basalis Decidua Basalis Placenta

Samples in
PE group

35 25 80

Samples in
Control group

42 23 77

Reference PMID: 26010865 PMID: 26010865

PMID: 27160201;
PMID: 28962696;
PMID: 29187609;
PMID: 29507646;
PMID: 30278173;
PMID: 30312585
GEO, Gene Expression Omnibus; PE, Preeclampsia.
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GPL6884 platform. Dataset GSE75010 comprised 77 control and 80

PE samples. Following batch correction, the combined data from

both GPL platforms in dataset GSE60438 were included in the

study, whereas dataset GSE75010 was used as a validation set.

We obtained EMRGs from the GeneCards database (19). The

GeneCards database provides extensive provides on genes in the

human body. After conducting a search using the term “Energy

Metabolism” and filtering for “Protein Coding” and “Relevance

Score > 2” EMRGs, 571 EMRGs were obtained. Furthermore, using

“Energy Metabolism” as the keyword in PubMed, 8 EMRGs were

found in the published literature (20). Following the combination

and elimination of duplicates, 573 EMRGs were identified, with

detailed information presented in Supplementary Table S1.

The “sva” (21) package in R was used to correct batch effects in

data from two GPL platforms (GPL10558 and GPL6884) to obtain

the merged GEO dataset (combined datasets). The combined

datasets included 65 control and 60 PE samples. Finally, the

annotation and standardization of the merged datasets were

performed using the R software package “limma” (22). To

determine the impact of the batch effect, we performed a

principal component analysis (PCA) (23) on the expression

matrix before and following its removal.
2.2 Energy metabolism-related
differentially expressed genes in PE

The “limma” R package was used to analyze the differences in

gene expression between PE and control groups. To identify the

DEGs, criteria of |log fold change(logFC)| > 0.5 and a p < 0.05 were

set. Additionally, genes with a logFC > 0.5 and a p < 0.05 were

classified as upregulated DEGs. Conversely, genes with a logFC <

-0.5 and a p < 0.05 were identified as downregulated DEGs. The

differential analysis results were depicted using the volcano plot

feature provided by the “ggplot2” package in R.

We combined datasets to identify EMRGs that were

differentially expressed in association with PE. We determined

variance to identify genes exhibiting significant differences (|

logFC| > 0.5 and p < 0.05). Venn diagrams were used to map the

intersection of the DEGs and EMRGs, enabling the identification of

EMRDEGs. We generated a heatmap with the R package

“pheatmap”. Furthermore, we constructed a chromosome

localization map using the R package “RCircos” (24).
2.3 Enrichment analysis using gene
ontology and the Kyoto encyclopedia of
genes and genomes

GO (25) analysis is a widely used methodology for in-depth

investigations aimed to improve functionality across multiple

dimensions, including biological process (BP), cellular component

(CC), and molecular function (MF). The KEGG (26) database is an

extensive resource for deciphering the intricate functions and uses

of biological systems by connecting genetic information with

biochemical pathways and cellular activities. We employed the R
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package “clusterProfiler” (27) to perform GO and KEGG

enrichment analyses on the EMRDEGs. The parameters

established for including genes were an adjusted p-value (adj. p) <

0.05 and a false discovery rate (FDR) < 0.05, both of which were

considered statistically significant. The Benjamini–Hochberg (BH)

procedure was used as a p-value adjustment method.
2.4 Gene set enrichment analysis

GSEA (28) is a statistical technique to determine if predefined

gene groups exhibit significant enrichment across various biological

conditions. In this study, the genes of combined datasets were first

sorted according to logFC values. Then, GSEA was performed on

the entire set of genes from the merged datasets, using the

“clusterProfiler” package in R. GSEA settings were accessing the

“c2.cp.all.v2022.1.Hs.symbols.gmt [All Canonical Pathways]

(3050)” gene set from the Molecular Signatures database (29),

using 2022 seeds, performing 1000 calculations, with each gene

set containing between 10 and 500 genes. The evaluation standards

were established as adj. p < 0.05 and FDR (q-value) < 0.05 via the

BH method for p-value adjustment.
2.5 Analysis of PPI and identification of
key genes

The PPI network includes essential proteins involved in

numerous biological functions, including signaling pathways,

gene expression regulation, metabolism of energy and

substances, and cell cycle management. This network is crucial

for comprehending prote in funct ional i t ies , s ignal ing

mechanisms, and physiological and pathological functional

associations. The search tool for the retrieval of interacting

genes/proteins (STRING) database (30) (https://cn.string-

db.org/) investigates the connections among identified and

anticipated proteins. This study used the STRING database to

build a PPI network associated with EMRDEGs, adhering to the

criteria of a minimum interaction coefficient exceeding 0.400, which

corresponded to a medium confidence level. The associated regions

within the PPI network could indicate molecular assemblies with

distinct biological roles. Certain genes were identified as key genes

within the PPI network as a result of their interactions with

other genes.

The GeneMANIA database (31) (https://genemania.org/) was

used to predict potential gene functions, evaluate gene lists, and

pinpoint genes for further functional analyses. When provided with

a list of query genes, GeneMANIA identifies functionally similar

genes by analyzing a comprehensive genomics and proteomics

dataset. It assigns weights to each functional genomic dataset

based on the anticipated value of the query in this process.

Besides, GeneMANIA can predict gene functions by identifying

genes likely to share tasks with a given query gene based on their

interactions. Using the GeneMANIA online website, the PPI

network was created to predict genes with functions similar to

those of key genes.
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2.6 Construction of regulatory network

Gene expression is regulated by transcription factors (TFs)

through their interaction with crucial genes during the post-

transcriptional phase. We used the ChIPBase database (http://

rna.sysu.edu.cn/chipbase/) (32) to obtain data on TFs and

determine their control over essential genes. The screening

criterion for mRNA-TF interaction pairs was based on the total

number of upstream and downstream samples, which was required

to be > 5. Finally, the mRNA-TF regulatory network was developed

using Cytoscape software.

The role of miRNA in regulation is vital for developmental and

evolutionary mechanisms in organisms. Different target genes could

be regulated, and several miRNAs could influence a single target

gene. To investigate the association between pivotal genes and

miRNA, we retrieved the miRNA that interacted with key genes

from the encyclopedia of RNA interactomes (ENCORI) database

(https://rnasysu.com/encori/) (33). We used a screening threshold

of pancancerNum > 5 to select mRNA-miRNA interaction pairs.

The interaction network between mRNA and miRNA was

illustrated using Cytoscape software.

Furthermore, RNA-binding proteins (RBPs) control gene

expression by engaging with crucial mRNAs after transcription.

We used the ENCORI database to extract RBP information and

analyze their regulation of key mRNAs.The criterion for screening

mRNA-RBP interaction pairs was clusterNum >1. Ultimately,

Cytoscape software was used to visualize the constructed mRNA-

RBP regulatory network.
2.7 Validation of differential gene
expression and analysis of key genes using
receiver operating characteristic curves

To analyze the variation in key gene expression between the PE

and control groups within the combined datasets, we used the

Mann–Whitney U test. Comparative maps were constructed based

on the expression levels of these essential genes. Subsequently, the R

package “pROC” (34) was used to generate the ROC curve for the

significant genes. The area under the curve (AUC) evaluated the

effectiveness of gene expression in diagnosing PE. The validation

process was performed using the GSE75010 dataset.
2.8 Immune infiltration analysis

We measured the proportion of immune cell infiltration using

single-sample (ss) GSEA (35). The recognized categories of immune

cells comprised activated CD8 + T cells, activated dendritic cells,

gamma-delta T cells, natural killer (NK) cells, regulatory T cells

(Tregs), and several other human immune cell subtypes. The

proportion calculated through ssGSEA was used to illustrate the

relative levels of immune cell infiltration in each sample, creating an

immune cell infiltration matrix. Then, immune cells indicating

significant variations between the two groups were selected for

additional analysis, and their relationships were evaluated using the
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Spearman method. Correlation heatmaps were created with the R

package “pheatmap” to demonstrate the correlation between

immune cells. The Spearman method determined the relationship

between crucial genes and immune cells, with a significance

threshold set at p < 0.05. Using the R package “ggplot2”, a bubble

map was drawn to illustrate the connection between essential genes

and immune cells. We selected immune cells with top1 positive and

top1 negative correlation with key genes and plotted correlation

scatter plots using ggplot2.
2.9 Patient and tissue samples

Placenta samples were obtained from 52 pregnant women who

underwent cesarean sections at the Third Affiliated Hospital of

Wenzhou Medical University. 26 had PE, and 26 were healthy

controls matched for gestational age. Each group included 14 term

pregnancy and 12 preterm pregnancies. Ethical approval was

obtained from the Research Ethics Committee at the Ruian

People’s Hospital, under approval number YJ2024130. All

participants provided written consent. The inclusion criteria for

the PE group included blood pressure ≥ 140/90 mmHg and 24-h

urinary protein ≥ 0.3 g/24 h after 20 weeks of gestation, age between

20 and 40 years old, and no significant abnormalities during

pregnancy. Exclusion criteria included other pregnancy

complications such as gestational diabetes mellitus; Prepregnancy

comorbidities such as prepregnancy hypertension, prepregnancy

diabetes, serious medical and surgical diseases, infectious diseases

such as COVID-19, obstetric complications, congenital diseases of

the fetus, or the use of drugs that may affect the results of the

experiment. After delivery, a tissue sample was extracted from the

central region of the placenta and preserved at –80°C for long-

term storage.
2.10 Isolation of RNA and analysis using
quantitative real-time-polymerase
chain reaction

Total RNA was extracted from placental tissue samples using

the tissue total RNA isolation kit V2 (Vazyme) according to the

manufacturer’s instructions. The concentration and purity of the

extracted RNA were assessed using a NanoDrop spectrophotometer

(Thermo Fisher Scientific). RNA samples with an A260/A280 ratio

between 1.8 and 2.0 were considered suitable for further analysis.

Subsequently, 1 µg of total RNA was reverse transcribed into

complementary DNA (cDNA) using the HiScript III All-in-one

RT SuperMix (Vazyme) in a 20 µL reaction volume. The reverse

transcription reaction was performed at 25°C for 5 minutes,

followed by 50°C for 15 minutes, and terminated by heating at

85°C for 5 minutes. Quantitative real-time PCR (qRT-PCR) was

conducted using the CFX Connect real-time PCR system (BioRad,

Hercules, CA, USA) with Taq Pro Universal SYBR qPCR Master

Mix (Vazyme). Each qRT-PCR reaction was carried out in a 10 µL

volume containing 5 µL of SYBR Green Master Mix, 0.5 µL of each

forward and reverse primer (10 µM), 1 µL of cDNA template, and 3
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µL of nuclease-free water. The thermal cycling conditions were as

follows: initial denaturation at 95°C for 30 seconds, followed by 40

cycles of denaturation at 95°C for 10 seconds, annealing at 60°C for

30 seconds, and extension at 72°C for 30 seconds. A melt curve

analysis was performed to verify the specificity of the amplification

products. The relative expression levels of the key genes were

normalized to the expression of the housekeeping gene

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) using the 2

−DDCt method. All reactions were performed in triplicate, and the

average Ct values were used for analysis. The results were expressed

as fold changes in gene expression relative to the control group.
2.11 Isolation of protein and analysis using
Western Blotting

Tissues were minced and homogenized in RIPA lysis buffer

(P0013B, Beyotime) with PMSF (100 mM, ST506, Beyotime), using

150-250 µL of lysis buffer per 20 mg of tissue. The homogenates were

centrifuged similarly to obtain the supernatant. Protein concentration

was determined using the BCA protein assay kit. Samples were diluted

to equal concentrations with RIPA lysis buffer containing PMSF and

mixed with 5× protein loading buffer. The samples were denatured by

heating at 100°C for 5-10 minutes and then cooled on ice. SDS-PAGE

was performed using self-prepared gels by first casting the separating

and stacking gels between clean glass plates. The samples were then

loaded into the wells formed by the comb in the stacking gel, and

electrophoresis was conducted to separate proteins based on their

molecular weight. Proteins were transferred to PVDF membranes

(ISEQ00010, Millipore) using a wet transfer system (Mini Trans-

Blot, BIO-RAD). The membranes were blocked with non-fat milk

blocking solution for 1-2 hours at room temperature and incubated

overnight at 4°C with primary antibodies diluted in antibody dilution

buffer (P0256-500ml, Beyotime). After washing, the membranes were

incubated with HRP-conjugated secondary antibodies for 1 hour at

room temperature. The protein bands were visualized by using

BeyoECL Plus working solution (P0018S, Beyotime) and detected

with a chemiluminescence imaging system. The relative expression

levels of proteins were analyzed by Image J.
2.12 Statistical analysis

The study used R software (version 4.3.1) for statistical analysis

and data handling. The independent student t-test was

implemented to assess the statistical significance of normally

distributed data and compare continuous variables between two

groups unless otherwise specified. For non-normally distributed

variables, the Mann–Whitney U or Wilcoxon rank sum test was

used to determine differences. Furthermore, the Kruskal–Wallis test

was applied to compare outcomes among three or more groups.

Spearman’s rank correlation was used to determine the correlation

coefficients for several molecules without particular specifications.

All statistical analyses used two-tailed p-values, with a significance

level set at p < 0.05.
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3 Results

3.1 Analytical flow diagram

Figure 1 displays the technical approach of the study,

providing a concise overview of the analytical processes used in

this study.It begins with the combination of datasets GSE60438

(GPL10558 and GPL6884) and proceeds with the identification of

differentially expressed genes (DEGs). Energy metabolism-

related genes (EMRGs) are intersected with DEGs to identify

energy metabolism-related differentially expressed genes

(EMRDEGs). The subsequent enrichment analyses include

Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO),

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment. A protein-protein interaction (PPI) network is

constructed to identify key genes, which are further analyzed

for immune infiltration. Key genes are validated using the

GSE75010 dataset through the Wilcoxon Rank Sum Test and

Receiver Operating Characteristic (ROC) analysis. Finally,

regulatory networks involving mRNA-TF, mRNA-miRNA, and

mRNA-RBP interactions are constructed to understand the

regulatory mechanisms.
3.2 Merging of PE datasets

To eliminate batch effects from the PE datasets GSE60438

(using GPL10558 and GPL6884 platforms), the R package “sva”

was used, resulting in combined datasets. Boxplots (Figures 2A, B)

were used to compare the expression values of the datasets pre- and

post-batch effect removal. Furthermore, a PCA plot (Figures 2C, D)

compared the distribution of low-dimensional features in the

dataset before and after addressing batch effects. The outcomes

from the distribution box plot and PCA plot indicated that the

batch effect in the PE dataset samples was significantly reduced after

batch correction.
3.3 Genes with altered expression
associated with energy metabolism in PE

The data from the combined datasets were separated into PE

and control groups. We performed a comparative analysis of gene

expression levels between PE and control groups across the

combined datasets using the R package “limma”. The findings

identified 55 genes with differential expression, satisfying the

criteria of |logFC| > 0.5 and a p < 0.05 in the combined datasets.

Out of these DEGs, 15 indicated increased expression (logFC > 0.5,

p < 0.05), whereas 40 exhibited decreased expression (logFC < –0.5,

p < 0.05), which was illustrated in the volcano plot analysis of the

dataset (Figure 3A).

To identify genes that exhibited differential expression and were

associated with energymetabolism, we selected genes with |logFC| > 0.5

and a p < 0.05 from the overlap of DEGs and EMRGs (Figure 3B). Six

EMRDEGs, including CRH, IRX3(Iroquois Homeobox 3), LEP, PDK4,
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SPP1, and SST, were identified (Table 2). The variations in the

expression of identified EMRDEGs among different sample groups

in the combined datasets were investigated through the intersection

results. The analysis results were visualized in a heatmap created with

the “pheatmap” package in R (Figure 3C). Besides, the R package

“RCircos” was used to plot the positions of these six EMRDEGs on

human chromosomes and constructed a chromosome localizationmap

(Figure 3D). The mapping revealed that most of these EMRDEGs were

located on chromosome 7, particularly LEP and PDK4.
3.4 Enrichment analysis using GO
and KEGG

We employed GO and KEGG enrichment analyses to investigate

the association between BP, CC, MF, and biological pathways

(KEGG) of six EMRDEGs and PE. The six EMRDEGs underwent

GO and KEGG enrichment analyses (Table 3). The results indicated

that the six EMRDEGs were primarily involved in several BP,

including cell lipid export, regulation of bone remodeling, tissue

and bone restructuring, and glucagon release. Furthermore, they were

associated with CC, neuronal cell bodies, and MFs related to

hormone activity, receptor signaling activation, peptide hormone

receptor binding, neuropeptide hormone activity, and other

hormone receptor interactions. Additionally, the biological pathway
Frontiers in Immunology 06
associated with neuroactive ligand-receptor interaction (KEGG)

exhibited an increase. The findings from GO and KEGG

enrichment analyses were presented using bar graphs (Figure 4A).

Following GO and KEGG enrichment analyses, BP, CC, MF,

and biological pathways (KEGG) were schematically presented

(Figures 4B–E). The connections display the molecules

corresponding to the entries, with annotations for each. The

magnitude of the nodes indicates the quantity of molecules

present in each record.
3.5 GSEA

We conducted GSEA to determine how gene expression levels

across the combined datasets influenced PE and to identify the

associated BPs. The relationship between affected CCs and

performed MFs is depicted in Figure 5A, with specific results

provided in Table 4. The findings indicated that all genes in the

combined datasets were significantly enriched in glycolysis and

gluconeogenesis (Figure 5B), faerie-mediated Ca2+ mobilization

(Figure 5C), NK cell-mediated cytotoxicity (Figure 5D), interleukin

(IL) 10 signaling (Figure 5E), IL12 pathway (Figure 5F), an overview of

proinflammatory and profibrotic mediators (Figure 5G), neutrophil

degranulation (Figure 5H), and other biologically related functions and

signaling pathways.
FIGURE 1

Technology roadmap. DEGs, Differentially Expressed Genes; EMRGs, Energy Metabolism-Related Genes. EMRDEGs, Energy Metabolism-Related
Differentially Expressed Genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis; ROC,
Receiver Operating Characteristic Curve; PPI Network, Protein-protein Interaction Network; TF, Transcription Factor; RBP, RNA-Binding Protein.
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3.6 PPI network

PPI interaction analysis was performed, and the PPI network of

six EMRDEGs was constructed using the STRING database

(Figure 6A). The PPI network findings indicated a connection

among five EMRDEGs: CRH, LEP, PDK4, SPP1, and SST.

Furthermore, the interaction network of five EMRDEGs and their

functionally similar genes (Figure 6B) was predicted and

constructed using the GeneMANIA website. The colored lines

represent their co-expression and share protein domains and

other information. Among them, there were 5 EMRDEGs and 20

functionally similar proteins.
3.7 Construction of regulatory network

We constructed the mRNA-TF regulatory network, which

included five key genes (CRH, LEP, PDK4, SPP1, and SST) and 39

TFs, resulting in 51 mRNA-TF interactions (Figure 7A). Detailed

information is provided in Supplementary Table S2. The mRNA-

miRNA regulatory network consisted of two key genes (PDK4 and

SPP1) and 56 miRNAs, resulting in 59 mRNA-miRNA interactions

(Figure 7B). Detailed data is presented in Supplementary Table S3.

Our derived mRNA-RBP network included three key genes (LEP,

PDK4, and SPP1) and 30 RBP molecules, resulting in 32 mRNA-

RBP interactions (Figure 7C). Detailed data is provided be found in

Supplementary Table S4.
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3.8 Validation of differential gene
expression and analysis of key genes using
ROC curves

To investigate the key genes (CRH, LEP, PDK4, SPP1, and SST)

across the combined datasets, a comparative analysis was

performed through a group comparison (Figure 8A), indicating

the outcomes of the differential expression analysis for these five key

genes in PE samples compared with control samples from the

combined datasets. The findings from the differential analysis

(Figure 8A) indicated that two crucial genes (PDK4 and SPP1)

exhibited a significant statistical difference (p < 0.001) in both PE

and control groups across the combined datasets. Furthermore, SST

demonstrated a statistical significance (p < 0.01) across both types of

samples. The other two crucial genes (CRH and LEP) exhibited

significant expression in both PE and control groups, with a p <

0.05. Moreover, the expression levels of crucial genes in combined

datasets were evaluated by creating ROC curves with the “pROC”

package in R. The ROC curve (Figures 8B–F) revealed that the

expression levels of key genes, including PDK4 in PE samples,

exhibited moderate to high accuracy across different groups (AUC:

0.7–0.9). The expression levels of crucial genes (CRH, LEP, SPP1,

and SST) in PE samples demonstrated low precision across various

groups (AUC: 0.5–0.7). The ROC curves for key genes in dataset

GSE75010 (Figures 8G–K) revealed that the expression levels of

CRH and LEP in PE samples demonstrated moderate to high

precision among various groups (AUC between 0.7 and 0.9).
FIGURE 2

Batch effects removal of GSE60438 (GPL10558, GPL6884). (A) Boxplots of combined datasets distribution before batch removal. (B) Post-batch integrated
combined datasets distribution boxplots. (C) PCA plot of the datasets before debatching. (D) Go to the PCA map of the combined datasets after batch
processing. PCA, Principal Component Analysis; PE, Preeclampsia. The PE dataset GSE60438 (GPL10558 platform) is blue, and the PE dataset GSE60438
(GPL6884 platform) is orange.
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Conversely, the expression levels of crucial genes (PDK4, SPP1, and

SST) in PE samples demonstrated reduced precision across different

groups (AUC: 0.5–0.7).
3.9 Immune infiltration analysis

The ssGSEA algorithm evaluated the presence of 28 types of

immune cells using expression data from combined datasets.

Immune cells were selected with a p < 0.05 using a comparative

group plot. The differences in immune cell infiltration levels across

various groups were observed. The comparative chart (Figure 9A)

indicateds that 16 immune cell types, including activated CD4+ T
Frontiers in Immunology 08
cells, activated CD8+ T cells, activated dendritic cells, CD56bright

NK cells, CD56dim NK cells, effector memory CD8+ T cells,

eosinophils, gamma-delta T cells, immature B cells, macrophages,

myeloid-derived suppressor cells (MDSCs), monocytes,

plasmacytoid dendritic cells, Tregs, T follicular helper cells, and

type 1 T helper cells, exhibited significant differences between PE

and control samples (p < 0.05).The correlation results from the

combined datasets (Figure 9B) exhibited the abundance of 16

different immune cell infiltrations in the immune infiltration

study. The results revealed a significant correlation among

immune cells. The correlation between 5 key genes and 16

immune cells was examined and visualized using a correlation

bubble diagram (Figure 9C). The results indicated a significant
FIGURE 3

Differential gene expression analysis. (A) Volcano plot of differentially expressed genes analysis between PE and Control groups in combined datasets. (B)
DEGs and EMRGs Venn diagram in the combined datasets. (C) Heat map of EMRDEGs in the combined datasets. (D) Chromosomal mapping of EMRDEGs;
DEGs, Differentially Expressed Genes; EMRGs, Energy Metabolism Related Genes; EMRDEGs, Energy Metabolism Related Differentially Expressed Genes. The
orange is the PE group, and the blue is the Control group. The red in the heat map represents high expression, and the blue represents low expression.
TABLE 2 Description of EMRDEGs.

ID Description logFC AveExpr t p-value B

CRH Corticotropin Releasing Hormone 0.917196 7.729465 3.229391 0.001586 1.28882

PDK4 Pyruvate Dehydrogenase Kinase 4 0.795918 9.086324 6.492432 1.80 e-09 11.111

SPP1 Secreted Phosphoprotein 1 0.76471 12.14558 4.36649 2.62 e-05 2.371449

SST Somatostatin 0.56438 7.620709 3.22046 0.001632 1.31405

LEP Leptin 0.539052 7.895897 3.434848 0.000805 0.69233
EMRDEGs, Energy Metabolism-Related Differentially Expressed Genes.
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positive correlation between SPP1 and Tregs, with an r-value =

0.458 and a p < 0.05. The key gene LEP exhibited a significantly

negative correlation with CD56dim NK cells (r-value = –0.359, p <

0.05). Finally, a correlation scatter plot demonstrated the

relationship between top1 positive and top1 negative key genes

and immune cells (Figures 9D, E).
3.10 Validation of key genes in PE

To determine the mRNA expression levels of five crucial genes

in PE, qRT-PCR analysis was performed on 26 patients with PE and

26 placental samples of comparable gestational age. Table 5 presents

the primer sequences. The clinical features of the patient are

presented in Table 6. The two groups exhibited no significant

variances in gestational age and birth weight. The PE group

revealed higher systolic and diastolic blood pressure levels than

the control group. The results of qRT-PCR indicated that, in

contrast to the control group, the expressions of LEP and CRH in

placental samples of PE patients were significantly elevated, while
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the expression level of SPP1 was significantly reduced (Figures 10A–

E). Through the Western blotting experiment, we further examined

the protein expression levels of LEP, CRH, and SPP1 (Figures 10F).

The findings demonstrated that, compared with the control group,

the expression of LEP and CRH proteins in placental samples of PE

patients increased markedly, while the expression level of SPP1

decreased conspicuously (Figures 10G–I).
4 Discussion

PE is a complicated disorder that impacts around 2%–8% of

pregnancies globally and continues to be a major contributor to

maternal and perinatal illness and death (36). PE occurs after the

20th week of pregnancy and is characterized by the sudden onset of

high blood pressure and protein in the urine. PE can result in

serious complications, including eclampsia, HELLP syndrome, and

long-term cardiovascular risks for both the mother and child (37).

The exact mechanisms underlying PE remain unclear; however, it is

hypothesized that irregular placental growth and operation cause
TABLE 3 Results of GO and KEGG enrichment analysis for EMRDEGs.

ONTOLOGY ID Description GeneRatio BgRatio p-value p.adjust q-value

BP GO: 0031667 response to nutrient levels 4/6 446/18800 4.5143 e-06 0.00037793 0.0001242

BP GO: 0009991 response to extracellular stimulus 4/6 479/18800 5.9945 e-06 0.00038785 0.00012746

BP GO: 0140353 lipid export from cell 3/6 43/18800 2.2184 e-07 0.00010706 3.5186 e-05

BP GO: 0046850 regulation of bone remodeling 3/6 49/18800 3.3095 e-07 0.00010706 3.5186 e-05

BP GO: 0034103 regulation of tissue remodeling 3/6 86/18800 1.8302 e-06 0.00031735 0.0001043

BP GO: 0046849 bone remodeling 3/6 88/18800 1.962 e-06 0.00031735 0.0001043

BP GO: 0032368 regulation of lipid transport 3/6 118/18800 4.7551 e-06 0.00037793 0.0001242

BP GO: 0046887 positive regulation of hormone secretion 3/6 122/18800 5.2572 e-06 0.00037793 0.0001242

BP GO: 0007584 response to nutrient 3/6 150/18800 9.7837 e-06 0.00057546 0.00018912

BP GO: 1905952 regulation of lipid localization 3/6 155/18800 1.0796 e-05 0.00058206 0.00019129

BP GO: 0048771 tissue remodeling 3/6 174/18800 1.527 e-05 0.00075997 0.00024976

BP GO: 0007565 female pregnancy 3/6 185/18800 1.8347 e-05 0.00084791 0.00027866

BP GO: 0070091 glucagon secretion 2/6 10/18800 3.8155 e-06 0.00037793 0.0001242

BP GO: 0070092 regulation of glucagon secretion 2/6 10/18800 3.8155 e-06 0.00037793 0.0001242

CC GO: 0043025 neuronal cell body 2/6 482/19594 0.00848281 0.02544843 0.01785855

MF GO: 0048018 receptor ligand activity 4/6 489/18410 7.0699 e-06 3.2414 e-05 1.3123 e-05

MF GO: 0030546 signaling receptor activator activity 4/6 496/18410 7.4802 e-06 3.2414 e-05 1.3123 e-05

MF GO: 0005179 hormone activity 3/6 122/18410 5.5967 e-06 3.2414 e-05 1.3123 e-05

MF GO: 0051428 peptide hormone receptor binding 1/6 19/18410 0.00617717 0.0200758 0.00812785

MF GO: 0005184 neuropeptide hormone activity 1/6 30/18410 0.00973887 0.02250149 0.00910992

MF GO: 0051427 hormone receptor binding 1/6 32/18410 0.0103853 0.02250149 0.00910992

MF GO: 0050840 extracellular matrix binding 1/6 55/18410 0.01779409 0.03304617 0.01337902

KEGG hsa04080 Neuroactive ligand-receptor interaction 3/5 362/8164 0.00080884 0.01617674 0.0119197
GO, Gene Ontology; BP, Biological Process; CC, Cellular Component; MF, Molecular Function; KEGG, Kyoto Encyclopedia of Genes and Genomes; EMRDEGs, Energy Metabolism-Related
Differentially Expressed Genes.
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widespread inflammation and impairment of endothelial function

(38). Current diagnostic approaches for PE primarily depend on

blood pressure monitoring and urinalysis for proteinuria.

Nevertheless, these methodologies are often nonspecific and can

only detect the disease in its advanced stages, which leads to delayed

intervention (39). Research into the underlying mechanisms of PE

is imperative for the development of predictive biomarkers and

effective therapeutic strategies, as it has a substantial health impact

on pregnant women and their offspring.

Currently, the diagnosis of PE often relies on multiple

biomarkers, with the most common being soluble vascular

endothelial growth factor receptor-1 (sFlt-1) and placental growth

factor (PlGF). sFlt-1 is an anti-angiogenic factor secreted by the

placenta, with significantly elevated levels in PE patients, while

PlGF is a factor that promotes blood vessel formation and generally

exhibits decreased levels during PE. Research has demonstrated that

the sFlt-1/PlGF ratio can serve as an effective indicator for assessing

both the occurrence and severity of PE (40). By detecting this ratio,

clinicians can identify PE at an early stage, thereby providing a

foundation for timely intervention. However, despite their potential

application in diagnosing PE, sFlt-1 and PlGF possess limited

accuracy and specificity. Firstly, these markers’ levels are not only

influenced by PE but may also be affected by other pregnancy-related

factors such as gestational diabetes or placental abruption, leading to
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false positive or negative results. Furthermore, fluctuations in sFlt-1

and PlGF levels throughout pregnancy may impact measurements at

a single time point. Therefore, relying solely on these two biomarkers

is insufficient for definitively diagnosing PE; integrating additional

biomarkers may enhance diagnostic precision.

New developments in genomics and bioinformatics have created

opportunities to understand the molecular foundations of diseases,

including PE. By integrating phenotypic data with high-throughput

molecular analyses, researchers can reveal novel biomarkers and

therapeutic targets that can revolutionize PE management (41).

Recent studies have suggested that alterations in EMRGs can

contribute to PE pathogenesis by affecting placental function and

maternal systemic response (42). This research direction holds the

potential to improve our understanding of PE as well as identify novel

diagnostic markers that can result in earlier detection and

intervention, thereby improving outcomes for mothers and their

offspring (43). Significant progress has been achieved; however, there

is a crucial lack in our comprehension of the complex molecular

mechanisms contributing to PE development. These gaps underscore

the necessity for further investigation.

In this study, we have identified six EMRDEGs and observed

their differential expression in patients with PE. These genes may

reflect the metabolic and immune changes occurring in PE, offering

novel diagnostic insights. Our findings underscore the significance of
FIGURE 4

GO and KEGG enrichment analysis for EMRDEGs. (A) Bar graph of GO and KEGG enrichment analysis results of EMRDEGs: BP, CC, MF, and KEGG.
GO terms and KEGG terms are indicated on the ordinate. B-E. GO and KEGG enrichment analysis results of EMRDEGs network diagram exhibiting
BP (B), CC (C), MF (D), and KEGG (E). The orange nodes represent items, the blue nodes represent molecules, and the lines represent the
relationship between items and molecules. EMRDEGs, Energy Metabolism-Related Differentially Expressed Genes; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; BP, Biological Process; CC, Cellular Component; MF, Molecular Function. The screening criteria for GO and
KEGG enrichment analysis were adj. p < 0.05, and FDR value (q-value) < 0.05, and the p-value correction method was Benjamini-Hochberg (BH).
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metabolic alterations in the pathogenesis of PE, a facet that has been

underappreciated among existing biomarkers such as sFlt-1 and

PlGF. Furthermore, variations in EMRDEGs may offer new

perspectives into the pathophysiological mechanisms underlying PE

and complement ongoing efforts to identify early diagnostic markers.

Our findings indicated a significant upregulation of LEP in

placental samples from patients with PE, suggesting that

dysregulation of the LEP gene could contribute to the metabolic

disturbances observed in PE. LEP emerged as a critical player

among the DEGs. LEP, an adipose tissue-derived hormone,

controls energy equilibrium and metabolic processes (44).

Increased LEP levels have been associated with insulin resistance
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and inflammation (45), both of which are pertinent in the context of

PE. Additionally, prior research has indicated the effect of LEP on

regulating vascular function and its potential role in the onset of

hypertension, a characteristic feature of PE (46). Consequently, the

upregulation of LEP in PE can reflect an adaptive response to

altered energy metabolism, consistent with our findings.

SPP1 is another key gene that exhibited significant

downregulation in our analysis. SPP1, an osteopontin, plays a role

in multiple biological activities, including cell adhesion, movement,

and immune response regulation (47). Its expression is crucial for

placental development and function. Its reduced expression in PE

could impair trophoblast invasion and placental development,
FIGURE 5

GSEA for combined datasets. (A) GSEA mountain map presentation of 7 biological functions of the combined datasets. B-h. GSEA revealed that
EMRDEGs were significantly enriched in WP_GLYCOLYSIS_AND_GLUCONEOGENESIS (B), REACTOME_FCERI_MEDIATED_CA_2_MOBILIZATION
(C), KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY (D), Reactome_interleukin_10 signaling (E), PID_IL12_2PATHWAY (F),
WP_OVERVIEW_OF_PROINFLAMMATORY_AND_PROFIBROTIC_MEDIATORS (G), REACTOME_NEUTROPHIL_DEGRANULATION (H). GSEA, Gene Set
Enrichment Analysis; EMRDEGs, Energy Metabolism-Related Differentially Expressed Genes; The screening criteria of GSEA were adj. p < 0.05 and
FDR value (q-value) < 0.05, and the p-value correction method was Benjamini-Hochberg (BH).
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resulting in inadequate remodeling of maternal spiral arteries (48),

which was validated by our study.

Furthermore, CRH was identified as a DEG in our study. CRH is

an important neuropeptide whose secretion is regulated by a variety

of factors, including physiological and environmental stress. Studies

have shown that during pregnancy, the synthesis and secretion of

CRH increases significantly, which is closely related to pregnancy-

related physiological changes. In particular, during the second and

third trimesters of pregnancy, the level of CRH in the maternal

blood increases significantly, which may be due to the synthetic

effects of the placenta. The placenta regulates the maternal immune

response and endocrine system by producing CRH, and affects the

blood flow and nutrient supply of the placenta, which may lead to

placental dysfunction and hypertension [16]. Collectively, these

findings improve our understanding of the molecular foundations

of PE and open new avenues for targeted interventions to restore

normal energy metabolism and placental function.

Our study identified several EMRGs that exhibited differential

expression in PE, focusing on their involvement in glycolysis and
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gluconeogenesis pathways. Glycolysis and gluconeogenesis are

critical metabolic pathways that regulate glucose homeostasis,

providing energy and metabolic intermediates for various cellular

processes. The dysregulation of these pathways can result in altered

energy metabolism, a hallmark of PE.

Recent studies have suggested the importance of metabolic

alterations in PE pathogenesis, demonstrating a shift towards

glycolytic metabolism as a potential disease hallmark. Ackerman

et al. observed a glycolytic change of placental tissues from cases of

early-onset PE with or without fetal growth restriction, pointing to

altered tissue bioenergetics (49). Hu et al. further reinforced the idea

by examining exosomal mRNA and lncRNA profiles in cord blood

and identifying the involvement of glycolysis and gluconeogenesis

in developing PE (50). In line with our GSEA, which identified

significant enrichment of the glycolysis and gluconeogenesis

pathways in PE, this underscores the critical role of metabolic

changes in the pathophysiology of diseases.

Moreover, the differential expression of EMRGs in PE suggested a

broader impact on cellular energy metabolism and oxidative stress. Li
TABLE 4 Results of GSEA for combined datasets.

ID
Set
Size

Enrichment
Score

NES p-value p adjust q-value

REACTOME_NEUTROPHIL_DEGRANULATION 382 0.64867 2.48836 0.001495 0.036503 0.031576

WP_OVERVIEW_OF_PROINFLAMMATORY_AND_PROFIBROTIC_MEDIATORS 101 0.69267 2.26388 0.001709 0.036503 0.031576

PID_IL12_2PATHWAY 54 0.74499 2.20711 0.001862 0.036503 0.031576

REACTOME_INTERLEUKIN_10_SIGNALING 43 0.77819 2.19766 0.001873 0.036503 0.031576

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 103 0.6511 2.14121 0.001692 0.036503 0.031576

REACTOME_FCERI_MEDIATED_CA_2_MOBILIZATION 29 0.82047 2.11928 0.001946 0.036503 0.031576

WP_GLYCOLYSIS_AND_GLUCONEOGENESIS 40 0.74474 2.07394 0.001905 0.036503 0.031576

PID_IL12_STAT4_PATHWAY 31 0.77487 2.06097 0.001901 0.036503 0.031576

REACTOME_COSTIMULATION_BY_THE_CD28_FAMILY 58 0.65126 1.9598 0.001818 0.036503 0.031576

BIOCARTA_IL17_PATHWAY 13 0.8883 1.95493 0.002066 0.036503 0.031576

PID_IL8_CXCR2_PATHWAY 29 0.75551 1.95148 0.001946 0.036503 0.031576

PID_IL23_PATHWAY 35 0.70314 1.92153 0.001869 0.036503 0.031576

BIOCARTA_NO2IL12_PATHWAY 14 0.85133 1.91891 0.002024 0.036503 0.031576

REACTOME_SIGNALING_BY_INTERLEUKINS 394 0.49928 1.91331 0.001522 0.036503 0.031576

WP_IL1_AND_MEGAKARYOCYTES_IN_OBESITY 22 0.75449 1.86687 0.001931 0.036503 0.031576

REACTOME_MET_PROMOTES_CELL_MOTILITY 40 0.640364 1.8563 0.002096 0.036503 0.031576

REACTOME_GLYCOLYSIS 62 0.60937 1.85012 0.001812 0.036503 0.031576

PID_IL8_CXCR1_PATHWAY 23 0.73136 1.81709 0.001949 0.036503 0.031576

WP_IL3_SIGNALING_PATHWAY 48 0.6214 1.80337 0.001859 0.036503 0.031576

KEGG_FC_EPSILON_RI_SIGNALING_PATHWAY 71 0.57231 1.78336 0.001795 0.036503 0.031576

REACTOME_INTERLEUKIN_4_AND_INTERLEUKIN_13_SIGNALING 97 0.54652 1.77469 0.001721 0.036503 0.031576

REACTOME_GLUCOSE_METABOLISM 81 0.55491 1.7502 0.001808 0.036503 0.031576

WP_IL18_SIGNALING_PATHWAY 234 0.45265 1.64082 0.001616 0.036503 0.031576
fro
GSEA, Gene Set Enrichment Analysis.
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et al. identified key proteins associated with glycolysis/gluconeogenesis

and oxidative phosphorylation in syncytiotrophoblast extracellular

vesicles from patients with early-onset severe PE, further supporting

the role of disrupted energy metabolism in the condition (51).

Furthermore,Tong et al. found that genes involved in glycolysis/

gluconeogenesis were significantly inhibited in the decidua of severe

PE, indicating impaired energy metabolism at the maternal-fetal

interface (52).

Meanwhile, GO and KEGG analyses in the study highlighted

crucial roles in lipid metabolism, hormone function, and bone

remodeling. The varying expression levels of genes, including

CRH, LEP, PDK4, SPP1, and SST, provided evidence for possible

biomarkers and treatment targets. The alteration in LEP levels,

known for regulating energy homeostasis, underscored the complex

interplay of metabolic disruptions in PE. Furthermore, creating

networks for protein interactions and regulatory frameworks

involving TFs, miRNAs, and RBPs provided a deeper insight into

the molecular interactions and regulatory processes in PE. The

findings highlighted the complexity of gene regulation and the

potential for targeted therapeutic interventions.
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The immune landscape in PE is characterized by a complex

interplay of altered innate and adaptive immune responses, which is

crucial for understanding disease pathogenesis. Zhou et al.

identified shifts in NK cell gene expression and an increase in

Tregs in PE via single-cell RNA sequencing, suggesting a response

to counteract the inflammatory state of PE (53). Han et al.’s

employed mass cytometry to analyze maternal blood and depicted

immune feature shifts that predicted PE, with early pregnancy

marked by a proinflammatory response and diminished Treg

signaling, highlighting the role of early immune dysregulation in

PE (54). Furthermore, Luo et al.focused on the dysfunction of NK

cells and macrophages, demonstrating that aberrant human

leukocyte antigen (HLA) molecule expression by extravillous

trophoblasts could enhance NK cell cytotoxicity, exacerbating

placental dysfunction (55). Our research confirmed the preceding

findings, revealing significant alterations in different immune cells,

including Tregs and CD56dim NK cells, in samples from patients

with PE compared to the control group. These findings underscored

the importance of immune cells in preserving immune tolerance at

the maternal-fetal interface, highlighting the necessity for additional
FIGURE 6

PPI network analysis. (A) PPI Network of EMRDEGs calculated from the STRING database. (B) The GeneMANIA website predicts the interaction
network of functionally similar genes of EMRDEGs. The circles in the figure indicate the EMRDEGs and their functionally identical genes, and the
corresponding colors of the lines represent the interconnected functions. PPI, Protein-protein Interaction; EMRDEGs, Energy Metabolism-Related
Differentially Expressed Genes.
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research on how these immune alterations impacted the

advancement and detection of the disease.

An imbalance in energy metabolism significantly influences the

immune system through various mechanisms, aligning with our

findings on the interactions between specific genes and immune cell

populations in PE. Firstly, insulin resistance and abnormal lipid

metabolism can trigger systemic inflammation, leading to elevated

levels of pro-inflammatory cytokines such as TNF-a and IL-6 (56).

These cytokines activate immune cells and alter their function and
Frontiers in Immunology 14
distribution, contributing to the immune dysregulation observed in

PE. Secondly, energy metabolism imbalances can directly affect the

metabolic pathways of immune cells; for example, changes in

glucose metabolism can impact the activity and function of T

cells and macrophages (57). Furthermore, metabolic dysregulation

can impact the functionality of immune cells such as NK cells and

Tregs, resulting in the breakdown of immune tolerance and

exacerbation of inflammatory response, thereby further worsening

the immune dysfunction observed in PE (58). These mechanisms
FIGURE 7

Regulatory network of EMRDEGs. (A) mRNA-TF Regulatory Network of Key Genes. (B) mRNA-miRNA Regulatory Network of Key Genes. (C) mRNA-
RBP Regulatory Network of Key Genes. EMRDEGs, Energy Metabolism-Related Differentially Expressed Genes; TF, Transcription Factor; RBP, RNA-
Binding Protein. Orange is mRNA, blue diamonds are TF, blue circles are miRNA, and blue squares are RBP.
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underscore the intricate relationship between energy metabolism

and immune regulation, highlighting the potential of targeting

metabolic pathways to modulate immune responses in PE.

Our findings underscored significant interactions between

certain genes and specific immune cell populations, offering

insights into the intricate immune modulation in PE.
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Furthermore, we observed a significant positive correlation

between SPP1 and Tregs. The gene SPP1 is recognized for its

involvement in regulating the immune system, promoting blood

vessel formation, and modifying tissue structure (59). However, no

direct studies have been published on the association between SPP1

and Tregs in PE, SPP1 is among the most upregulated genes during
FIGURE 8

Differential expression validation and ROC curve analysis. (A) Group comparison plot of Key Genes in PE samples and Control samples of combined
datasets. B-F. ROC curves of Key Genes CRH (B), LEP (C), PDK4 (D), SPP1 (E), and SST (F) in combined datasets. G-K. ROC curves of Key Genes CRH (G),
LEP (H), PDK4 (I), SPP1 (J), and SST (K) in dataset GSE75010. ROC, Receiver Operating Characteristic; AUC, Area Under The Curve. ROC, Receiver
Operating Characteristic Curve; TPR, True Positive Rate; FPR, False Positive Rate. * represents p-value < 0.05, statistically significant; ** represents p-
value < 0.01, highly statistically significant; *** represents p-value < 0.001 and highly statistically significant. AUC between 0.5-0.7 had low accuracy, and
AUC of 0.7-0.9 had moderate accuracy. In the group comparison figure, the PE group is orange, and the Control group is blue.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1496046
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1496046
T-cell activation, and it has diverse roles in immune response

regulation (60). This relationship suggests that SPP1 promotes an

immunosuppressive environment conducive to fetal tolerance.

Additionally, Tregs are known for maintaining immune
Frontiers in Immunology 16
homeostasis and preventing autoimmunity by suppressing

abnormal immune responses. Based on the established

mechanisms, we hypothesized that reduced expression of SPP1 in

PE could negatively impact the immunosuppressive environment
FIGURE 9

Immune infiltration analysis by ssGSEA algorithm. (A) Group comparison plot of immune cells in PE and Control samples from the combined datasets.
(B) Correlation heatmap of immune cell infiltration abundance in the combined datasets. (C) Bubble correlation plot between Key Genes and immune
cell infiltration abundance in the combined datasets. (D) Scatter plot of the correlation between Top1 positively correlated Key Genes and immune cells.
(E) Scatter plot of correlation between TOP1-negatively correlated Key Genes and immune cells. ssGSEA, single-sample Gene-Set Enrichment Analysis;
ns stands for p-value ≥ 0.05, not statistically significant; * represents p-value < 0.05, statistically significant; ** represents p-value < 0.01, highly
statistically significant; *** represents p-value < 0.001 and highly statistically significant. The absolute value of the correlation coefficient (r-value) below
0.3 was weak or no correlation; between 0.3 and 0.5 was a weak correlation, between 0.5 and 0.8 was a moderate correlation, and above 0.8 was a
strong correlation. In the group comparison plot, the PE samples are orange, and the Control samples are blue. In the heat map and correlation map,
orange is a positive correlation, blue is a negative correlation, and the depth of color represents the strength of the correlation.
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and the expansion and function of Tregs, ultimately affecting overall

immune homeostasis and potentially contributing to the

pathophysiological processes of PE.

Furthermore, our research exhibited a negative correlation

between LEP and CD56dim NK cells, highlighting the intricate

interplay between the LEP gene and specific NK cell subsets. This

subset, well-known for its crucial role in regulating maternal-fetal

immunity, is influenced by the signaling pathways of LEP (61). NK

cells are critical in establishing appropriate maternal-fetal immune

interactions in early pregnancy, indicating the complex role of LEP

in regulating adverse immune responses in PE. Increased LEP levels,

possibly reflective of the inflammatory state and placental

insufficiency in PE, may impair the cytolytic function of

CD56dim NK cells, hampering their role in placental and fetal

development. Moreover, LEP emerges as a potentially influential

factor in shaping the immune environment in PE, potentially

impacting the balance between tolerance and immune activation
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necessary for a successful pregnancy outcome. In conclusion, the

immune system dysfunction observed in PE, which is marked by

alterations in the infiltration and activity of immune cells, highlights

the significance of immune processes in disease pathophysiology.

These findings provided valuable insights into potential therapeutic

targets and highlighted the need for further research to develop

immune-based interventions for PE.

The potential of biomarkers such as LEP, SPP1, and CRH in

predicting the severity or complications of PE is noteworthy.

Differential expression analysis from the combined datasets

revealed significant differences in the expression of these

biomarkers between PE and control groups. This was confirmed

by qRT-PCR andWestern blot of clinical samples. Additionally, the

correlation between key genes and specific immune cells indicates

that these biomarkers may modulate immune responses in PE.

Given their significant differential expression and association with

energy metabolism and immune regulation, these key genes hold

promise as biomarkers for predicting PE severity or complications.

The identified biomarkers were compared with established

diagnostic markers for PE, such as sFlt-1 and PlGF. The

mechanism of sFlt-1 involves inhibiting normal angiogenesis,

leading to placental dysfunction and symptoms like hypertension,

while PlGF levels typically decrease in PE patients (41). The sFlt-1/

PlGF ratio is widely used for early PE diagnosis due to its high

specificity and sensitivity. In contrast, LEP is involved in energy

balance and metabolic processes, with its upregulation in PE

placental samples potentially linked to insulin resistance and

inflammation. The increase of CRH level in PE patients may be

related to the disturbance of placental energy metabolism, and

further aggravate the condition by affecting placental oxidative

stress and inflammatory response. SPP1 downregulation may

affect trophoblast invasion and placental development. While sFlt-

1 and PlGF are well-established in clinical practice for early

identification of high-risk pregnancies, LEP, SPP1, and CRH hold

potential as new diagnostic and therapeutic targets. Further

research on these new biomarkers could enhance our

understanding of PE’s underlying mechanisms and improve

diagnostic and treatment strategies.

Known treatments for PE, such as antihypertensive drugs, early

low-dose aspirin, and calcium supplements, may influence the

expression of the identified genes. For instance, antihypertensive

drugs have been shown to affect LEP expression by improving blood

flow and reducing blood pressure (62). Early low-dose aspirin may

regulate LEP levels by inhibiting platelet activation and associated

inflammatory responses, thus improving energy metabolism and

balance (63). These therapeutic interventions highlight the potential

for targeted treatments to modulate gene expression and improve

outcomes for patients with PE.

In light of our findings, exploring therapeutic approaches

targeting the identified genes could offer new avenues for PE

treatment. For instance, LEP ‘s therapeutic potential could be

harnessed through anti-inflammatory drugs. Given the

relationship between LEP and inflammatory states, certain anti-

inflammatory medications, such as non-steroidal anti-

inflammatory drugs (NSAIDs), might mitigate the inflammatory

response in PE. By reducing LEP levels, these drugs could
TABLE 5 Primer sequences for qRT-PCR.

Gene Primer sequences (5′-3′)

CRH
GGTCCCTACTCCTACTGCAAC (forward)
CCAAGCATTCTCGATAGGCATTC (reverse)

LEP
TGCCTTCCAGAAACGTGATCC (forward)
CTCTGTGGAGTAGCCTGAAGC (reverse)

PDK4
GACCCAGTCACCAATCAAAATCT (forward)
GGTTCATCAGCATCCGAGTAGA (reverse)

SPP1
CTCCATTGACTCGAACGACTC (forward)
CAGGTCTGCGAAACTTCTTAGAT (reverse)

SST
ACCCAACCAGACGGAGAATGA (forward)
ACCCAACCAGACGGAGAATGA (reverse)
qRT−PCR, quantitative real−time PCR.
TABLE 6 Clinical information of the patients.

Category
PE (n = 26) Control

(n = 26)
p-value

Age (years) 31.385 ± 5.93 29.846 ± 4.62 0.302

Gestational age at
delivery (weeks)

36.423 ± 2.53 36.423 ± 2.53 1

Systolic blood
pressure(mmHg)

155.73 ± 20.36 121.38 ± 6.84 < 0.001

Diastolic blood
pressure (mmHg)

93.654 ± 10.88 74.346 ± 4.09 < 0.001

Neonatal birth
weight (g)

2713.8 ± 618.71 2934.6 ± 576.38 0.323

1 min Apgar (score) 0.204

10 23 (88.5%) 26 (100%)

9 2 (7.7%) 0 (0%)

7 1 (3.8%) 0 (0%)

5 min Apgar (score) 0.471

10 24 (92.3%) 26 (100%)

9 2 (7.7%) 0 (0%)
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potentially improve maternal metabolic status and vascular

function. Additionally, SPP1’s role in placental development and

function suggests that therapies promoting SPP1 expression could

be beneficial. Furthermore, SPP1’s involvement in immune

regulation indicates its potential as an immunomodulatory agent

in PE treatment, promoting fetal tolerance and improving

pregnancy outcomes.

Translating these findings into clinical practice presents several

challenges. One major challenge is the standardization of biomarker

assays. To effectively utilize new biomarkers such as LEP, SPP1, and

CRH in clinical settings, standardized detection protocols must be

established, including standardized detection methods and quality

control measures. Additionally, clinical validation and external
Frontiers in Immunology 18
validation are crucial. Although our study has identified potential

biomarkers, their clinical efficacy needs to be confirmed through

large-scale clinical validation. This includes addressing challenges

related to the scale and representativeness of the study population

and the complexity of clinical scenarios.

Despite the comprehensive bioinformatics approach employed,

this study has certain limitations. First, the quality and source of the

data used can significantly impact the results, as variations in

sample collection, processing, and storage conditions across

different studies can introduce inconsistencies. Second, integrating

multiple datasets from different sources could introduce batch

effects despite efforts to correct these effects using computational

methods. Such batch effects could still influence the results and
FIGURE 10

Comparison of key genes expression in placental samples of the control group and PE group. The expression bars of LEP (A), CRH (B), SPP1 (C), PDK4
(D), and SST (E) in the control group and PE group describe the mRNA expression levels of key genes. (F)Western blot analysis of LEP, CRH, SPP1 protein
expression levels in placental samples of preeclampsia group and control group. The expression bars of LEP (G), CRH (H), and SPP1 (I) in the control
group and PE group describe the protein expression levels of key genes.Blue bars representing the control group and orange representing the PE group.
ns stands for p-value ≥ 0.05, not statistically significant; * represents p-value < 0.05, statistically significant; *** represents p-value < 0.001 and highly
statistically significant.
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interpretations. Third, the choice of analysis tools and algorithms

can affect the outcomes, as different tools and algorithms may yield

varying results, introducing bias. Fourth, functional annotation

relies on existing databases, which may not be comprehensive or

up-to-date, limiting the accuracy and completeness of the

functional insights derived. Fifth, the study lacked extensive

clinical validation, which was crucial for translating the findings

into clinical practice, and the results need to be validated in larger,

independent cohorts and through functional experiments to

establish their clinical relevance. Additionally, the sample size was

relatively small, with only 12 placental samples collected for qRT-

PCR validation, which could limit the generalizability of the results.

Lastly, the study was not conducted in cells or animals and was not

robust enough to be validated in wet laboratory experiments,

limiting the ability to confirm the biological significance of the

identified genes and pathways.
5 Conclusion

In conclusion, the study effectively detected EMRDEGs in PE by

integrating and analyzing various datasets. The functional

enrichment studies indicated important BPs and pathways

associated with EMRDEGs, offering an understanding of the

fundamental mechanisms of PE. Identifying interactions between

proteins and regulatory networks, including mRNA-TF, mRNA-

miRNA, and mRNA-RBP, highlighted significant genes and their

possible regulatory mechanisms. Immune infiltration analysis

suggested that specific immune cell types were differentially

abundant between PE and control groups and might correlate with

key genes. The potential for diagnosis using these important genes

was revealed through ROC curves, and their expression was

confirmed using qRT-PCR. The results provided a comprehensive

insight into the molecular foundation of PE and indicated possible

biomarkers and targets for treatment. Future studies should focus on

larger sample sizes, wet lab validations, and extensive clinical trials to

further substantiate the findings and facilitate their translation into

clinical applications.
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