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AI-enhanced profiling of phage-
display-identified anti-TIM3 and
anti-TIGIT novel antibodies
Astrid Musnier1*, Yannick Corde1†, Adrien Verdier1†,
Mélanie Cortes1†, Jean-René Pallandre2, Christophe Dumet1,
Adeline Bouard2, AbdelRaouf Keskes1, Zakaria Omahdi1,
Vincent Puard1, Anne Poupon1 and Thomas Bourquard1

1MAbSilico SAS, Tours, France, 2Etablissement Français du Sang - Bourgogne Franche-Comté (EFS
BFC), Plateforme ITAC-UMR1098-RIGHT, Besançon, France
Antibody discovery is a lengthy and labor-intensive process, requiring extensive

laboratory work to ensure that an antibody demonstrates the appropriate

efficacy, production, and safety characteristics necessary for its use as a

therapeutic agent in human patients. Traditionally, this process begins with

phage display or B-cells isolation campaigns, where affinity serves as the

primary selection criterion. However, the initial leads identified through this

approach lack sufficient characterization in terms of developability and epitope

definition, which are typically performed at late stages. In this study, we present a

pipeline that integrates early-stage phage display screening with AI-based

characterization, enabling more informed decision-making throughout the

selection process. Using immune checkpoints TIM3 and TIGIT as targets, we

identified five initial leads exhibiting similar binding properties. Two of these leads

were predicted to have poor developability profiles due to unfavorable surface

physicochemical properties. Of the remaining three candidates, structural

models of the complexes formed with their respective targets were generated

for 2: T4 (against TIGIT) and 6E9 (against TIM3). The predicted epitopes allowed

us to anticipate a competition with TIM3 and TIGIT binding partners, and to infer

the antagonistic functions expected from these antibodies. This study lays the

foundations of a multidimensional AI-driven selection of lead candidates derived

from high throughput analysis.
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1 Introduction

The new therapeutic strategy in clinical oncology which consists in activating the host’s

immune system rather than killing the tumor itself, has laid the foundations for one of the

greatest advances in recent medicine. These novel immunotherapies, known as ICI (immune

checkpoint inhibitors), block the mechanisms that allow cancer cells to evade immune
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detection, and showed efficacy in many different cancer types (for

review, see (1)). First approved in 2011 for targeting anti-cytotoxic T

lymphocyte-associated protein 4 (anti-CTLA-4) in advanced

melanoma, Ipilimumab was soon followed in 2014 by two anti-

programmed cell death protein 1 (anti-PD-1) agents, Pembrolizumab

and Nivolumab. Despite the tremendous improvement of patients

survival, 10 years of clinical use drives to the conclusion that a

majority of the patients are resistant to CTLA-4 and PD-1/PD-L1 axis

immunotherapies (for review, see (1, 2)). Resistance to PD-1 blockade

was demonstrated to originate from a complex interplay between the

immune cells (CD8+ T cells, T regs, Myeloid-derived suppressor cells,

Tumor-associated macrophages…) and the cancer cells within the

tumor microenvironment (TME) (3–5). The release of

immunosuppressive cytokines and negative cell interplays pushes

CD8+ T cells toward exhaustion are the reported causes leading to

the immune silencing of the TME. Exhausted T cells exhibit an

increased expression of inhibitory immune checkpoints such as

CTLA-4, PD-1, TIM3/HAVCR-2 (T-cell immunoglobulin mucin

receptor 3/Hepatitis A virus cellular receptor 2), LAG3

(Lymphocyte activation gene 3), or TIGIT/VSIG9 (T-cell

immunoreceptor with Ig and ITIM domains/V-set and

immunoglobulin domain-containing protein 9). This accumulation

is thought to be insurmountable for anti-PD-1 antibodies alone to

restore T cells activation (6–8). Strategies are under clinical

investigation to overcome PD-1 blockade resistance consisting,

among others, in combining multispecific anti-ICI antibodies.

Cooperation between TIGIT and PD-1 blockade (8), as well as

between TIM3 and PD-1 blockade (7, 9), have previously been

demonstrated efficient at overcoming T cell exhaustion. However,

despite their promising potential to synergize with PD-1 and the

numerous clinical trials initiated, no anti-TIGIT or anti-TIM3 are

today FDA-approved and available for patients.

Therapeutic antibodies constitute the largest class of biologics,

accounting for 140+ commercialized products, among which 5

reached the 10 top-selling drugs (10). Their tremendous success is

mostly due to the high affinity and specificity they exhibit for their

target, and subsequent limited (but not absent) side effects. As a

counterpart, finding a therapy-level antibody is an obstacle race.

The discovery phase is the first step of the antibody development,

during which the lead antibodies are identified and optimized in

order to fulfill the requirements of the preclinical and clinical trials.

Many dimensions must be considered during the discovery: the

ability to bind the target, on a functional epitope, with good affinity

and high specificity, while eventually maintaining cross-species

binding to anticipate the preclinical trials, and displaying good

manufacturability properties. All these parameters allow to ensure

that the antibody displays suitable production, safety and efficacy

properties compatible with its use as a therapeutic molecule in

human patients. Experimental antibody discovery forbids studying

all these dimensions at the same time, the sequence of the wet-lab

experiments being dictated by the number of molecules that can be

handled by the state-of-the-art techniques. At the end, a complete

antibody development, from the ignition of discovery to achieved

clinical trials, takes an average of 7 years and costs over 1 b$. The

massive amount of program failures (>95%) highlights the need for

pipeline optimization.
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In silico tools are being developed to rationalize antibody

discovery, while limiting the number of experiments performed,

late-stage failures and consequently the development costs of such

molecules (11, 12). We developed several AI-based algorithms to

predict antibody properties as early as when their sequences are

known, such as epitope mapping, affinity prediction and

developability assessment, among others (13–15). Here is

presented a technological pipeline combining experimental phage

display and AI-based epitope-driven affinity evaluation and

developability assessment, which succeeded at identifying

promising candidates against TIM3 and TIGIT.
2 Materials and methods

2.1 Cells lines, primary cells and culture

HEK293, CEM, SupT1 were purchased from ATCC (American

Type Culture Collection, Manassas, VA). Jurkat and NK-92 were

purchased from DMSZ (DSMZ-German Collection). NKL and YT

were kindly provided by the ITAC platform-UMR1098 (France).

HEK293 cells were cultured in Dulbecco’s Modified Eagle

medium (DMEM, Eurobio Scientific) supplemented with 10%

fetal calf serum and 1% penicillin streptomycin (Eurobio). CEM,

SupT1, Jurkat, JM, YT and NKL cell lines were cultured in Roswell

Park Memorial Institute medium (RPMI 1640) supplemented with

10% fetal calf serum and 1% penicillin streptomycin (Gibco,

France). NKL culture was supplemented with 200 UI/mL IL-2.

NK-92 was cultured in a lpha-MEM (with ribo- and

deoxyribonucleoside) (PAN BIOTECH, Germany)) supplemented

with 12,5% fetal calf serum, 12,5% horse serum, 200UI/mL of IL-2

and 1% penicillin streptomycin (Gibco, France). All cell lines were

routinely tested for mycoplasma contamination.

Total blood was obtained from healthy donors using

cytapheresis kits (French Blood Institute of Bourgogne Franche-

Comté). Peripheral blood mononuclear cells (PBMC) were isolated

by density gradient centrifugation (Ficoll-PaqueTM Premium,

Dutscher, Brumath, France) and stained right away. Tissue-

resident memory T cell (TRM) were obtained and cultured in

RMPI supplemented with 10% fetal calf serum, 1% penicillin

streptomycin, 50 ng/ml TGF-b1 (Peprotech réf 100-21) and 20

ng/ml IL-15 (Peprotech réf 200-15).
2.2 Targets genes design and synthesis

Genes were all obtained by gene synthesis (Twist Bioscience)

and cloned in pcDNA3.1 via NEBuilder HiFi DNA Assembly.

Transmembrane targets (TIM3: uniprot Q8TDQ0, TIGIT:

uniprot Q495A1, SIRPa: uniprot P78324, PD-1: uniprot Q15116
and the Spike protein fromWuhan SARS-CoV-2: uniprot P0DTC2)

were added by a Flag tag in C-term during design while TNFa
(uniprot P01375) was added by a N-term Flag. The gene coding for

the soluble RBD (Receptor Binding Domain, aa 335-528 of the

Spike protein from Wuhan SARS-CoV-2, uniprot P0DTC2) was

added by a signal peptide (aa from betaFSH gene, uniport P01225)
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in N-term to address to the secretion pathway and by to a linker

containing a Flag Tag ((G3S)2-Flag Tag-(G3S)2) fused to the

transmembrane domain of CD8 (aa183-235, uniport P01732) in

C-term.
2.3 Phage display screening and primary
validation of the scFv by ELISA

Phage display libraries screening was assessed on recombinant

human His-tagged TIM3 or human His-Tagged TIGIT

(ACROBiosystems) coated at 25 µg/ml for the first round, and 10

µg/ml for the second round on a Nunc MaxiSorp plates (Thermo

Fisher). After blocking with 3% skimmed milk or BSA in PBS

Tween, the bacteriophages were pre-cleared against a non-relevant

His-tagged protein for 2h and the non-specific bacteriophages were

eliminated by several washes with PBS Tween and PBS. At each

round, the phages were eluted by trypsin digestion and were used to

infect TG1 cells. From the second panning rounds on either TIM3

or TIGIT, 768 colonies were randomly picked, grown in 96 well

format, and the scFv expression induced. Nunc MaxiSorp plates

(Thermo Fisher) were coated overnight with 50 ml of 1 mg/ml of the

target protein and the binding of scFv assessed by ELISA. Plates

were washed thrice with PBS Tween and blocked with 200 ml of 2%
BSA PBS Tween. After washes, 50 mL of unpurified scFv-containing

bacterial culture supernatants in 2% BSA PBS Tween was added and

left incubating at room temperature for 1 h. The plates were washed

thrice with PBS Tween and 100 µl of Anti-HA tag antibody

(Abcam) were added for 1h for scFv labelling. The plates were

washed thrice with PBS Tween and 100 µl of HRP (horseradish

peroxidase)-conjugated anti-Rabbit IgG (BioRad) was added. The

Tetramethylbenzidine peroxidase (TMB) EIA substrate kit (Biorad)

was used according to manufacturer’s instructions, and the

absorbance was measured at 450 nm using a microplate reader

(Biotek Instruments). Positive clones were individually

sequenced (Azenta).
2.4 Antibody productions

The VH and VL genes of the phage-display isolated scFv were

amplified by PCR (Q5® high-fidelity, NEB Biolabs). The VH and

VL genes of the control antibodies (anti-TIGIT antibodies

Tiragolumab (PDB 8JEO, (16)) and MG1131 (PDB 7VYT, (17)),

the anti-TIM3 antibodies M6903 (PDB 6TXZ, (18)), Tim3.18 (PDB

7KQL, (19)), Sabatolimab (20) and Cobolimab (21), the anti-SIRPa
Fab CC-95251 (22), and the anti-SARS-CoV-2 Spike protein

Casirivimab (23) and Bebtelovimab (24)) were obtained by gene

synthesis (Twist Bioscience) and amplified. DNA amplicons were

cloned using NEBuilder HiFi DNA Assembly into the pTrioz-

hIgG1 (InvivoGen), a plasmid encoding the constant domains of

human IgG1 (InvivoGen), and into an in-house variant of the

pTRIOZ coding for murine IgG2a Fc fragment. HEK293 were then

transiently transfected with purified plasmids using Metafectene

(Biontex Laboratories GmbH) according to the manufacturer’s

instructions. After 24 h, the medium was replaced by DMEM
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without red phenol and supernatants were harvested 48 to 72 h

later. After concentration on Vivaspin Turbo 4 (3 kDa cut-off;

Sartorius), IgG concentrations were evaluated with semi-

quantitative ELISA, and/or quantitative HTRF (Homogeneous

Time-Resolved Fluorescence) kit IgG HTRF Kappa MAb

(Revvity) according to manufacturer’s instructions. Antibodies

6E9, 6TXZ and 7KQL were produced and purified under IgG1

format in a large batch by SinoBiological.
2.5 Binding assay by HTRF (homogeneous
time-resolved fluorescence)

Buffers and donor or acceptor-coupled sensors were obtained

from Revvity. Antibodies-containing HEK293 supernatants were

diluted in PPI Terbium Detection buffer and the binding to TIM3

(6-His C-ter-tagged, Acro Biosystems) or TIGIT (TIT-H52H5

Human TIGIT Protein, His Tag, active dimer, AcroBiosystems)

diluted at 0.6 ng/µl final concentration in small volume 384-wells

plates (Greiner Bio-One). After 1h incubation, the anti-6His-d2 and

anti-IgG1-Tb (Terbium) cryptate sensors were added according to

manufacturer’s protocol, and the plates were incubated 1h in the

dark. Fluorescence measurement was performed with a TriStar 2 LB

942 Multimode Microplate Reader (Berthold Technologies GmbH

& Co) at 620 nm (donor background fluorescence) and 665 nm

(binding signal). The HTRF ratio was calculated as the emission

value at 665 nm divided by the 620 nm value, subtracted with

reagent background ratio and multiplied by 10 000.
2.6 Flow cytometry-based binding assay

Binding to TIM3, TIGIT, SIRPa, PD-1 or RBD in HEK293 cells

was performed on transiently-transfected cells using Metafectene

(Biontex Laboratories GmbH) according to the manufacturer’s

instructions. After 24 hours, the cells were trypsinized, fixed, and

permeabilized according to the BD Bioscience CytoFix/CytoPerm

kit’s protocol and distributed in 96-well plates at 50,000 cells per

well. Cells pellets were resuspended in 50 µl of raw antibody

supernatants (candidate antibodies or isotype) at room

temperature for 1h. After one wash in 2 ml PBS supplemented

with 2mM EDTA and 1% FBS, cells were co-incubated with 1 µg of

APC-conjugated anti-human IgG antibody (Miltenyi Biotec) and

0.5 µg of PE-conjugated anti-Flag antibody (BioLegend) in 20 µl of

Perm/Wash buffer at room temperature for 45 min. Cells were then

washed with 100µl PBS-EDTA before suspension in 100 µl PBS-

EDTA. Data (% of APC+PE+ cells and APC MFI of PE+

subpopulation) was collected with a MACSQuant Analyzer 10

(Miltenyi Biotec) and analyzed using FlowJo V10.

Prior to investigating the binding to endogenous TIM3 in CEM,

SupT1, Jurkat, JM, YT, NKL and NK-92, a phenotypic analysis of

the cell lines was realized in FACS buffer (PBS 1X, 0.2% BSA). TIM3

expression was evaluated with fluorophore-conjugated antibody

F38-2E2 (Sony Biotechnology) and compared with an isotype.

TIM3 positive lines were incubated with 1µg of 6E9 or 7KQL for

25 min in the dark at 4°C. After wash steps, the secondary detection
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was performed with PE-coupled anti-human IgG1 antibody (1/200e

Jackson Immuno Research: 109-116-170) for 25 min in the dark at

4°C. For cell viability analyses, Fixable Viability Dye (eBioscience)

was used according to the manufacturer’s instructions. Flow

cytometry data was acquired on FACSymphony A1 (BD

Biosciences) and analyzed with FlowJo software (v10.8.1).

PBMC were stained with an V450-coupled anti-CD3 antibody

(BD Biosciences-clone OKT3) and a FITC-coupled anti-CD56

antibody (BD Biosciences-clone NCAM16.2). TRM (CD103+

CD69+ and CD8+) were stained with the previous antibodies and

anti-CD103 (clone Ber-ACT8), anti-CD69 (clone FN50) and anti-

CD8 (clone RPA-T8) antibodies (BD Biosciences).
2.7 Flow cytometry-based
competition assays

HEK293 cells were transiently transfected with the target of

interest and prepared as described above. Cells pellets were

resuspended in 50 µl of raw hIgG1-formatted antibody

supernatants (candidate antibodies or isotype) at room

temperature for 1h. For antibodies pairwise competitions, 50 µl of

mIgG2a-containing supernatants were added. For CD155

competitions on TIGIT, 1 µg of mIgG2a Fc-fused CD155

(ACROBiosystems) were added. Stainings of the remaining bound

hIgG1 and the overexpressed targets, readings and data analyses are

performed as described above.
2.8 KD measurement by BLI
(BioLayer interferometry)

All the measurements were performed with the Octet RED96

System (Pall Forte Bio) in PBS at 30°C and under 1000 rpm shaking.

Anti-human Fc (AHC) biosensors (ForteBio) were soaked for 10

min in PBS, and saturated 15 sec in 1 mM biocytin. Sensors were

rinsed twice in PBS for 120 sec and 60 sec, this step serving as

background baseline. Sensors were loaded in antibody supernatants

for 500 sec. Association with recombinant TIGIT or TIM3 proteins

was done for 300 sec, and dissociation in PBS measured during 300

sec. Data was analyzed using Octet Software version 9.0.

Experimental data was fitted with the binding equation describing

a 1:1 interaction. Global analyses of the data sets assuming that

binding was reversible (full dissociation) were carried out using the

nonlinear least-squares fitting, allowing a single set of binding

parameters to be obtained simultaneously for all concentrations

used in each experiment.
2.9 Data analysis, statistics, graph edition
and iconography

Statistical analyses and graphs were performed with GraphPad

Prism 9 software. Pictures were built with biorender.com

and thenounproject.com.
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3 Results

3.1 Candidates identification and
binding validations

Phage display and hybridomas are efficient and robust methods

to screen antibody libraries against a desired target. Both

approaches are based on a common principle: to fish out the

affinity outliers from the antibody collection. Important

parameters of antibody discovery such as the developability

potential of the identified hits or their epitope mapping are

ignored during the selection despite their tremendous importance

for the future of the candidates. The purpose of our study was to

show the added value of our AI-based tools to provide

developability and structural insights to a regular and fast phage

display primary selection. The global process is described in

Figure 1, and starts by identifying candidates and obtaining their

sequences. A scFv-encoding phage display library was enriched

along 2 rounds of panning against the recombinant extracellular

domains of TIM3 or TIGIT and 768 clones of each pool were

randomly picked. The scFv production was induced and an ELISA

screening using a classical HRP-coupled anti-tag antibody identified

40 positive clones against TIM3 and 14 against TIGIT (data not

shown). The VH and VL were sequenced and a primary analysis of

sequence redundancy showed that all TIGIT clones and 25 out of

the 40 TIM3 clones were unique. The 39 scFv candidates were

reformatted as IgGs by fusing the VH and VL of the initial scFv to

the constant domains of unmodified human IgG1. The IgG were

directly screened from unpurified production supernatants by

HTRF and flow cytometry to eliminate candidates displaying

insufficient affinity, false positives, and the ones that lost their

binding due to reformatting (Supplementary Figure S1). Publicly-

disclosed reference antibodies directed at TIM3 (M6903 (PDB

6TXZ, (18)), Tim3.18 (PDB 7KQL, (19) and the Sabatolimab

(20)) or TIGIT (Tiragolumab (PDB 8JEO, (16), and MG1131

(PDB 7VYT, (17)) were obtained by gene synthesis, cloned and

produced in the same way and used as controls. Out of the 25

unique TIM3 clones, only 6E9 exhibited a binding during both

assays after being reformatted (Supplementary Figures S1A, C).

Among the 14 anti-TIGIT IgGs, 6 bound in HTRF to recombinant

TIGIT, and 4 of those in flow cytometry: clones T2, T4, T7 and T10

(Supplementary Figures S1B, D).

The 5 final candidates were produced at larger scale, quantified

and moved to more precise in vitro characterization. The HTRF

ratios were measured in dose-response in order to obtain comparable

EC50s. 6E9, T2 and T4 displayed similar profiles as compared to

reference antibodies, with EC50 in the sub-nM range (Figures 2A, B;

Table 1). T7 and T10 exhibited delayed binding in this assay. Kon,

Kdis, and KDmeasurements were performed by BLI in order to obtain

kinetic insights into the binding (Table 1; Supplementary Figure S2).

6E9 exhibits association and dissociation profiles similar to the

references 7KQL and Sabatolimab, and consequently a similar KD.

The 6TXZ displayed a slightly better affinity in virtue of a better Kdis.

T4 displayed the best binding properties among the TIGIT candidates

because of a slightly better Kdis.
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The binding specificities of the antibodies were assessed by flow

cytometry in HEK293 cells overexpressing selected targets. PD-1 and

SIRP-a, which belong to the V-set structural family like TIGIT and

TIM3, as well as the non-related Spike protein (Wuhan SARS-CoV-

2), RBD (Receptor Binding Domain of the Wuhan SARS-CoV-2

Spike protein) and TNFa, were investigated (Figure 2C). All the

targets were fused to a Flag tag which allowed to optically select the

target-overexpressing subpopulation (PE+ staining), and the binding

of the antibodies was detected with an APC-coupled anti-IgG

antibody. The percentage of APC+PE+ cells were collected and

reported in the matrix (the cytometry plots are shown in

Supplementary Figure S3). As can be observed, the identified anti-

TIGIT and TIM3 candidates bound their cognate target, but neither

to other V-set proteins, nor to the non-related RBD, Spike or TNFa.
As expected, the investigated targets bound their known control

antibodies: Pembrolizumab on PD-1, 7ST5 (Fab CC-95251) on SIRP-

a, and Bebtelovimab and Casirivimab on the RBD and the

trimeric Spike.

The antibodies aim at being used as immune checkpoint

inhibitors to restore T cell function in the tumor microenvironment

(TME). Therefore, 6E9 binding was investigated in TME-relevant T-
Frontiers in Immunology 05
cell models. The endogenous expression of TIM3 was first evaluated

by flow cytometry in four T cells lines (CEM, JM, Jurkat and SupT1),

three NK lines (NK-92, NKL and YT), and human primary PBMC

(peripheral blood mononuclear cells) and TRM (tissue-resident

memory T cell). Detectable levels of TIM3 were observed in NK-92

and NKL lines, as well as in both the CD3+ (T) and CD3-CD56+

(NK) subsets of PBMC and TRM (Supplementary Figure S4).

Interestingly, whereas TIM3 was not detected in T lines as described

in the literature, its expression was observed in primary PBMC and

TRM subsets. The binding of 6E9 and its control 7KQL were

consistently observed on TIM3-expressing cells, opening avenues for

future in vitro and in vivo studies (Figures 2D–F).

We herein identified one anti-TIM3 and 5 anti-TIGIT

antibodies, which all seemed to display good binding properties

and good specificity.
3.2 Developability assessment

Throughout the antibody development process, it is crucial to

ensure that its physical and chemical attributes will ensure the
FIGURE 1

Global process of our approach. After conducting phage display screening and sequencing of the primary scFv candidates, further characterization
were performed simultaneously in the wet lab (blue) and the dry lab (green). In the wet lab, the scFvs were reformatted into IgG, produced, and their
binding was validated. Publicly available control data obtained through data mining (yellow) was used for comparison in the experiments and to
evaluate the eligibility of the antibodies for intellectual property protection. In the dry lab, the 3D structures of the VH and VL domains were
modeled through homology. Sequential and structural features of the antibodies were analyzed to assess their developability. The VH-VL structural
models were docked onto the 3D structures of their respective targets, and the affinity of the resulting complexes was evaluated, allowing for the
identification of the antibodies’ epitopes.
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patient’s safety, while achieving the desired pharmacokinetic profile,

and maximizing therapeutic effectiveness. Assessing the

developability requires evaluating balancing factors such as the

production yield, protein heterogeneity, aggregation rate, viscosity,
Frontiers in Immunology 06
and immunogenicity, to ultimately evaluate a probability of success

along the path from discovery to development. Usually evaluated very

late in the process with experimental methods, these parameters are

not considered as selection criteria during early stages. Our
FIGURE 2

Binding validation and specificity assessment of the 5 final candidates. The 5 final candidates and the reference antibodies were produced as human
IgG1 in HEK293 supernatant, concentrated and dosed. (A, B): Binding validation. For HTRF assays, the recombinant extracellular domains of TIM3 (A) or
TIGIT (B) fused to a biotinylated Avitag were incubated with increasing concentrations of the antibodies. Antibodies and targets were detected with
fluorophore-coupled sensors: d2 acceptor coupled to an anti-IgG and terbium donor coupled to the streptavidin. The binding was assessed as the
energy transfer between the donor and acceptor and computed as the HTRF ratio: 665nm acceptor emission/620 nm donor emission x 10,000. Curves
were fitted mathematically with GraphPad Prism software. (C) Specificity evaluation of the candidates. HEK293 cells were transiently transfected with the
Flag-tagged target gene and incubated with the candidate or reference antibodies. The target expression was monitored with a PE-coupled anti-Flag
antibody and the binding of the antibodies was followed with an APC-coupled anti-IgG. Percentage of APC+ PE+ cells among the total PE+ cell
population was indicated through a color gradient. (D–F) Binding of endogenous TIM3 by 6E9 in immune-relevant cells. NK lines NKL and NK-92 (D),
activated PBMC (E) and TRM cultured with TGF-b1 and IL-15 (F) were incubated with 6E9 or 7KQL as a control. The T and NK lymphocytes subsets of
the PBMC and TRM were optically isolated after staining of CD3 and CD56 (CD3+ T lymphocytes and CD3-CD56+ NK lymphocytes).
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computational developability assessment tool analyzes antibody

sequences and structures, comparing them with publicly available

antibodies to demonstrate favorable developability traits very early in

the process, as soon as the selection is done.

3.2.1 Patent mining, sequence identity analysis,
and intellectual property evaluation

Both functional and sequential novelties are necessary to establish

an antibody’s eligibility for intellectual property protection. However,

determining the threshold for comparing two antibodies remains

unclear. An arbitrary sequence identity threshold of 80% was set,

corresponding to 50 amino acid differences between two full-length

VH-VL pairs, and 10 amino acid differences across two sets of six

CDRs, to define the sequential uniqueness of antibodies.

We collected a unique database of manually curated monoclonal

antibodies sequences from patents which are accompanied by, when

disclosed, functional data like epitope residues, affinity, cross-species

reactivity and functional studies (https://app-publicdemo-

mabfactory-97288.azurewebsites.net/). To date (Aug 2024), our

database references 87,592 antibodies directed at 3,046 targets,

and associated affinity data for 21,241 of them, epitope data for
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9,564, cross-specificity data for 3,777, and EC50/IC50 from

functional assays for 10,411. At the time of writing this article,

our database referenced 170 anti-TIM3 antibodies and 1004 anti-

TIGIT antibodies with which we compared our 5 candidates

(Table 2). 6E9 did not exceed 79% of sequence identity with any

of the anti-TIM3 antibodies reported in our database. Moreover, the

closest antibody, Pab2088 from patent US20170368168A1,

displayed no more than 52% sequence homology when

considering the 6CDRs only. The anti-TIGIT candidates T2, T4

and T7 exhibited 87, 86 and 85% full-length sequence identities

respectively with antibodies described in the patent US10759855B2

(Ab33, 26 and 114 respectively). Interestingly, when focusing on the

6CDRs, the sequence identity with Ab33, 26 and 144 did not exceed

69%. When searching for the closest antibodies focusing only on the

6 CDRs of T2, T4 and T7, different antibodies (but still from patent

US10759855B2) were retrieved from the database: Ab45 for T2,

Ab44 for T4, and Ab 26 and 36, for T7. Their similarity capped at

71%. Finally, T10 was found close to the Ab clone 18 from patent

WO2018160704A1, with which it displayed 89% sequence identity

at the full-length level, but only 74% when considering only the

6 CDRs.
TABLE 1 Binding constants.

Candidates
HTRF BLI

EC50 (M) KD (M) kon(1/Ms) kdis(1/s)

anti-TIM3

6E9 3.422E-10 1.30E-09 4.29E+05 5.56E-04

7KQL 1.499E-10 1.01E-09 2.16E+05 2.19E-04

6TXZ 1.931E-10 2.00E-10 1.53E+05 3.06E-05

Sabatolimab 3.638E-10 2.44E-09 1.57E+05 3.82E-04

anti-TIGIT

T2 6.23E-10 3.19E-09 4.50E+05 1.44E-03

T4 4.65E-10 2.00E-09 4.48E+05 8.96E-04

T7 ~ 1.796e-005 2.53E-09 6.37E+05 1.61E-03

T10 9.749E-11 3.07E-09 4.96E+05 1.52E-03

7VYT 4.885E-10 1.89E-10 3.93E+05 7.43E-05

Tiragolumab 3.145E-09 6.81E-10 4.10E+05 2.79E-04
EC50 were obtained from mathematical fit of the HTRF binding data. KD, Kon and Kdis were obtained by BLI.
TABLE 2 Maximal sequence identities with the reference database.

Candidates Full-length max seq id 6CDRs max seq id

Seq id Database Ab Seq id Database Ab

T2 0.87 Ab33. patent US10759855B2 0.71 Ab45. patent US10759855B2

T4 0.86 Ab26. patent US10759855B2 0.69 Ab44. patent US10759855B2

T7 0.85 Ab114. patent US10759855B2 0.58 Ab26 & Ab36. patent US10759855B2

T10 0.89 clone 18. patent WO2018160704A1 0.74 clone 18. patent WO2018160704A1

6E9 0.79 Pab2088. patent US20170368168A1 0.52 Pab2088. patent US20170368168A1
The sequences of our 5 candidates were confronted with 170 anti-TIM3 antibodies and 1004 anti-TIGIT antibodies collected in our internal database. The table shows the antibodies displaying
the maximal sequence identity with our candidates, on the full-length sequences or restricted to the 6 CDRs only. Their names and initial patents are reported.
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Altogether, these results showed that the anti-TIM3 and anti-

TIGIT leads displayed satisfying sequence distance with the publicly

disclosed antibodies, supporting the prospect of securing full

intellectual property protection.

3.2.2 Germline drift and PTM motifs analysis
Naturally occurring somatic hypermutation drifts the antibody

from its germline, and introduces modifications in the sequence and

global surface of the VH/VL pair (25). Sequential motifs can appear

on which the antibody may undergo chemical modifications known

as post-translational modifications (PTM). They can happen during

manufacturing, storage or even in the patient’s blood stream and

can ultimately alter the antibodies potency, efficacy, and safety (for

review, see (26)). The most commonly investigated PTM sites

englobe: N-glycosylations (N-X-S/T, N-X-C), lysine glycations (K-

D/E), asparagine deamidation (N-G/S/D/T/H), aspartate

isomerization (D-G/S/N/T/H), aspartate-proline cleavage,

methionine and tryptophan oxidation, and cysteine hydrolysis

(27–31). We developed our own tool to investigate PTM motifs

in the antibody sequences. Importantly, it has to be remembered

that no predictive method provides a straightforward proof that the

identified PTM-prone residues are actually going to be modified,

nor that they are going to be detrimental for the antibody’s function.

In order to fully evaluate the risk associated with an identified motif,

evolutionary and structural layers of analysis were added in our

method. First, considering that the developability risk associated

with a PTM is lower when the PTM motif is also present in the

closest germline, we combined germline analysis and PTM motifs

search. Second, since PTMs happen after protein translation and

folding, they are less (or not) likely to occur on residues that are not

exposed at the surface of the antibody. We hence modeled the 3D

structures of the antibodies and evaluated the solvent exposure of

the PTM-prone residues.

All five antibodies had unique germline combinations (data not

shown). The VH fragments from T4 and T7 were the only to show

no mutation from their respective germlines, the other ones having

between 3 and 13 mutations. PTMs motifs were identified in each

variable fragment, 21% displaying low exposure (< 30% of their

lateral chain surface), 51% displaying medium exposure (31 to 60%)

and 28% displaying high exposure (> 61%). Figure 3A shows the

PTM-prone residues identified, except for the putative lysine

glycation sites which were too numerous. No glycosylation site

was detected. A vast majority of the PTM motifs were conserved

from the germline and located in the frameworks (over 86%). T4,

T7 and 6E9 exhibited CDR-located PTM motifs, among which two

were highly exposed: an isomerization site in T4 CDRH2, and a

deamidation site in T7 CDRL1. The number of PTM motifs with

solvent accessibility higher than 30% were extracted and compared

with the distributions computed from 735 INN (International

Nonproprietary Names) antibodies (Figures 3B, C). These latter

ones reached the clinical trials and were therefore considered to

display good developability properties. T4 and T7 displayed the

most numerous exposed motifs (6), and T10 the least (2). However,

they all favorably compared to INN antibodies and no PTM-

associated risk was clearly identified.
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Overall, the five antibodies exhibited favorable profiles

regarding the number of PTMs and their solvent accessibility.

However, attention should be maintained on T4 and T7 due to

the motifs located within their CDRs.

3.2.3 Aggregation and immunogenicity
risks evaluation

The solubility-aggregation balance of a protein preparation

depends on both the solution conditions (e.g., temperature, pH,

ionic strength, excipients) and the intrinsic properties of the protein

(e.g., physicochemical and structural characteristics). Typically,

self-aggregation (colloidal instability), hydrophobicity, and local

structural instabilities are analyzed using chromatographic

and spectroscopic techniques, while formulation optimization is

often employed to reduce aggregation. Several computational

approaches have been developed to predict aggregation

propensity and propose corrective measures (for a review, see

(12)). We developed a structure-based tool to evaluate the surface

physicochemical properties of antibodies. The VH and VL domains

of the antibody were modeled using a rigid, coarse-grained

representation, and the surface was divided into N centroids,

where N can vary between 50 and 250. For each centroid,

hydrophobicity, electrostatic forces, charges, and local curvature

were calculated, enabling the identification of surface regions with

similar properties. Figure 4A highlights the most problematic

regions found for our candidates. As can be observed, T4 and

6E9 displayed less problematic regions across the surface, with only

slightly charged residues identified in their VH fragments. T7

displayed an intermediate profile, with very localized small

regions on its VL considering the four investigated properties.

The most problematic were T2 and T10 which displayed large

and intense hydrophobic patches in their VL and VH, respectively.

T2 moreover exhibited patches of high electrostatic forces (VL) and

high charges (VH).

An isolation forest model was trained on all antibody structures

available in the Protein Data Bank. This approach was chosen for its

effectiveness in anomaly and outlier detection, with the aim of

identifying candidates which physicochemical and geometrical

properties deviate significantly from the majority of known

antibodies. The five antibodies were processed according to the

same computation and their scores compared with the controls

distributions (Figures 4B, C). Consistently with their bad

hydrophobic properties, T2 and T10 displayed the worst

aggregation scores, with values of 0.4216 and 0.4061, placing

them more than 2 standard deviations away from the INN

distribution mean, indicating potential solubility issues.

Interestingly, the Sabatolimab also scored outside of the INN

mean ± 2sd consistently with a large hydrophobic region, a

strong electrostatic region and an abnormally convex region

identified on its VL (Figure 4A, lower panels). All the other

antibodies, as well as the references, displayed a satisfying

aggregation score.

Since the constant parts of the IgG are globally conserved in

sequence and structure, the highly diverse CDRs are often thought

to be responsible for the variability of aggregation, viscosity, and
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immunogenicity profiles. Abnormally long CDRs may constitute a

risk in regard to aggregation either because the larger distance to the

closest germline might correlate with increased immunogenicity, or

because extended CDR might introduce conformational flexibility

and subsequently local or global misfolding of the antibody. Longer

CDRs also increase the risk of exposing hydrophobic residues and

creating local secondary structures prone to aggregation (like b-
sheets). The CDR charges was also demonstrated to have an impact

on developability properties. Negatively charged CDRs were

correlated with lower aggregation and higher viscosity (32–34),

while positively charged CDRs were correlated with increased off-

target recognition and specificity decrease (35). The CDRs lengths

and charges were computed for the 735 INN antibodies, and our
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candidates compared to this distribution. No discrepancy of either

length or charges was observed (Supplementary Figure S5).

Injecting high doses of monoclonal antibodies in the body may

induce an immunogenic reaction. However, immunogenicity is

thought to be limited when the antibody sequence remains close

to a human one (36). From the antibodies sequences collected in

our database, we computed a score to evaluate the humanness of the

VH and VL fragments. As can be seen in Figure 5, our humanness

score discriminates well the subsets of human, humanized or

chimeric (non human) antibodies. All the tested antibodies were

located in the human and humanized regions of the distribution,

which is a good indicator of low immunogenicity. The worst score

was displayed by Sabatolimab’s VL.
FIGURE 3

Post-translation modifications analysis. (A) PTM motifs shown on VH-VL 3D representations. The main PTM-prone residues of the identified
deamidation, isomerization, and methionine or tryptophan oxidation sites are shown in colored spheres. The antibodies surfaces are shown in grey
(frameworks) and pale green (CDRs). (B, C) Comparison with INN antibodies. The number of PTM motifs with solvent accessibility higher than 30%
were computed from 735 INN antibodies. The number of motifs identified for our anti-TIGIT (B) and anti-TIM3 (C) candidates and their references
are shown as colored lines are compared with the distribution of the INN antibodies shown in blue.
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3.2.4 Off-target effect prediction
Antibody polyspecificity, defined as the capability of an

antibody to bind with significant affinity to structurally and/or

functionally different targets, has long been an understudied aspect

of therapeutic antibody development. This is majorly due to the

common belief that antibodies are mono-specific and that, at worst,

may bind only close homologs of their targets. Polyspecificity was

related to increased clearance and decreased PK (pharmaco-

kinetics) characteristics (37). But more concerning, off-target

recognition and subsequent off-site toxicities are shown to be

responsible for failure during clinical development (38–40).
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Experimental methods to assess polyspecificity remain tedious

and lack exhaustiveness. We previously developed MAbCross, a

method to predict antibody off-targets based on CDR similarity

measurement (13, 15). The predicted off-targets are ranked

according to a score representing the binding probability and

according to the species of the protein (human vs. non-human).

For comparison purposes, the number of off-targets were calculated

for FDA-approved antibodies and a scale was drawn on which the

candidates are reported (Figure 6). 6E9 was by far the one

displaying the lowest risk of human off-target binding, with only

4 proteins detected at a maximal score of 54.25/100. T2 and T4 were
FIGURE 4

Aggregation parameters analysis. (A) Surface physicochemical patches. Surface properties (i.e. hydrophobicity, electrostatic forces, charges and
shape) of the VH-VL pairs were computed and moderate (orange) to intense (red) regions were shown on the VH-VL structures. (B, C) Aggregation
scores comparison with publicly-disclosed antibodies. The surface properties were used to train a model allowing to predict an aggregation score.
Scores were computed for our anti-TIGIT (B) and anti-TIM3 (C) candidates and their references, and compared with the scores distribution
computed from 735 INN antibodies (blue) and 31,712 patented antibodies (green).
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characterized as the riskiest, with 23 and 19 high probability off-

targets, the top being scored over 80/100. T7 and T10 displayed

medium risk.
3.3 Epitope characterization, affinity
prediction and validation of the
structural model

One of the major drawbacks of phage display or hybridoma-

based discovery processes is the tedious definition of the epitope

and the obtention of the structural model of the antibody-antigen

pair. Epitope mapping is typically performed with low throughput

technologies (X-ray, NMR, HDX-MS etc) at late stages of antibody

discovery, on a limited number of candidates. In the early stages,

competition assays with either the ligand or other antibodies can

suggest overlapping binding sites and provide an indication of the

binding region. However, they do not reveal the precise epitope. We

previously developed MAbTope, a docking-based epitope mapping

method (14, 41). MAbTope uses coarse grain representation of the

antibody and the target to deduce the most favorable epitope region

from AI-ranked docking poses. Among these poses, it is probable
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that a close-to-crystal one exists, but the method does not allow to

identify which one. We hence ambitioned to develop an affinity

prediction method which would allow us to evaluate the interaction

of oriented docking poses and hence decipher the most accurate

structural model of the antibody-antigen complex. Our affinity

method uses coarse-grained representation of epitope and

paratope (42) and computes a combination of parameters of the

antibody-antigen interface: i/the physico-chemical complementary

(PCC) on the facing regions computed as the PCC score, ii/the

interacting complementarity score defined as the number of

interacting regions between the paratope and epitope computed

as the IR-score, and iii/a combination of the 2 parameters computed

as the final C-score.

In order to gain an approximate idea of the antibodies binding

regions, competition assays were performed with reference antibodies

which epitopes were partially or totally deciphered, i.e. 7VYT and

Tiragolumab for the anti-TIGIT antibodies, and 6TXZ, 7KQL and

Sabatolimab for the anti-TIM3 antibodies (Figures 7A, B).

Competitions were assessed by flow cytometry, as pairwise

displacements of human IgG1 by mouse IgG2a, on cells

overexpressing TIM3 or TIGIT. In the case of TIGIT, the

displacement of the antibodies was also evaluated after addition of
FIGURE 5

Humanness evaluation. A humanness score was computed from publicly available antibody sequences which allowed discrimination between
human, humanized and non-human sequences (from chimeric antibodies). Separate scores were computed for the VH (A, C) and the VL (B, D).
The scores obtained for our anti-TIGIT (upper panels) and anti-TIM3 (lower panels) candidates are compared with the benchmark distributions.
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its ligand CD155 fused to a mouse IgG2a Fc fragment. All 4 anti-

TIGIT hIgG1 were drastically displaced by 7VYT and CD155, and to

a lesser extent by the Tiragolumab (Figure 7A). The 3 proteins share

highly overlapping binding sites, located in the vicinity of the FG and

CC’ loops (Supplementary Figure S6). The modeled structures of the

4 TIGIT candidates were docked and aligned onto 7VYT orientation

on TIGIT, and the affinity evaluated according to our method

(Figure 7C). The 7VYT itself was introduced in the procedure, as a

positive control. The Tiragolumab, which binds roughly the same

epitope as 7VYT but with a very different VH-VL orientation, as well

as the anti-TIM3 6TXZ, Sabatolimab and Cobolimab, were

introduced as negative controls. First, it can be observed that the

7VYT was highly ranked in the final C-score, proving the efficacy of

the method to correctly evaluate affinity and to rank high the best

orientation (Figure 7C, upper panels). Conversely, the Tiragolumab,

was ranked last, hence showing that the orientation which dictates the

facing residues and the subsequent binding of the two moieties was

properly taken into account in our computations. As expected, the

anti-TIM3 6TXZ, Cobolimab, and Sabatolimab were poorly

evaluated for their binding to TIGIT. Among our 4 candidates, T4

ranked very high, above the reference 7VYT, allowing us to deduce

that i/ it bound TIGIT in the imposed VH-VL orientation and that ii/

it displayed a very good affinity. T2, and to a lesser extent T7, ranked

similarly to 7VYT, indicating that they likely share a similar

orientation with 7VYT, though not perfectly overlapping. T10,

which ranked closely to the negative control 6TXZ, probably

displayed a different orientation.
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6E9 was subjected to the same procedure. The competition

assays showed that 6E9, 6TXZ and 7KQL have overlapping epitopes

(Figure 7B). 6TXZ and 7KQL crystal structures show that their

epitopes are highly overlapping, also located in the vicinity of the

CC’-FG loops, and that their orientations on TIM3 are very similar

(Supplementary Figure S6). 6TXZ was selected as the reference pose

because it shares approximately the same paratope size as 6E9.

6TXZ and the Sabatolimab were introduced as positive controls in

the computations. No crystal structure is disclosed for the

Sabatolimab, but structural evidence published by (20) show that

its epitope strongly overlaps with 6TXZ and that they share globally

the same VH-VL orientation. The affinity evaluation on 6TXZ

showed a satisfying ranking of the positive reference Sabatolimab

and of 6TXZ itself (Figure 7C middle panels). As expected, the anti-

TIGIT negative controls Tiragolumab and 7VYT ranked poorly on

TIM3. 6E9 ranked high, showing that it shared 6TXZ pose and

orientation on TIM3.
4 Discussion

When classically performed, antibody discovery requires

numerous rounds of molecular (structure, PTMs…), physico-

chemical (solubility at high concentrations, manufacturability at

large scale…), and functional (efficacy, specificity, toxicity…)

characterizations, as well as optimization steps (affinity maturation,

humanization…) in order to qualify the candidate molecules before
FIGURE 6

Off-targets prediction. The numbers of predicted off-targets, either human (red) or non-human (blue), were computed for all FDA-approved
antibodies and ranked as a probability of being recognized (high vs. medium). The number of off-targets predicted for our anti-TIGIT (left panel) and
anti-TIM3 (right panel) candidates were compared with that scale.
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preclinical and clinical trials, and finally allow them to become

therapeutics. Here, we demonstrate the added value of our AI-

based tools in enhancing antibody lead characterization

and facilitating more rational decision-making during the

selection process.

In this work, 39 individual scFv candidates were selected in vitro

by phage display and the detailed developability study showed for

the 5 binding IgG candidates. They were subjected to several layers

of computational analysis which revealed that they were globally

equivalent and satisfying for most of the parameters, i.e. the

sequence identity with patented Ab, the exposed PTM motifs, the

CDR lengths and charges, the humanness or the predicted off-
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targets. Two parameters were discriminating. Analysis of their

surface physico-chemical properties revealed that 6E9, T4, and to

a lesser extent T7 exhibited good aggregation - solubility profiles,

but that T2 and T10 exhibited intense hydrophobic regions that

could drive them to aggregation, probably hampering their future in

terms of high scale production, storage and their commercial

development. Antibodies administration routes (intravenous,

subcutaneous, intramuscular, and intraperitoneal) limit injection

volumes and require very high concentrations to be achieved in the

pharmaceutical preparations (typically 50 to 200 mg/ml). This is

particularly challenging for aggregation and often unsolvable by

adapting the formulation if the antibody is not good at the
FIGURE 7

Affinity evaluation and structural model definition of the antibody-antigen complexes. (A, B) Experimental competition assays. Pairwise competition
assays of TIGIT binders (A) or anti-TIM3 antibodies (B) were performed by flow cytometry. Briefly, the Fc fragments of our human IgG1 candidates
were replaced by mouse IgG2a Fc fragments. HEK293 cells were transiently transfected with the Flag-tagged target gene and co-incubated the
human IgG1-formatted and the mouse IgG2a-formatted candidates. In the case of TIGIT, the competition was also evaluated with its natural ligand
CD155 fused to a mouse IgG2a Fc fragment. The target expression was monitored with a PE-coupled anti-Flag antibody and the binding of the
human IgG1-formatted antibodies was followed with an APC-coupled antibody. The percentage of APC+PE+ cells (among the PE+ subset) was
indicated as a color gradient. (C) Affinity predictions and structural model definition. The antibodies were docked on selected epitopes (indicated in
the left boxes). The affinity of the obtained complexes was computed as the C-score (left column) which was a combination of PCC-score (middle
column) and IR-score (right column). The upper panels show the affinity predicted for the anti-TIGIT candidates docked on 7VYT epitope. The
middle and lower panels show the affinity predicted for the anti-TIM3 antibodies docked on 6TXZ and 7KQL epitope, respectively.
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beginning. Because the method is fast at identifying the surface

patches and computing the aggregation scores, large collections of

antibodies can be evaluated simultaneously. Moreover, in silico-

generated mutational variants of one antibody could also be

evaluated swiftly, if rectifying the antibody’s properties is

expected. The second discriminating criterion was the affinity-

based validation of the structural models of the antibody-antigen

complex. Obtaining such a model is a huge added value for the

future development of the antibody. Not only it allows to obtain a

precise definition of the epitope and to secure the IP protection, but

also to provide solid bases for functional studies and optimization

experiments such as affinity maturation or interspecies binding

study to prelude preclinical trials. Reliable structural models were

obtained for T4 and 6E9, ultimately ranking them as the best

candidates against TIGIT and TIM3 respectively.

Three decades ago, Lipinski’s proposed his “rule of 5” to

predict the drug-likeliness of small chemical compounds from

their physicochemical properties (43). While Lipinski’s rules

are not applicable to the size and complexity of biologics, an

analogous tool would be highly valuable. Among the 39 initial

candidates, 33 displayed complete VH and VL sequences and

only 5 maintained a binding activity at the end of the biological

process once reformatted as IgGs. In order to gain insight into

this attrition rate, we subjected a posteriori the 33 candidates to

the physicochemical tools of our developability analysis i.e.

aggregation score evaluation, CDR analysis (length and charge),

PTM motifs identification and their exposure in the CDR, and the

affinity evaluation as computed by our PC, PCC and IR scores.

Data are summarized in the table shown in Supplementary Figure

S7A. Very interestingly, only a very few leads showed no warnings

in any of the dimensions studied: the references 7KQL, 6TXZ and

7VYT, the 2 successful candidates 6E9 and T4 and one false

positive: 3F8. This latter one was a very weak binder in the scFv

screening, and not a binder once reformatted in IgG. The a

posteriori analysis revealed that its aggregation score flirted with

the threshold, probably highlighting some stability issue. Whereas

these results are highly encouraging in showing that our tools are

successful in identifying the good leads when used in combination,

it cannot be excluded that other dimensions might be interesting to

investigate, like the melting temperature (Tm) for example.

Importantly, when comparing the sequence identities of all the

antibodies (the candidates isolated during the phage display, the

top leads validated computationally and experimentally and the

reference antibodies), no similarity cluster could be observed

(Supplementary Figure S7B). This wide sequence diversity

ranging from 48.5 to 96.1% at the full-length level, and from

20.4 to 89.3% when considering only the 6 CDRs shows

unequivocally that our method is effective at comparing

evolutionary distant antibodies, and that it does not favor

antibodies that are close to existing references.

Affinity is the central parameter of antibody discovery: the

initial selection of antibody hits is performed on affinity criteria,

and affinity is the prime parameter evaluated when the antibody is

modified along its development. Mastering affinity prediction holds

the hope to be able to control two pivotal aspects of antibody

discovery: i/being able to find within a very large collection of
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antibodies the ones binding a desired target, which means doing

computational antibody selection, and ii/being able to predict the

affinity of antibody variants, which means doing computational

antibody maturation. We showed here the efficacy of our structure-

based affinity prediction tool which computes parameters of the

antibody-antigen complex interface. Other methods based on the

same principle of structure study have been published, the most

efficient being RosettaAntibodyDesign (44, 45). Unlike large

language models-based tools (46–48), our method does not

require training on biological data generated specifically for the

studied complex. Being target agnostic, it can rapidly be applied to

new targets (or variants of the same target through modeling). The

availability of reference antibodies is not strictly mandatory, yet it

helps providing an additional cross-validation layer of the

predictions. The amount of sequential and structural data

available allows to consider achievable the reliable modeling of

large collections of conventional IgGs. However, atypical antibody

formats (e.g. bispecific antibodies, nanobodies) or conventional

antibodies displaying extra-long CDRs for example may challenge

the models. While only a limited number of antibodies were

considered in this study, our affinity method proved effective at

ranking both positive and negative binders on selected epitopes,

setting the stage for expanding the pool of initial molecules

investigated, potentially reaching full NGS repertoires in the

future. Coupled with developability evaluation to eliminate at the

outset the leads displaying unsuitable properties, the foundations

for an intelligent antibody selection method are now in place.

TIGIT (VSIG9) and TIM3 (HAVCR2/CD366) both belong to

the Ig-like/V-set structural family of proteins. As such, and despite

their very low sequence identity (20%), TIM3 and TIGIT share a

high structural homology (RMSD = 5.59 Å). However, they are

structurally very different in their ligand-binding domains. Within

the TIM family, four highly conserved cysteines (C58, C63 in the

CC’ loop, C52 in the C strand, and C110 in the F strand in TIM3)

form disulfide bonds that constrain the CC’ and FG loops in

a closed conformation unique among the V-set family (49).

The aim of this study was to identify antagonist antibodies

inhibiting the binding of TIM3 or TIGIT to their respective

partners. TIM3 has 3 functional partners, i.e. CEACAM1,

Galectin 9 and phosphatidylserine. Co-crystal structures of TIM3

and either CECAM1 (PDB 4QYC, (50)) or PtdSer (PDB 3KAA,

(51)) show they both bind in or around the region delimitated by

the FG and CC’ loops. Gal9 binding site, on the other hand, may

involve distant residues and glycosylated chains interactions and

remains to fully explore (52–54). TIGIT binding to its partners

CD155 (PVR, PDB 3UDW (55)) and Nectin-2 (PDB 5V52 (56))

also occurs on the region delimited by the FG and CC’ loops.

Consistently with the antagonistic effect expected of ICI, publicly

disclosed antibodies raised against TIM3 or TIGIT are mostly

located in the same region. Such is the case for the Tiragolumab,

Sabatolimab, 7VYT/MG113, 6TXZ/M6903, 7KQL/Tim3.18 used as

competitors in wet-lab experiments and as references during the

computations. All results converged at locating the 5 newly

discovered antibodies on the ligands binding sites of TIM3 and

TIGIT, allowing to anticipate the expected antagonistic effect.

Functional assays are now necessary to investigate the antibodies’
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efficacy on T cells exhaustion reversal. The expression of T-cell

activation markers (CD69, CD25) and the inhibition of cytokine

release (e.g., IFN-g, IL-2, TNF-a) will be investigated in priority.

Immune checkpoints constitute a vast family of inhibitory and

activating receptors. They belong to a dynamic system that responds

to the TME variations. Their expressions on cancer cells were

reported to vary along cancer development (for example, (57, 58)),

but also subsequently to treatments used in patients. Changes in the

expression of PD-1, PD-L1 and CTLA-4, among others, were

observed after chemotherapy, radiotherapy, or a combination of

them (59). Anti-PD-1 treatment itself was also shown to alter the

RNAseq profile of tumors (60). If we consider the tumor as an

evolutive system, precise phenotyping should be a prerequisite before

starting any ICI therapies. A toolbox of ICI ready to be combined

would allow to tackle cancer with personalized medicine strategies.
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