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The role of macrophages in
hypertrophic scarring: molecular
to therapeutic insights
Lele Shen, Yao Zhou, Jie Gong, Hongqiao Fan* and Lifang Liu*

Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha,
Hunan, China
Hypertrophic Scar (HS) is a common fibrotic disease of the skin, usually caused by

injury to the deep dermis due to trauma, burns, or surgical injury. The main

feature of HS is the thickening and hardening of the skin, often accompanied by

itching and pain, which seriously affects the patient’s quality of life. Macrophages

are involved in all stages of HS genesis through phenotypic changes. M1-type

macrophages primarily function in the early inflammatory phase by secreting

pro-inflammatory factors, while M2-type macrophages actively contribute to

tissue repair and fibrosis. Despite advances in understanding HS pathogenesis,

the precise mechanisms linking macrophage phenotypic changes to fibrosis

remain incompletely elucidated. This review addresses these gaps by discussing

the pathological mechanisms of HS formation, the phenotypic changes of

macrophages at different stages of HS formation, and the pathways through

which macrophages influence HS progression. Furthermore, emerging

technologies for HS treatment and novel therapeutic strategies targeting

macrophages are highlighted, offering potential avenues for improved

prevention and treatment of HS.
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1 Introduction

Hypertrophic scar (HS) is a fibrotic disease of the skin, usually caused by abnormal

tissue repair after burns, trauma, or surgery (1). The clinical manifestations of HS are bright

red skin surface, protruding from the surrounding normal skin tissues, and localized

thickening. Itching, localized numbness, and sensory abnormalities produced by HS have a

severe impact on the quality of life and mental health of patients (1, 2). HS formation is a

complex and challenging clinical problem that affects about 100 million patients in

developed countries alone. The incidence of post-burn HS has been reported to range

from 32% to 72% (3, 4). Although many studies have been devoted to exploring the

mechanisms of HS, its exact pathophysiologic processes are still not fully characterized.
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The formation of HS is a complex and multistage process that

usually includes hemostasis, inflammation, proliferation, and

remodeling phases. Macrophages are an essential component of

the innate immune system. They play a crucial role in tissue repair

and scar formation. Macrophages exhibit different phenotypes and

functions at different stages of HS formation. M1 macrophages, also

known as classically activated macrophages, primarily mediate pro-

inflammatory and antimicrobial responses, producing cytokines

such as TNF-a, IL-6, and IL-1b, which amplify inflammation and

recruit additional immune cells (5, 6). As the inflammatory

response subsides, macrophages transition to the M2 phenotype,

which promotes tissue repair, extracellular matrix remodeling, and

fibrosis through the secretion of anti-inflammatory cytokines and

growth factors (7, 8). However, macrophage-targeted therapies for

HS face significant challenges, including the complex plasticity of

macrophage phenotypes, their dynamic changes during the

different stages of HS formation, and the need for specific

delivery systems to target macrophages without affecting

surrounding tissues. Precision therapy targeting macrophages has

made significant progress in tumors and rheumatic diseases (9, 10).

However, the exact mechanism of macrophage action in HS

remains under-revealed.

In this review, we summarize the pathological process of HS

formation and the phenotypic changes that occur in macrophages at

various stages of HS formation. In addition, we explore macrophage-

influenced pathways in HS. Finally, we summarize the therapeutic

strategies for HS, including emerging technologies and macrophage-

targeted treatment approaches, and discuss the specific challenges

associated with these strategies. This review systematically integrates

research findings spanning from molecular mechanisms to

therapeutic strategies, based on comprehensive searches of

databases such as PubMed and Web of Science, to identify critical

gaps and highlight potential advancements in the treatment of HS.

We hope that it will help develop drugs of potential treatment value

for HS and provide theoretical support for developing more effective

therapeutic strategies.

2 Methods

This review is based on a systematic literature search conducted

in the PubMed and Web of Science databases using keywords such

as “hypertrophic scar,” “macrophages,” “fibrosis,” and “therapeutic

strategies,” combined with Boolean operators (AND/OR). The

search was performed on August 24, 2024. The inclusion criteria

were as follows: (1) studies focusing on the role of macrophages in

the mechanisms of HS and therapeutic strategies for HS; (2) original

research, including in vivo, in vitro, and clinical studies; and (3)

studies published in English to ensure accessibility and practical

usability. The exclusion criteria were as follows: (1) studies

unrelated to HS; (2) conference abstracts, pathological reports, or

review articles; and (3) articles with insufficient data quality or poor

study design. The screening process consisted of two steps: title and

abstract screening followed by full-text evaluation. These steps were

implemented to ensure the relevance, reliability, and quality of the

included studies.
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3 Pathological mechanisms of HS
formation

Routine wound healing consists of four phases: hemostasis,

inflammation, proliferation, and remodeling, each of which

overlaps and differs in time and space (1).The formation of HS is

the result of an abnormally active and dysregulated event during the

wound healing phase, leading to an abnormal accumulation of

extracellular matrix (ECM). Next, we will explore the characteristics

of HS at different stages of formation.
3.1 Hemostasis

Hemostasis is the first step in wound repair (11). Damaged

endothelial cells release substances such as endothelin to constrict

vascular smooth muscle and reduce bleeding (12, 13). Generally,

forming a blood clot involves primary and secondary hemostatic

processes. During initial hemostasis, platelet receptors interact with

ECM proteins, such as fibronectin and collagen, to form platelet

plugs that promote adhesion to the vessel wall (14). Secondary

hemostasis depends on a coagulation factor cascade reaction that

activates thrombin (15). Thrombin induces the conversion of

fibrinogen to fibrin, which results in the formation of a stable

fibrin network. This fibrin network and fibronectin, vitronectin, and

thrombospondin form an insoluble clot (16).

During hemostasis, platelet activation and release of growth

factors, the intensity and duration of the inflammatory response,

and deposited fibrin are closely related to the formation of HS (17).

The initial hemostatic event occurs when platelets produce pro-

fibrotic growth factors such as PDGF, VEGF, TGF-b1, and CTGF.

Moderate release of these factors promotes hemostasis (11).

Overproduction of pro-fibrotic factors can lead to excessive cell

proliferation and fibrous tissue production. Previous studies have

found that the use of platelet-rich plasma (PRP) for treating various

types of scars is increasing. PRP attenuates the fibrotic process by

decreasing the levels of pro-fibrotic markers Transforming Growth

Factor Beta 1 (TGF-b1), smooth muscle actin a (a-SMA), Collagen

Type I (COL-I), and Matrix Metalloproteinase-9 (MMP-9) (18, 19).

In addition, these pro-fibrotic molecules may induce excessive

inflammation. This may lead to the overproduction of ECM,

abnormal fibroblast differentiation, and inappropriate matrix

remodeling, which may promote the formation of HS (1).

Overall, the release of abnormal pro-fibrotic molecules during the

hemostatic phase, and the sustained inflammatory response lead to

excessive fibrin network formation in HS (Figure 1A), which

ultimately promotes HS (20).
3.2 Inflammation

HS is formed due to skin damage in the reticular dermis (21).

The inflammatory response in the reticular dermis begins

immediately at the time of injury and varies in duration

depending on the degree of injury (12). The study suggests
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excessive inflammation is the pathologic basis for HS formation

(22). Increased expression of interleukins, interferons, and growth

factors released by immune cells, such as neutrophils and

macrophages, can activate fibroblasts (Figure 1B), which are

involved in the formation of HS (23, 24).

Previous studies have shown the most apparent effect of IL-6 in

promoting human HS formation. IL-6 levels were significantly

elevated in burned HS fibroblasts (25). IL-6 enhances VEGF

expression in macrophages, keratinocytes, and fibroblasts,

ultimately leading to scarring (26). In addition to IL-6,

inflammatory factors such as IL-1b, IL-4, IL-17, and IL-13 were

highly expressed in HS (27, 28). Interestingly, another point was

made that pro-inflammatory cytokines contribute to wound
Frontiers in Immunology 03
healing. Inadequate pro-inflammatory responses slow the wound-

healing process (29, 30). This delay in the inflammatory response

during the acute phase of early healing and its role in HS formation

deserves further investigation.

In contrast to IL-6, the expression of IL-10, IL-18, and IL-37 was

lower in HS. IL-10 was found to regulate the TLR4/NF-kB pathway

in dermal fibroblasts via the IL-10R/STAT3 axis. Through this

mechanism, IL-10 attenuated the deleterious effects of LPS on

wound healing, further reducing scar formation and skin fibrosis

(31). This suggests that IL-10 may mediate the TLR4/NF-kB
pathway to exert anti-scarring effects.IL-18 and IL-37 are

members of the IL-1 family (32). The available evidence indicates

that IL-18 and IL-37 have the potential as new treatments for
FIGURE 1

Pathological mechanisms of HS formation and phenotypic changes in macrophages during the HS formation phase. (A) Hemostasis: aberrant release
of pro-fibrotic molecules leads to a sustained inflammatory response and excessive fibrin network formation. (B) Inflammation: high levels of
inflammatory infiltrate leads to fibroblast activation. (C) Proliferation: overactive keratinocytes, dermal fibroblasts, and macrophages promote ECM
deposition and excessive angiogenesis. (D) Remodeling: fibroblasts remodel the deposited ECM, myofibroblasts cause overall wound contraction;
MMPs regulate fibroblast proliferation and are involved in ECM degradation. fibroblasts cause overall wound contraction; MMPs regulate fibroblast
proliferation and participate in ECM degradation. (E) During HS formation, M0 macrophages respond to an initial stimulus to polarize to M1 and M2
phenotypes, with the M1 phenotype playing a significant role in the early stages. (F) Macrophages undergo an M1 to M2 phenotypic transition, or
conversion of the M2 subtype, in the intermediate stages of HS formation; (G) Macrophages are dominated by the M2 phenotype in the later stages
of injury and may develop a mixed M1/M2 phenotype. (By Figdraw).
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pathologic scarring (33, 34). However, further research is required

to fully ascertain their potential and elucidate these cytokines’

optimal targeting.
3.3 Proliferation

Overactive keratinocytes, dermal fibroblasts, vascular

endothelial cells, and macrophages promote HS progression

during proliferative (Figure 1C). The standard proliferative period

of wound healing begins about three days after injury and may last 2

~ 3 weeks. Indeed, from 12 hours after injury, keratinocytes are

activated by changes in the microenvironment of hydrogen

peroxide, pathogens, growth factors, and cytokines, which result

in a high degree of activation, hyperproliferation, and aberrant

differentiation in the HS (35). In this process, keratinocytes produce

pro-fibrotic molecules such as TGF-band PDGF (36). These

molecules induce fibroblasts to respond to the pro-fibrotic

environment by producing more extracellular matrix (ECM)

proteins or differentiating into myofibroblasts, accelerating scar

formation (11). Fibroblasts in the upper and deeper dermis have

different functions (37). Where fibroblasts in the upper dermis

contribute to re-epithelialization, fibroblasts in the deeper spectrum

contribute to ECM deposition. In HS proliferative events,

endothelial dysfunction and altered expression of angiogenic

genes such as endothelin and angiopoietin can lead to excessive

angiogenesis (38). Studies have shown that excessive angiogenesis

can increase collagen deposition (39). Macrophages play an

essential role in this process by participating in the remodeling of

neovascularization, phagocytosis of excess blood vessels, and

inhibition of the angiogenic response (40).
3.4 Remodeling

The main event during the HS remodeling phase is the

dysregulation of the balance between ECM collagen synthesis and

degradation (41). This is accomplished by regulating key MMPs

(42). MMPs are expressed by macrophages, fibroblasts, and keratin-

forming cells (43). Previous studies have found that MMP2 and

MMP9, enzymes essential for remodeling the ECM, are significantly

elevated in the pathological microenvironment of HS (44, 45).

MMP1 and MMP7 are downregulated during HS formation (46).

A study observed that fibroblast proliferation and migration can be

inhibited by reducing MMP-9 expression, thereby reducing fibrotic

scar formation (47). Altered expression of these MMPs results in

reduced degradation of ECM components, including COL-1, COL-

3, and fibronectin (48). Additionally, macrophage signaling

pathways play a crucial role in regulating HS remodeling. The

Notch signaling pathway controls the expression of Smad, a-SMA,

and collagen in HS fibroblasts to some extent (49, 50). A study using

RBP-J knockout mice demonstrated that inhibition of Notch

signaling in macrophages suppresses the inflammatory response

and reduces collagen deposition, leading to better wound healing

and reducing fibrosis (51). The above studies suggest macrophage-
Frontiers in Immunology 04
derived MMPs and their intracellular signaling control tissue

remodeling during skin wound repair (Figure 1D). However, the

precise role of macrophages in scar formation remains

insufficiently understood.
4 Phenotypic changes in
macrophages during the HS
formation phase

4.1 Initial response and early phenotype

In response to initial stimuli such as pathogens, cytokines, or

injury signals, macrophages typically polarize rapidly into either a

classically activated (M1-type) or alternatively activated (M2-type)

phenotype (52) (Figure 1E). This initial response typically occurs

within a few hours to a few days, representing a rapid immune

reaction to injury (53). M1-type macrophages are typically activated

by IFNg, either alone or in combination with LPS (54).

Macrophages with the M1 phenotype highly express CD80,

CD86, and CD16/32 (55), and are capable of producing pro-

inflammatory cytokines such as IL-6, IL-12; chemokines such as

CXCL9 and CXCL10; and NO (56). IL-4 and IL-13 induce the M2

macrophage phenotype, which is distinguished by its ability to

produce vasoactive substances, exhibit anti-inflammatory

properties, and promote tissue repair (57, 58). At the initial stage

of HS formation, the phenotype of macrophages is predominantly

of the M1 type. Under normal circumstances, the pro-inflammatory

factors secreted by M1 macrophages function to clear pathogens

and necrotic tissue in the initial wound environment. However, in

HS, the overexpression of pro-inflammatory factors promotes the

proliferation and differentiation of fibroblasts. Increasing evidence

suggests that, during the early stages of wound healing, it is crucial

to shift macrophages from the M1 pro-inflammatory phenotype to

the M2 anti-inflammatory phenotype (59, 60).

Notably, the M1 and M2 classification model of macrophages is

a simplified model for describing the different functional properties

exhibited by macrophages during polarization. In addition,

macrophages responding to the initial stimulus may exhibit a

mixed phenotype between M1/M2, Mregs, and CXCL4-induced

M4 type (53, 61, 62). However, these phenotypes have not been

intensely studied in HS.
4.2 Medium-term trends and phenotypic
shifts

As the inflammatory response develops or environmental

factors change, the macrophage phenotype shifts in the medium

term, a process that usually occurs within a few days to a week (63).

At this point, macrophages can shift from M1 to M2 type or

between M2 subtypes (Figure 1F). M2-type macrophages express

specific surface markers, such as CD206 and CD204, and secrete

anti-inflammatory factors, thereby inhibiting inflammation and

promoting tissue regeneration and repair. M2 macrophages can
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be further categorized into M2a, M2b, M2c, and M2d subtypes (64,

65) (Figure 1F). Although current data suggest that different

phenotypes of M2 macrophage subpopulations play different

roles, no reports have evaluated the role of M2 macrophage

subtypes in HS, and further studies are warranted.

Interestingly, one study suggests that tumors are somehow

characteristic of unhealed wounds. Significant similarities exist

between many tumor markers and the wound-healing process’s

biological markers (66). In the tumor microenvironment,

macrophages typically exhibit specific phenotypes associated with

tumor progression. Tumor-associated macrophages (TAMs), which

are highly plastic, can adopt either an M1-like phenotype,

contributing to anti-tumor immunity, or an M2-like phenotype,

promoting tumor growth and immune escape (67, 68). This

mixture of phenotypes and their dynamic changes reflect the

complex response of macrophages in different environments.

Recent advances in cancer immunotherapy have demonstrated

that targeting TAMs can effectively modulate their function. For

instance, PD-1+ TAMs exhibit impaired phagocytic capacity, which

can be rescued by PD-1/PD-L1 blockade, leading to a reduction in

tumor burden (69, 70). Given the functional plasticity of

macrophages in both tumor progression and wound healing, it is

plausible that a similar immunomodulatory approach could be

relevant to HS treatment. Future research should explore whether

macrophages undergo a TAM-like phenotypic shift during HS

formation and whether targeting immune checkpoints such as

PD-1/PD-L1 could regulate macrophage activity to control

excessive fibrosis and pathological scar formation. Investigating

these mechanisms may provide novel insights into macrophage-

targeted therapies for HS.
4.3 Late phenotype and persistence

Under prolonged inflammation lasting weeks to months,

macrophages tend to adopt a phenotype suited to the specific

tissue or pathological state, facilitating tissue stabilization and

functional recovery. In this process, M2-type macrophages

predominate (Figure 1G). By secreting anti-inflammatory

cytokines, M2-type macrophages inhibit inflammatory responses

and prevent tissue damage caused by excessive immune responses.

In addition, M2-type macrophages secrete VEGF and PDGF during

the recovery phase after injury, which promotes neovascularization

and collagen production to support new tissue generation and

repair. This M2-type phenotype tends to be persistent during the

remodeling phase of HS formation. This results in excessive scar

tissue formation via mechanisms such as prolonged anti-

inflammatory response, fibrosis promotion, and ECM remodeling.

Besides, in long-standing chronic inflammatory or tumor

environments, macrophages can also exhibit a mixture of M1 and

M2 phenotypes (71) (Figure 1G). This mixed phenotype can sustain

the fight against pathogens while modulating the local immune

microenvironment to avoid excessive damage to normal tissues.

Overall, the phenotypic changes of macrophages during the
Frontiers in Immunology 05
formative stages of HS further reflect their complex roles in

maintaining immune homeostasis and regulating pathological

states. Modulation of macrophage phenotypic switching is

expected to be a new strategy for treating disease.
5 Macrophages affect HS through
different pathways

5.1 Effect of M1-type macrophage-
associated signaling molecules on HS

5.1.1 TNF-a
TNF-a is a pleiotropic cytokine secreted by various immune

cells, including monocytes, T cells, dendritic cells, natural killer

cells, and macrophages. M1-type macrophages are one of the

significant sources of TNF-a (72). TNF-a regulates inflammatory

responses and plays a crucial role in biological processes such as

apoptosis, cell proliferation, and autophagy (73–75). A 16S rRNA

sequencing showed that the expression of TNF-a was significantly

higher in HS tissues than in normal tissues (76). TNF-a is involved

in HS through the activation of relevant inflammatory pathways.

The NF-kB pathway was shown to be activated in HS fibroblasts

(77). Studies have shown that TNF-a induces ROS production in

human dermal fibroblasts and upregulates the transcription factor

NF-kB (78). In vitro experiments demonstrated that TNF-a
induced up-regulation of MMP-1 and MMP-3 expression in

human dermal fibroblasts. Resveratrol significantly inhibited this

effect through the NF-kB pathway (79). Another study showed that

blocking TNF-a interaction with TNFR effectively inhibits TNF-a-
induced NF-kB activation (80). These studies suggest that TNF-a
activates the NF-kB signaling pathway by TNFR, which alters the

biological behavior of human dermal fibroblasts and may play a role

in HS formation (Figure 2A).

In addition, TNF-a interacts with neutrophils to promote HS

formation (Figure 2A). Research suggests that TNF-a activates

neutrophils via IL-8, p55, secretory vesicles, and specific granules,

enhancing their bactericidal activity and releasing inflammatory

mediators (81, 82). In the early stages of infection and

inflammation, TNF-a regulates the activity of neutrophil surface

receptors, inhibits apoptosis, and prolongs the lifespan of

neutrophils through signaling pathways such as JNK and NF-kB
(83, 84). Notably, TNFR1 and TNFR2 initiate pro-inflammatory

signaling, but only TNFR1 triggers a pro-apoptotic response (85).

Moreover, TNF exhibits dual properties that activate neutrophil

apoptosis under specific conditions (86, 87).

Although the mechanism of TNF-a has been extensively

studied, TNF-a inhibitors are widely used in treating psoriasis,

rheumatoid arthritis, and other immune-related diseases (88, 89).

However, their specific role in HS lacks support from large-scale

research data. Understanding the interactions between TNF-a and

other inflammatory factors and cell types could help clarify its

overall role in HS formation and potentially optimize

treatment strategies.
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5.1.2 IL-6
IL-6 is a multifunctional cytokine that affects the fibrotic process

by promoting monocyte recruitment, M2-type macrophage

polarization, and increased ECM deposition (90). After binding to

its receptor, IL-6 exerts its biological effects primarily through three

signaling modes: cis, trans, and cluster signaling (91). Studies indicate

that IL-6 is one of the most significant cytokines promoting human
Frontiers in Immunology 06
HS formation, highlighting its critical role in fibrotic pathology (25).

Trans signaling by IL-6 exhibits pro-inflammatory activity and is

associated with various pathological changes (92). Previous studies

have demonstrated that activation of trans IL-6 signaling accelerates

fibrosis (93). Inhibition of IL-6 and its downstream pathways

positively impacts the clinical management of fibrotic diseases (94,

95). Interestingly, a study of renal scarring found no significant
FIGURE 2

Macrophages affect HS through different pathways. (A) Effect of M1-type macrophage-associated signaling molecules on HS; TNF-a activates NF-kB
and promotes inflammatory cell infiltration; IL-6 exhibits pro-inflammatory activity, regulates fibroblast behavior, and interacts with macrophages,
fibroblasts, and endothelial cells; IL-1b recruits immune cells and activates the NF-kB and MAPK signaling pathways; NO regulates fibrotic disease in
a concentration-dependent manner; MMP9 reduces ECM deposition. (B) Effect of M2-type macrophage-associated signaling molecules on HS;
over-activation of the TGF-b pathway promotes fibroblast value-addition and differentiation, and Smad7 negatively regulates TGF-b signaling; IL-10
inhibits inflammatory responses and fibroblast differentiation through the JNK/NF-kB and TLR4/NF-kB pathways; VEGF activation Ras/MAPK, PI3K/
Akt and Notch signaling pathways, which regulate the behavior of vascular endothelial cells and promote angiogenesis overgrowth; PDGFPI3K/Akt,
MAPK and other signaling pathways enhance the secretory activity of fibroblasts, and synergistically act with VEGF and TGF-b to promote
angiogenesis and promote the development of HS. (C) Macrophages were directly involved in matrix remodeling; macrophages secreted fibronectin
and collagen type VIII and differentiated into myofibroblasts to directly intervene in ECM remodeling. (D) Macrophages mediate HS via exosome
formation; exosomes derived from M2 macrophages were enriched in LINC01605, and high levels of LINC01605 caused a decrease in miR-493-3p
and activated AKT to enhance the inflammatory response. (By Figdraw).
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differences in trans IL-6 signaling markers between patients with

renal scarring and those without scarring (96). This suggests that

there may be some degree of dysfunction in the trans-IL-6 signaling

pathway during scarring that deserves further investigation.

IL-6 regulates fibroblast behavior through autocrine

mechanisms. In vitro experiments demonstrated that IL-6

autocrine activity drove scar fibroblasts to exhibit significant

anisotropy and altered ECM arrangement, resulting in a

directional matrix structure (97). This change in matrix structure

and orientation may contribute to the rigid and irregular

morphology of scar tissue. This study suggests that IL-6 not only

promotes HS formation via its pro-inflammatory effects but also

influences ECM structure by modulating fibroblast behavior. This

highlights the importance of IL-6 signaling in inhibiting fibrosis

progression as a potential therapeutic target.

Additionally, elevated IL-6 levels promote HS formation

through intercellular interactions. Specifically, IL-6 stimulates

macrophage polarization towards the M2 type, upregulates TGF-

b and promotes fibroblast differentiation towards myofibroblasts

(98). Furthermore, IL-6 amplifies the inflammatory response in

vascular endothelial cells, regulating angiogenesis and immune cell

recruitment. These effects are mediated by classical and trans signals

activating PI3K-Akt, ERK1/2, and gp130 signaling pathways (99,

100). In summary, IL-6 plays a key role in HS formation through

multiple signaling pathways and intercellular interactions

(Figure 2A). However, the complexity of the IL-6 signaling

pathway has not been fully clarified. Exploring the causes of

dysregulation of the IL-6 signaling pathway and its specific role in

the fibros is process wi l l he lp deve lop more prec ise

therapeutic strategies.

5.1.3 IL-1b
IL-1b is also highly expressed in HS (27). IL-1b belongs to the

IL-1 family, which consists of 11 cytokines.IL-1b is one of these

ligands with proinflammatory activity and is produced mainly by

macrophages. In the early stages of scar formation, IL-1b attracts

immune cells to migrate to the damaged site by activating the

inflammatory response. It has been shown that IL-1b enhances

vascular permeability and promotes the aggregation of

inflammatory cells to the area of injury by upregulating the

expression of ICAM-1 and VCAM-1, adhesion molecules of

vascular endothelial cells (101, 102). IL-1b also stimulates

endothelial cells to secrete CXCL8 and monocyte chemotactic

protein-1, which further attracts immune cells, such as

neutrophils and monocytes, to the site of infection or injury

(103). In addition, IL-1b activates the NF-kB and MAPK

signaling pathways, amplifying the inflammatory response and

exacerbating tissue fibrosis (104, 105). Studies have shown that

anti-IL-1b therapy is effective in inhibiting the course of chronic

progressive fibrosis. This effect may be attributed to its inhibition of

IL-1b-mediated pro-inflammatory responses (106, 107).

Overall, IL-1b exacerbates tissue fibrosis by enhancing the

inflammatory response and attracting immune cell aggregation

(Figure 2A). Although some preliminary studies have suggested a

possible role for anti-IL-1b therapy in organ fibrotic diseases (107,
Frontiers in Immunology 07
108), more clinical studies and trials are needed to determine the

efficacy and applicability of anti-IL-1b therapy.
5.1.4 iNOS
Endogenous nitric oxide (NO) is produced by three different

types of enzymes: neuronal NOS (nNOS; NOS1), inducible NOS

(iNOS; NOS2), and endothelial NOS (eNOS; NOS3) (109). Of these,

iNOS plays a critical role in the fibrotic process. iNOS activity is

upregulated by cytokines, such as IFN-g and LPS, secreted by M1-

type macrophages. This leads to the production of large amounts of

NO, which is involved in regulating fibrosis and the inflammatory

response. Recent studies have found that NO exhibits different

effects in various fibrotic diseases through different concentrations

and mechanisms (110) (Figure 2A). NO inhibition of myofibroblast

activation and collagen I production in renal fibrosis, using

nanocarrier-delivered NO, slows the progression of renal fibrosis

(111). In a phase 2 clinical trial, pulsed inhaled NO demonstrated

favorable safety and tolerability in treating interstitial lung disease

and improved patients’ physical activity (112). These studies suggest

the potential benefit of NO supplementation in fibrotic diseases.

In contrast, other studies have demonstrated that inhibiting NO

production in LPS-stimulated RAW 264.7 macrophages exerts an

anti-inflammatory effect (113). Huseyin Gungor’s study supports the

notion that inhibiting NO production helps improve liver fibrosis

(114). Another in vitro study showed that p53 knockdown

mesenchymal stem cells (MSCs) promoted fibroblast proliferation

by increasing NO production. This phenomenon was reversed by

inhibiting NO production (115). It is thus clear that the role of NO in

fibrotic diseases is dual, and its specific effect depends mainly on the

concentration level of NO. Further research on the application of NO

in fibrotic diseases is of critical significance for guiding HS treatment.
5.1.5 MMPs
MMPs are a class of metal ion-dependent proteases capable of

degrading a wide range of components in the ECM. The human

genome contains 24 MMP genes, two of which encode the MMP23

protein, resulting in 23 distinct MMPs. Under normal conditions,

MMP activity is low, but it increases significantly during tissue

repair and inflammation. MMPs regulate tissue degradation and

remodeling by cleaving ECM components such as collagen,

fibronectin, laminin, and gelatin (116). Among MMPs, MMP-9

plays a crucial role in HS formation (Figure 2A). Previous studies

have found that upregulated gene expression of MMP-2, MMP-9,

and TIMP-1 is strongly associated with proliferative scarring (117).

In experiments with a rabbit ear scar model, elevated MMP-2 and

MMP-9 expression significantly reduced the Scar Elevation Index,

Epidermal Thickness Index, and collagen deposition (118). Recent

in vitro studies have demonstrated that capacitive resistive electro

transfer therapy alters MMP-9 expression in human myofibroblast

cultures, potentially benefiting fibrotic pathology treatment (119).

These findings suggest that the activity of MMP-9 has a critical role

in tissue repair. The mechanism of macrophage-MMP-ECM

interactions warrants further investigation. Targeted interventions

against this interaction may offer new strategies for treating HS.
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5.2 Effect of M2-type macrophage-
associated signaling molecules on HS

5.2.1 TGF-b
TGF possesses the ability to induce a transformed phenotype in

untransformed cells, and it was first discovered by De Larco and

Todaro in 1978. Mammalian cells express three isoforms of TGF:

TGF-b1, TGF-b2, and TGF-b3. These isoforms are widely involved

in biological processes, such as inflammation, matrix generation,

matrix remodeling, cell proliferation, and the regulation of

apoptosis, all of which play an important regulatory role in HS

formation (120, 121).

Recent studies have confirmed that TGF-b, especially the TGF-
b1 isoform, significantly promotes HS formation. Specifically, TGF-

b1 promotes fibroblast activation by activating the downstream

Smad protein signaling pathway (Figure 2A). Simultaneously, it

induces fibroblasts to secrete large amounts of collagen and

fibronectin, which leads to the excessive accumulation of scar

tissue (122). Studies have shown that inhibition of the activation

of the TGF-b1-Smad2/3/4 signaling pathway promotes apoptosis of

fibroblasts, thereby alleviating HS production (123). In addition,

TGF-b1 promotes the differentiation of fibroblasts into

myofibroblasts by regulating the expression of a-SMA, further

enhancing contractility and fibrosis at the trauma site (124).

Several studies have shown that moderate TGF-b signaling

during the early stages of wound repair helps maintain the tissue

repair balance and promotes wound healing. In contrast, when

TGF-b signaling is overactivated, it leads to fibrosis formation.

Smad7 is an inhibitory factor in the TGF-b signaling pathway and

plays a key role in the negative regulation of fibrosis. It inhibits the

excessive transmission of TGF-b signaling by competitively

inhibiting the phosphorylation and nuclear translocation of

Smad2/3, thereby limiting the progression of fibrosis (125)

(Figure 2B). These findings highlight the complex role of TGF-b
signaling in wound repair, including its positive role in promoting

wound healing but also the risk of fibrosis. Previous studies have

shown that the critical role of TGF-b in scar formation has been

extensively researched, and that TGF-b inhibitors have

demonstrated potential efficacy in preclinical studies (126).

However, since the TGF-b signaling pathway is critical for

various normal physiological processes, such as wound healing

and immune regulation, treatments directly targeting TGF-b may

lead to significant side effects. Therefore, future studies may need to

develop more selective TGF-b inhibitory strategies to minimize side

effects while preserving therapeutic efficacy.

5.2.2 IL-10
IL-10 is an anti-inflammatory cytokine, mainly secreted by M2-

type macrophages, and it is involved in scar formation and fibrosis-

related diseases. However, the anti-fibrotic molecular mechanism of

IL-10 in skin scarring remains unclear. Early studies found that a

lack of IL-10 in fetal skin triggered scar formation. This intrinsic

lack of IL-10 may lead to a sustained amplification of inflammatory

cytokines, persistent stimulation of fibroblasts, and abnormal

collagen deposition (127). Other studies have demonstrated that
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IL-10 is highly expressed in fetal skin during mid-gestation and is

absent in human skin after birth (128). These findings tentatively

suggest that IL-10 is involved in wound healing and scar formation.

Recently, several studies have shown that IL-10-modified BMSCs

inhibited inflammatory progression through the JNK/NF-kB
pathway and prevented the formation of HS in a rabbit ear model

(129). This suggests that IL-10 may mediate the JNK/NF-kB
pathway to exert an anti-scarring effect. The study by Xie Fang

et al. demonstrated that IL-10-modified Adipose-Derived

Mesenchymal Stem Cells prevented HS formation by modulating

fibroblast biology and inflammation (130). Another in vitro study

demonstrated that IL-10 regulates the TLR4/NF-kB pathway in

dermal fibroblasts via the IL-10R/STAT3 axis, which in turn

reduced ECM deposition and fibroblast-to-myofibroblast

transformation, thereby attenuat ing LPS-induced HS

formation (31).

In summary, IL-10 may take on an anti-scarring role through

various mechanisms, such as reducing the inflammatory response

and modulating the biological behavior of fibroblasts (Figure 2B).

Although IL-10 has the potential to inhibit HS formation, it is

poorly stable in vivo and requires an effective delivery system to

ensure adequate concentration in target tissues. Existing delivery

systems (e.g., nanocarriers, hydrogels, and other methods) are

effective, but their effectiveness and safety must be further

validated. Future research may focus on developing controlled-

release IL-10 systems that can be combined with antifibrotic drugs,

laser therapy, or other cytokines to develop a combination therapy

strategy for preventing HS.
5.2.3 VEGF
The process of HS formation is closely related to dysregulated

angiogenesis. VEGF is the major pro-angiogenic factor, generating

different mRNA variants through alternative splicing. These

variants are translated to produce protein subtypes of different

lengths and biological functions (131). Specifically, VEGF-A binds

to VEGFR-2, forming a dimer and activating the receptor’s tyrosine

kinase activity. This process triggers the autophosphorylation of

tyrosine residues on the receptor. The phosphorylated tyrosine

residues become binding sites for various downstream signaling

molecules, activating multiple signaling pathways such as Ras/

MAPK, PI3K/Akt, and Notch (132, 133) (Figure 2B). These

pathways act synergistically to regulate the behavior of vascular

endothelial cells and ultimately promote angiogenesis. However,

overactivation of these signaling pathways can lead to excessive

angiogenesis. The overproduced blood vessels provide sufficient

nutritional support for the abnormal proliferation of fibroblasts and

collagen deposition, thus exacerbating scarring. Numerous studies

have shown that downregulation of VEGF signaling can alleviate

HS formation (134, 135). Moreover, VEGF signaling also

upregulates the expression of MMPs, promoting endothelial cell

migration in the stroma and neovascularization (136, 137). Thus,

VEGF and its associated signaling pathways play a multifaceted role

in the formation of HS, making it an essential target for

understanding and treating pathological scarring.
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5.2.4 PDGF
The PDGF family consists of PDGF-aa, PDGF-bb, PDGF-ab,

PDGF-cc, and PDGF-dd, which are composed of five members that

form disulfide-linked homo- or heterodimers (138). The primary

sources of PDGF are platelets and fibroblasts, and M2 macrophages

can secrete small amounts of PDGF during the proliferation phase

of wound healing. PDGF regulates cell proliferation, migration, and

differentiation by initiating downstream signaling pathways

through binding to its specific receptor, PDGFR (139).

PDGF’s ability to promote fibroblast activity plays a crucial role

in HS formation. Studies have shown that PDGF expression in HS

tissue is significantly higher than in normal skin, which correlates

directly with the hyperactivation of fibroblasts (140). The

overexpression of PDGF leads to abnormal proliferation and

migration of fibroblasts, resulting in collagen production

exceeding normal levels and causing thickened and hardened scar

tissue. Another in vitro study found that adding PDGF-BB to

fibroblasts cultured in vitro significantly increased the

proliferation rate of the cells (141). This effect was more

pronounced in HS fibroblasts (142), suggesting an essential role

of PDGF in promoting cell proliferation in this process.

PDGF also enhances the secretory activity of fibroblasts by

activating the PI3K/Akt, MAPK, and other signaling pathways

(Figure 2B). This results in the overproduction of collagen,

fibronectin, and other ECM components, ultimately leading to

the persistent and abnormal proliferation of scar tissue (143, 144).

In addition, PDGF promotes HS generation through synergistic

effects with VEGF and TGF-b (145, 146) (Figure 2B). This suggests

that PDGF affects scar formation by directly acting on fibroblasts

and also indirectly contributes to the development of HS by

regulating angiogenesis. Inhibiting the PDGF/PDGFR signaling

pathway can effectively block the aberrant signal transduction of

various growth factors, thereby preventing the onset and

progression of diseases such as fibrosis (147). Given the critical

role of PDGF in HS, targeting the PDGF/PDGFR pathway is a

promising therapeutic strategy.
5.3 Direct involvement of macrophages in
matrix remodeling

Macrophages are not only indirectly involved in HS formation

by secreting signaling molecules but also directly influence HS

formation by remodeling the ECM. Macrophages directly

intervene in ECM remodeling by both secreting collagen and

differentiating into myofibroblasts (Figure 2C). As early as 1999,

Weitkamp et al. used fluorescence techniques to demonstrate that

macrophages can synthesize type VIII collagen themselves (148).

Another study found that macrophages secrete fibronectin and

collagen type VIII to promote ECM formation and express almost

all known collagen and collagen-related mRNAs (149). These

findings suggest a direct role for macrophages in HS formation.
Frontiers in Immunology 09
Notably, macrophages undergo macrophage-to-myofibroblast

trans differentiation (MMT) in chronic inflammation and fibrotic

pathological environments. A study collected human liver

specimens at different stages of hepatic fibrosis and found MMT

cells, which co-expressed macrophage (CD68) and myofibroblast

(a-SMA) markers. Moreover, this result was validated in an animal

model of liver fibrosis (150). In another study, researchers found

that macrophages are involved in the formation of subretinal

fibrosis through MMT changes (151). This suggests that MMT is

involved in the progression of multiple fibrotic diseases. However,

current research on direct collagen secretion by macrophages has

primarily focused on organ fibrosis. Therefore, there is an urgent

need to improve the understanding of macrophage-secreted ECM

components in skin scarring.
5.4 Macrophages mediate HS formation via
exosomes

Macrophages secrete different extracellular vesicles, including

Exosomes, Microvesicles, and Apoptotic Bodies. Exosomes are

important extracellular vesicles that contain various bioactive

molecules such as microRNA, proteins, and lipids, which can

regulate intercellular communication and influence the behavior

of recipient cells.

Exosomes are secreted by prokaryotic and eukaryotic cells, with

a diameter of about 30-150 nm, and are essential carriers of

paracrine signaling (152). Macrophages initiate the process

through membrane endocytosis , forming endosomes.

Subsequently, the endosomes generate intraluminal vesicles in the

cytoplasm, which transform into multivesicular bodies (MVBs).

Finally, the MVBs fuse with the cell membrane, releasing exosomes

(152, 153). A study co-culturing M2 macrophages with human

dermal fibroblasts found that exosomes derived from M2

macrophages promoted the proliferation and migration of human

dermal fibroblasts by delivering LINC01605 (154) (Figure 2D).

Another study showed that M2 macrophage-derived exosomes

were enriched in long-stranded noncoding RNA, specifically

lncRNA-ASLNCS5088. This lncRNA can be efficiently transferred

to fibroblasts, increasing a-SMA expression (155). Interestingly,

recent studies have shown that macrophage filamentous

pseudopods can produce filopodia tip vesicles. Such vesicles

detach from the tips of the cell’s filamentous pseudopods and

deliver many molecular signals to fibroblasts (156). These studies

suggest that macrophage-derived exosomes play a role in HS

formation by influencing fibroblast behavior.

Although studies of macrophage-mediated HS formation via

exosomes have shown potential, their high cost and shortcomings

in delivery efficiency and specificity have limited their application.

In the future, new breakthroughs in therapeutic HS should be

achieved by studying standardized production and optimizing

delivery systems.
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6 Treatment strategies for HS

6.1 Emerging technologies for HS
treatment

6.1.1 Photomedical therapy technology
Compared with traditional conservative treatments, such as

local drug injections and physical pressure therapy, photoelectric

technology offers non-invasiveness, high precision, a rapid onset of

action, and shorter treatment durations. Common photoelectric

therapy modalities used in clinical practice include laser therapy

(ablative and non-ablative), microplasma radiofrequency

technology, and photodynamic therapy (PDT).Recently, PDT has

emerged as a promising non-surgical strategy for treating HS in

both cellular studies and animal models. PDT primarily relies on

the cytotoxic effects of photosensitizers to achieve its therapeutic

action. When photosensitizers accumulate around proliferating

fibroblasts, laser irradiation triggers the production of reactive

oxygen species (ROS).ROS exert cytotoxic effects on fibroblasts,

inducing apoptosis and ultimately leading to the necrosis of scar

tissue (157, 158). However, the detailed mechanism underlying

PDT’s scar-inhibitory effects remains unclear. In clinical

applications, PDT is often combined with microneedling

techniques, which enhance drug penetration while amplifying

PDT’s anti-scarring effects (159, 160). There is no doubt that

PDT is an effective strategy for the prevention and treatment of

HS. Notably, the selection of photosensitizers, the presence of side

effects such as pain during treatment and how to effectively combine

photodynamic therapy with other therapies are current challenges.

6.1.2 New drug delivery systems
6.1.2.1 Controlled release materials

Controlled-release materials significantly enhance the

continuity and efficacy of therapy due to their unique drug slow-

release properties. Hydrogel is a network structure composed of

hydrophilic polymer chains linked by various chemical bonds and

forces, featuring diverse cross-linking modes. In recent years, it has

been used as a bioscaffold to promote wound healing,

demonstrating promising therapeutic effects in the treatment of

HS. Zivari-Ghader T et al. showed that hydrogel wound dressings

made of chitosan/alginate scaffolds loaded with HPCE effectively

prevented HS formation. This hydrogel exhibited antimicrobial,

antioxidant, and anti-inflammatory properties, effectively inhibiting

excessive collagen deposition and reducing inflammation (161).

Similarly, numerous studies support these findings (162–164). Fu

et al. demonstrated that hydrogels possess tension-shielding

capabilities, which reduce wound tension via shape fixation and

ultimately minimize HS formation (165). Zhang et al. utilized a

bioglass/alginate composite hydrogel, which significantly inhibited

scar formation in a rabbit ear scar model. The main mechanism

involves stimulating the expression of the integrin subunit Alpha 2

in dermal fibroblasts, which accelerates wound healing and

modulates fibroblast behavior (166). This indicates that different

functional hydrogels can inhibit HS formation through multiple

mechanisms (Table 1).
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Microspheres are small spherical multiparticulate drug delivery

systems with diameters ranging from 1 to 1,000 mm, capable of

enhancing the bioavailability, stability, and efficacy of traditional

drugs while ensuring good safety. Zhang et al. constructed

asiaticoside microspheres to achieve efficient drug loading and

sustained release, providing regenerative healing and anti-scarring

effects (167). Another study prepared hemostatic porous

microspheres, which demonstrated high fluid absorption capacity

and excellent coagulation properties, accelerating wound healing

and highlighting their potential in scar treatment (168).

Microsponges are porous structures composed of polymerized

particles, typically ranging from 5 to 300 mm in diameter. The

porous structure of microsponges enables controlled drug release.

In a study investigating a microsponge gel of silver sulfadiazine for

burn wound treatment, loading silver sulfadiazine into a

microsponge incorporated in a gel matrix enhanced drug potency,

enabled sustained drug release, reduced dosing frequency,

improved adherence in burn patients, and minimized cytotoxicity

(169). Furthermore, incorporating microsponges into a hydrogel

allows for sustained drug delivery to the wound site, while the gel

matrix maintains a moist environment and enhances cell adhesion,

promoting wound healing and offering a novel approach for HS

treatment (170).

6.1.2.2 Enhanced penetration materials

The stratum corneum is the primary barrier to drug delivery

through the skin to the scar tissue. Both liposomes and ethosomes

possess bilayer membrane structures that resemble biological

membranes. This structure enables them to mimic the properties

of biological membranes, facilitating their fusion with cell

membranes, penetration of the stratum corneum, and

enhancement of drug permeation. SHI et al. developed an anti-

VEGF antibody-modified liposome gel containing salvinorin. It

exhibited excellent skin permeability, delayed drug release, and

promoted high drug accumulation in the dermis. In vivo studies

demonstrated that it reduced VEGF, TGF-b1, and TNF-a levels,

inhibited cell proliferation, and exhibited therapeutic effects on HS

in a rabbit ear model (171). Xie et al. developed new statin-loaded

liposomes with enhanced skin penetration, which were successfully

delivered topically and significantly reduced HS formation in a

rabbit ear model (172). Zhang et al. prepared 5-FU-encapsulated

ethosomes for HS treatment in combination with CO2 fractional

laser therapy. The nanoscale ethosomes penetrated scar tissue

through narrow and tightly connected cellular gaps. Fractional

laser reduces the required drug dose, facilitating drug penetration

into deeper skin layers, achieving higher local concentrations, and

effectively inhibiting HS formation (173). Similarly, Yu et al. utilized

the transdermal delivery capability of ethosomes to prepare an IR-

808-loaded nanoethosome system as a novel photosensitizer for HS

treatment with transdermal photodynamic therapy (174).

6.1.2.3 Bioactive materials

The exceptional biocompatibility and functionality of bioactive

materials facilitate the effective repair of scar tissue. Exosomes, as

critical mediators of intercellular communication, can deliver
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TABLE 1 Novel drug delivery systems for HS.

Material
Type

Category Name Model Mechanism References

Controlled
Release
Materials

Hydrogel Chitosan-Alginate Hydrogel with
Hypericum perforatum
Callus Extract

Mouse wound healing model/
Normal human fibroblast cell

Inhibited E. coli and K.
pneumoniae, MRSA, and MR-
CoNS/accelerated re-
epithelialization, neovascularization,
and collagen deposition while
reducing inflammation

(161)

GelMA/PEGDA Hydrogel
Microneedle Patch

Rabbit Ear HS Model/
HS fibroblasts

Inhibition of HS fibroblasts/
decreased the protein expression of
collagen I/III and TGF-b1

(162)

polysaccharide hydrogel Rabbit Ear HS Model/Human
keloid fibroblasts

Reducing the expression of a-
SMA expression

(163)

Tough, antibacterial, and
antioxidant hydrogel

MRSA-infected rat full skin
defect model/MRSA-infected
rabbit ear HS model

Decreased inflammatory reactions,
reduce collagen deposition, regulate
collagen type and down-regulate a-
SMA production

(164)

Shape-fixing hydrogel Mouse HS model Reduces mechanical tension on
wounds, optimizing the healing
environment to promote
scarless repair

(165)

Bioglass/alginate
composite hydrogels

Rabbit Ear HS Model/
HS fibroblasts

Inducing scar fibroblasts apoptosis (166)

Microspheres Porous microspheres loaded
with asiaticoside

Epithelial cells, Dermal
fibroblast cell models/Rat full-
skin excision model

Accelerating re-epithelization,
regulating the synthesis and
disposition of different types
of collagens

(167)

Cellulose nanocrystal/calcium
alginate-based
porous microspheres

Mouse full thickness
skin wound

Inhibited the activities of
Escherichia coli, Staphylococcus
aureus, and
Pseudomonas aeruginosa

(168)

Microsponges Silver sulfadiazine-loaded
microsponge gel

Epidermal keratinocyte and
mouse embryonic fibroblast

cell/Second degree burn wound
model in mice

Enhanced the efficacy of the drug
by reducing the cytotoxicity towards
the keratinocytes and fibroblasts

without altering the
antimicrobial properties

(169)

Resveratrol-loaded
microsponge gel

Excision wound model in rats Influenced cell adhesion (170)

Enhanced
Penetration
Materials

Liposomes anti-VEGF antibody-modified
Paeonol liposome gels

Rabbit Ear HS Model Inhibition inflammation (171)

Liposome-encapsulated statins Rabbit Ear HS Model/Human
foreskin fibroblasts

Decreased type I/III
collagen content

(172)

Ethosomes ethosomes encapsulated with
5-florouracil

Rabbit Ear HS Model CO2 fractional laser promote the
permeation of 5-fluorouracil
encapsulated ethosomes

(173)

IR-808 loaded nanoethosomes HS fibroblast/Rabbit Ear
HS Model

promoting HSF apoptosis and
remodeling collagen fibers

(174)

Bioactive
Materials

Exosomes LINC01605-enriched exosomes
from M2 macrophages

Human dermal fibroblast LINC01605 promoted fibrosis of
human dermal fibroblast by directly
inhibiting the secretion of miR-493-
3p, and miR-493-3p down-regulated
the expression of AKT1

(154)

lncRNA-ASLNCS5088-enriched
exosomes from M2 macrophages

Fibroblast Inhibition fibroblast activation (155)

Exosome derived from
mesenchymal stem cells

HS fibroblast Inhibition the TNFSF-13/HSPG2
signaling pathway

(175)

(Continued)
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biologically active substances and have demonstrated significant

therapeutic potential in the treatment of HS. Recent research on

adipose stem cell exosomes (ADSC-exos) has yielded increasing

evidence that ADSC-exos not only promote wound repair but also

possess therapeutic potential for HS. By carrying specific

microRNAs, ADSC-exos regulate target gene expression, suppress

fibrosis-related signaling pathways such as TGF-b/Smad, reduce

fibroblast proliferation, migration, and collagen deposition, and

promote HS tissue repair. This demonstrates the great potential of

ADSC-exos in the treatment of HS (175–177). Moreover, fibroblast
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exosomes have shown a beneficial role in HS treatment. They affect

HS formation by regulating fibrotic signaling pathways, promoting

cell proliferation migration and epithelial-mesenchymal transition

(178, 179). Notably, lncRNAs enriched in M2-type macrophage-

derived exosomes were found to influence HS formation through a

mechanism potentially linked to fibroblast activation (154, 155).

Bioactive nanomaterials exhibit tremendous potential for

treating proliferative scarring. Studies have utilized nanoparticles

as encapsulants, effectively inhibiting scar tissue formation. For

example, Rerteporfin, Resveratrol, and Doxorubicin hydrochloride
TABLE 1 Continued

Material
Type

Category Name Model Mechanism References

Exosomes from miR-29a-modified
adipose-derived mesenchymal
stem cells

Mouse scalded skin model/
HS fibroblasts

Inhibition the TGF-b2/Smad3
signaling pathway

(176)

Exosome from adipose-derived
mesenchymal stem cells

Mice skin incision model/
Fibroblasts model

Regulation of microRNA-181a/
SIRT1 axis

(177)

Exosomes from hypertrophic
scar fibroblasts

Normal human keratinocytes Changed molecular patterns of
proliferation, activation,
differentiation and apoptosis of
NHKs and proliferation/
differentiation regulators and
EMT markers

(178)

Exosomes derived from human
hypertrophic scar fibroblasts

HS fibroblasts Increased cell proliferation and
migration,induces smad and
TAK1 signaling

(179)

Nanoparticles Verteporfin-loaded
bioadhesive nanoparticles

HS fibroblasts Inhibition the collagen deposition
and angiogenesis

(180)

Resveratrol-laden mesoporous
silica nanoparticles

HS fibroblasts Induce the apoptosis and autosis via
the ROS -mediated p38-MAPK/
HIF-1a/p53 signaling axis

(181)

DNA-Fe nanoparticle Rabbit Ear HS Model/Human
fibroblast cells

Remodeling collagen fibers and
promoting human fibroblast
cells apoptosis

(182)

Cu2Se@LYC (CL) composite Rabbit Ear HS Model/
HS fibroblasts

Induce the generation of reactive
oxygen species and mitochondrial
damage in hypertrophic
scar fibroblasts

(183)

Cuprous oxide nanoparticles Rabbit Ear HS Model/
HS fibroblasts

Inhibiting HSFs proliferation and
inducing HSFs apoptosis

(184)

Nanofiber
Membranes

Palmatine-loaded poly
(e-caprolactone)/gelatin
nanofibrous scaffolds

Rabbit Ear HS Model/
L929 Fibroblasts

Facilitate the adhesion, spreading
and proliferation of L929 fibroblasts

(185)

ginsenoside Rg3-loaded
electrospun PLGA
fibrous membranes

Rabbit Ear HS Model Decreased collagen I,
VEGF expression

(186)

Random composite nanofibers Rat whole skin defect model Promote re-epithelialization and
angiogenesis and reduce
excessive inflammation

(187)

Electrospun Naringin-
Loaded Fibers

Normal Human Dermal
Fibroblasts/Hypertrophic
Human Fibroblasts

Decreased Normal Human Dermal
Fibroblasts TGF-b1, COL1A1,
a-SMA

(188)

Electrospun Fibers Loaded
with Pirfenidone

HS fibroblasts Modulates the gene expression of
TGF-b1 and a-SMA

(189)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1503985
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shen et al. 10.3389/fimmu.2025.1503985
were encapsulated into nanoparticles to enhance drug stability and

targeting, reduce side effects, and inhibit scar fibroblast proliferation

effectively (180–182). Additionally, nanoparticles have been used to

deliver photosensitizers in combination with near-infrared light

therapy to induce mitochondrial damage and cell death (183).

Furthermore, nanoparticles have been found to regulate the

proliferation and apoptosis of HS fibroblasts, providing a

scientific basis for developing novel therapeutic strategies for HS

(184). Beyond nanoparticles, nanofiber membranes play a critical

role in HS treatment. One study prepared Palmatine-loaded

electrospun poly(e-caprolactone)/gelatin nanofibrous scaffolds.

These scaffolds exhibited strong antimicrobial and antioxidant

activities, significantly inhibited scar formation, and accelerated

wound healing (185). Another study developed ginsenoside Rg3-

loaded electrospun PLGA fibrous membranes using electrostatic

spinning and pressure-driven infiltration techniques. These

membranes promoted tissue repair during the early stage of

wound healing and inhibited scar formation during the later stage

(186). In addition, nanofibrous membranes can influence scar

formation by regulating macrophage function and promoting

macrophage polarization. In a study, dendritic mesoporous

bioglass nanoparticles loaded with VR23 were blended with poly

(ester-curcumin-urethane) urea to prepare random composite

nanofibers with bi-directional modulation. The dressing

effectively promoted scarless healing of chronic wounds (187).

In addition to serving as drug carriers, the structural and

mechanical properties of nanofiber membranes play a crucial role

in scar treatment. One study developed electrospun fibers loaded

with naringin. The fibers featured an innovative rounded texture,

which effectively minimized HS formation during early wound

healing (188). Another biofiber loaded with Pirfenidone exhibited

outstanding elongation and toughness, enabling it to effectively

treat HS during the established wound healing phase (189).

Clinical treatment of HS has made significant progress fueled by

advancements in optoelectronics and novel drug delivery systems,

but these emerging technologies still face multiple challenges in

practical application. With its non-invasive and minimally invasive

characteristics, photofacial technology provides an innovative and

promising approach to treating scarring. However, the technical

complexity, high equipment costs, and stringent requirements for

operator expertise have restricted its widespread adoption.

Moreover, the efficacy of photoelectric treatment is often

unpredictable due to patient-specific variability, and its long-term

effects require further validation. Therefore, reducing treatment

costs, improving operational simplicity, and ensuring treatment

efficacy have become pressing challenges for the application of

photoelectric technology in HS therapy.

On the other hand, novel drug delivery systems offer a more

targeted and efficient method of administering drugs for HS

therapy. However, the complex preparation processes of these

novel delivery systems impose higher requirements on the

biocompatibility, targeting, and stability of the materials. Poor

biocompatibility may trigger immune responses, while inadequate

targeting can result in non-specific drug distribution in normal
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tissues, raising the risk of side effects. Additionally, the stability of

novel delivery systems in vivo is a critical determinant of their

therapeutic efficacy. Therefore, optimizing the preparation process

and enhancing delivery efficiency while ensuring material safety and

efficacy have become major challenges for novel drug delivery

systems in HS therapy.
6.2 Strategies for targeting macrophages in
the treatment of HS

Current treatment of HS focuses on controlling the

inflammatory response with steroids and NSAIDs, as well as

managing scar tissue through physical interventions such as

surgery (190, 191). Although these methods are effective to a

certain extent, they still have the limitations of significant side

effects and high recurrence rates. Therefore, the development of

new treatment modalities is urgently necessary. The role of

macrophages in scar format ion is gaining attention.

Macrophages play a dual role in tissue repair, promoting both

the inflammatory response and facilitating tissue remodeling.

Therefore, therapeutic strategies targeting macrophages have

emerged as a potential approach to mitigate proliferative scar

formation. This review will discuss the strategies and prospects of

targeting macrophages to treat proliferative scarring from four

aspects (Figure 3, Table 2).

6.2.1 Regulation of macrophage polarization
Dysregulation of the macrophage M1/M2 phenotypic transition

is one of the major causes of HS formation. Thus, regulating the

polarization state of macrophages is expected to inhibit fibroplasia

and reduce scar formation. A study used nanogels as carriers to

deliver tretinoin and 5-fluorouracil subcutaneously to a rabbit ear

HS model. The results showed that this method effectively

modulated macrophage phenotypic switching and had an

antifibrotic effect, providing a promising therapeutic strategy for

HS (192). Other studies have shown that a single dose of a two-layer

microneedle system enhances the therapeutic effect against HS. The

mechanism may be related to the anti-inflammatory drug

dexamethasone, released from the outer layer, which inhibits the

polarization of macrophages into a pro-inflammatory phenotype

(193). Research by Tianya Li et al. also demonstrated that inhibiting

the excessive polarization of M2 macrophages can effectively reduce

scar formation (194) (Figure 3A). These findings suggest that

therapeutic strategies targeting the modulation of macrophage

polarization status have significant potential for preventing and

treating HS. This provides new ideas for developing more effective

anti-scarring therapies in the future.

6.2.2 Inhibition of macrophage proliferation
Macrophage proliferation and accumulation have been noted as

critical factors in the formation of HS (195). Therefore, inhibition of

macrophage proliferation is considered a promising therapeutic

strategy. Multiple studies have explored the effects of different drugs
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on macrophage proliferation and accumulation using a rabbit ear

HS model. SFN/ASA-containing gel dressing and quercetin have

been shown to inhibit scar formation by reducing macrophage

numbers in a rabbit ear HS model (196, 197). In addition,

ultrashort-wave hyperthermia reduced the macrophage ratio,

while gambogenic acid decreased macrophage infiltration. Both

demonstrated significant anti-scarring effects in this model (198,

199). Finally, simvastatin cream, curcumin, and LCB 03-0110 in a

rabbit ear HS model also showed that reducing macrophage

accumulation significantly inhibited fibrosis (200–202).

In a mechanical force-induced mouse model of HS, FTY720

significantly inhibited scar formation by reducing M2 -dominant

macrophages (203). Xiamenmycin showed sound anti-scarring

effects in this model by reducing macrophage retention

(204) (Figure 3B).

Another study used a nude mouse model of HS generated by

human xenografts and found that CTCE-9908 effectively controlled

scar formation by reducing macrophage accumulation (205). These

studies suggest that HS formation can be effectively controlled by

targeting macrophage proliferation and accumulation, providing a

new direction for future anti-scarring therapies.
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6.2.3 Targeting macrophage-specific pathways
Targeting macrophage-specific pathways is one of the critical

strategies for treating HS. The Notch signaling pathway plays a role

in dermal fibrosis by regulating fibroblast proliferation and

activation, influencing inflammatory responses, and controlling

ECM remodeling (206). It was shown that emodin significantly

attenuated HS formation in the rat tail by inhibiting macrophage

recruitment and polarization, an effect associated with inhibition of

the Notch signaling pathway. This study revealed that down-

regulation of Notch1, Notch4, and Hes1 could inhibit

macrophage polarization and attenuate HS formation (207)

(Figure 3C). This suggests that targeting the Notch pathway may

be an effective intervention strategy for HS formation.

6.2.4 Inhibition of macrophage exosome
production

Therapeutic strategies to inhibit exosome production have

shown potential in various diseases, including cancer,

neurodegenerative diseases, and cardiovascular diseases (208,

209). GW4869 is a selective neutral sphingomyelinase inhibitor

widely used to study the role of exosomes in disease by blocking
FIGURE 3

Strategies for targeting macrophages in the treatment of HS. (A) Regulation of macrophage polarization (B) Inhibition of macrophage proliferation
(C)Targeting macrophage-specific pathways (D) Inhibition of macrophage exosome production. (By Figdraw).
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their production (210). Studies have shown that GW4869

successfully inhibited the activation of fibroblasts by M2

macrophages by blocking the production of exosomes enriched

with the long-chain lncRNA ASLNCS5088 from M2 macrophages.

This mechanism was validated in an in vitro macrophage-fibroblast

co-culture model and a mouse wound splint HS model,

demonstrating its potential therapeutic value in inhibiting scar

formation (155) (Figure 3D). These findings suggest that

inhibition of exosome production may be a new direction for

treating HS.

In summary, therapeutic strategies targeting macrophages

demonstrate significant potential in managing HS. Modulating

macrophage polarization status, inhibiting their proliferation,

targeting specific signaling pathways, and inhibiting macrophage

exosome production effectively reduce scar formation. Future

studies should optimize strategies for targeting macrophages

through further research and technological improvements to

achieve more effective scar management in clinical practice.
7 Summary and outlook

HS formation is a complex pathological process involving the

interaction of multiple cell types and signaling pathways.
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Macrophages play a key role at different stages as an important

part of the innate immune system. This paper reviews the

phenotypic changes of macrophages during HS formation, the

effects of key signaling molecules on HS, and the potential of

macrophages as therapeutic targets, revealing the importance of

macrophages in forming and regulating scarring. However, there

are still some questions about the role of macrophages in HS.

First, most studies have shown that M1-type macrophages

promote the maintenance and expansion of the inflammatory

response, while M2-type macrophages drive the formation and

remodeling of scar tissue. However, the diverse roles of

macrophages in HS are influenced by various factors, including the

severity of the condition and variations in disease models. Currently,

there is a lack of a standardized model for HS. Therefore,

standardizing the methods for HS modeling is necessary to study

the role of macrophages in HS better. Our review emphasizes the

complex role of macrophages in HS formation, highlighting their

dynamic phenotypic changes and their interactions with the scar

microenvironment. These findings provide valuable guidance for the

development of physiologically relevant and standardized HSmodels.

By simulating the phenotypic changes of macrophages at different

stages and their effects on the scar microenvironment, the

physiological relevance of HS models and the translational value in

preclinical research can be significantly enhanced. This not only
TABLE 2 Strategies for targeting macrophages in the treatment of HS.

Modes of action Drugs/Methods Model Mechanisms of action References

Regulation of
macrophage polarization

CHRFAM7A Mouse HS model of human
skin grafts

Modulates macrophage phenotype and attenuates
M2 macrophage activation

(194)

Integrated
bilayer microneedles

Rabbit Ear HS Model Inhibition of macrophage M1 polarization (193)

Transdermal
Transfersome Nanogels

Rabbit Ear HS Model Promoting macrophage phenotype switching (192)

Inhibition of
macrophage proliferation

Film-forming
emulgel dressing

Rabbit Ear HS Model Decreased number of macrophages (196)

Quercetin Rabbit Ear HS Model Decreased number of macrophages (197)

Ultrashort wave diathermy Rabbit Ear HS Model Reduced macrophage ratio (198)

FTY720 Mechanical force induced HS
model in mouse

Reduced M2-dominant macrophage frequency (203)

CTCE-9908 Nude mouse HS model of
human xenografts

Decreased number of macrophages (205)

Simvastatin cream Rabbit Ear HS Model Reduced macrophage density (201)

Curcumin Rabbit Ear HS Model Decrease in the number of M2-type macrophages (200)

Gambogenic acid Rabbit Ear HS Model Reduced macrophage infiltration (199)

xiamenmycin Mechanical force induced HS
model in mouse

Decreased number of macrophages (204)

LCB 03-0110 Rabbit Ear HS Model Decreased number of macrophages (202)

Targeting macrophage-
specific pathways

Emodin Tail HS model in rats Inhibition of macrophage recruitment and
polarization/inhibition of Notch pathway

(207)

Inhibition of macrophage
exosome production

GW4869 Mouse wound splint
HS model

Blockade of lncRNA-ASLNCS5088-enriched
exosome production in M2 macrophages

(155)
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facilitates the study of HS pathophysiological mechanisms but also

provides new directions for the evaluation and optimization of

emerging therapeutic strategies.

Second, this paper reviews the direct effects of macrophages on

HS formation through various signaling molecules. However,

macrophage-associated signaling molecules such as TNF-a, IL-6,
TGF-b, and IL-10 may play dual roles in different pathological

settings. Therefore, further studies on the mechanisms by which

macrophage-associated signaling molecules function are necessary.

Third, macrophage-targeted therapies are considered a

promising strategy for managing HS due to their critical role in

scar formation and remodeling. By precisely regulating macrophage

polarization and function, these therapies can reduce scar formation

and improve wound healing outcomes. The integration of

macrophage-targeted therapies into existing HS management

practices has the potential to enhance treatment efficacy. For

instance, combining macrophage-targeted therapies with laser

therapy or novel delivery systems can provide more precise,

localized, and sustained therapeutic effects while minimizing the

systemic side effects commonly associated with traditional

treatments. However, successful clinical application still requires

addressing individual variability in patient responses, challenges

related to cost-effectiveness and affordability, and rigorous clinical

trials to validate their efficacy and safety. Overall, targeting

macrophages is expected to be a new and effective therapeutic

strategy for preventing HS.
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