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Objectives: Accurate determination of gastrointestinal tumor malignancy is a

crucial focus of clinical research. Constructing coagulation index models using

big data is feasible to achieve this goal. This study builds various prediction

models through machine learning methods based on the different coagulation

statuses under varying malignancy levels of gastrointestinal tumors. The aim is to

use coagulation indicators to predict the malignancy of gastrointestinal tumors,

expand the methods and ideas for coagulation index tumor prediction, and

identify independent risk factors for gastrointestinal tumor malignancy.

Methods: Clinical data of 300 patients with gastrointestinal diseases were

collected from the Second Affiliated Hospital of Anhui Medical University from

January 2024 to August 2024 and grouped according to TNM and G staging,

representing tumor malignancy levels. First, independent influencing factors of

gastrointestinal tumor malignancy were identified using stepwise multivariate

logistic regression. ROC curves were used to assess the ability of TEG five items

and other coagulation indicators to distinguish between malignancy levels of

gastrointestinal tumors. Finally, we constructed a network model suitable for our

task data based on residual networks, named the Residual Fully Connected Binary

Classifier (RFCBC). This model was compared with other commonly used binary

classification methods to select the optimal model.

Results: The TEG five items (AUC values: R: 0.682; K: 0.731; a-angle: 0.736; MA:

0.699; CI: 0.747) showed better discrimination ability in the G group than other

coagulation indicators. Although the TNM group showed moderate discrimination

ability, it did not exhibit a significant advantage over other indicators. The R andMA

values were identified as independent influencing factors in both TNM and G

groups. Ultimately, the RFCBC prediction model showed the best predictive
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performance compared to other binary classification machine learning models

(TEG five items: 87.56%; Thromboelastogram et al.: 88.6%).

Conclusion: This study found that the R and MA values are independent

predictive factors for the malignancy of gastrointestinal tumors. Compared to

other coagulation indicators, the TEG five items have better discrimination ability

regarding tumor malignancy. The RFCBC model created in this study

outperforms other commonly used binary classification methods in predicting

the malignancy of gastrointestinal tumors, providing a new model construction

method and feasible approach for future coagulation index prediction of

gastrointestinal tumor malignancy.
KEYWORDS

TEG, machine learning, predictive models, gastric cancer, colorectal cancer,
coagulation indicators
1 Background

Gastrointestinal malignant tumors are among the most

common malignant tumors worldwide and rank as the second

leading cause of cancer-related deaths globally, following lung

cancer (1). In China, the incidence and mortality rates of

gastrointestinal malignancies are gradually increasing (2). Early

symptoms are often not prominent, and by the time of discovery,

the disease is usually at the middle to late stage, often accompanied

by symptoms such as intestinal obstruction, changes in bowel

habits, changes in stool characteristics, and weight loss anemia,

leading to delayed treatment (3). Therefore, early detection and

prediction of tumor malignancy have become a key focus of

research (4).

Hypercoagulability has long been considered a characteristic of

gastrointestinal malignancies (5, 6). Patients with malignant tumors

exhibiting hypercoagulability have shorter overall and disease-free

survival postoperatively compared to patients with normal

coagulation (7). Traditional coagulation function tests, such as

prothrombin time (PT), activated partial thromboplastin time

(APTT), and fibrinogen (Fig) (8), have been used for relevant

examinations in malignant tumors. However, traditional

coagulation function tests have limitations as they only reflect the

static characteristics of plasma coagulation at a specific time point

(9). Thromboelastography (TEG) indicates the dynamic changes in

blood coagulation. It includes seven parameters: R-value, K-value,

a-angle, MA-value, CI, LY30, and EPL. In 1948, Hertert first

described TEG as a method for real-time evaluation of the

viscoelastic properties of whole blood. In recent years, TEG has

been extensively used for detecting hypercoagulability related to

cancer, such as lung cancer (10), liver cancer (11), and breast

cancer (12).

Due to differences in tumor cell malignancy and staging,

gastrointestinal malignant tumor patients exhibit varying
02
coagulation statuses under different malignancy levels and stages.

TEG can comprehensively assess the activity of coagulation factors,

fibrinogen function, platelet function, and fibrinolysis status.

Therefore, we grouped the study population into benign and

malignant gastrointestinal tumor groups, further subdividing the

malignant tumor group based on postoperative pathology into

TNM and G stages. We collected TEG and other coagulation

indicators for a retrospective cohort study. Using logistic

regression and various machine learning modeling methods, we

constructed multiple models to explore whether they could predict

the malignancy and staging of gastrointestinal tumors, evaluate

whether TEG five items are better at predicting gastrointestinal

tumor malignancy compared to the Thromboelastogram Nine

Items, and explore new applications of TEG and other

coagulation indicators in gastrointestinal malignancies.
2 Methods

2.1 Patient information collection

We selected 300 patients with gastrointestinal diseases who

were treated at the Second Affiliated Hospital of Anhui Medical

University from January 2024 to August 2024. Their pathological

and clinical data were retrospectively collected. The study was

approved by the Ethics Committee of the Second Affiliated

Hospital of Anhui Medical University (YX2023-183). Inclusion

criteria were as follows: (1) Healthy group patients: No

gastrointestinal tumors were diagnosed within one year after

endoscopic examination; (2) Patients with benign gastrointestinal

tumors: Benign gastrointestinal tumors were diagnosed by

endoscopy and confirmed by pathology after resection; (3)

Patients with malignant gastrointestinal tumors: Malignant
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gastrointestinal tumors were diagnosed by endoscopy and

confirmed by pathology after resection. Exclusion criteria were:

(1) Patients with tumors in other parts of the body; (2) Patients with

other coagulation disorders or those who received anticoagulant

therapy within three months; (3) Patients who received neoadjuvant

chemotherapy before surgery; (4) Patients with acute

inflammatory diseases.

Data were collected using the hospital’s case system, with data

extracted from the patient’s electronic medical records, including

laboratory indicators, tumor-related conditions, and basic

in fo rma t ion . Labora to ry ind i ca to r s inc luded TEG ,

Thromboelastogram, tumor four items, three blood cell counts,

and albumin and globulin. Tumor-related conditions included

tumor size, tumor staging, tumor type, lymph node metastasis,

vascular tumor thrombus, nerve invasion, TNM staging, G staging,

and endoscopic findings. Essential information included gender,

age, BMI, underlying diseases, and stool conditions. For

comparative analysis, TNM and G stages were divided into two

groups (I+II, III+IV; G1+G2, G3+G4).
2.2 Data analysis

Statistical analysis was performed using SPSS software (IBM,

26.0, USA) and GraphPad Prism software (GraphPad, 8.0, USA).

Kruskal-Wallis test, Chi-square test, Mann-Whitney U test, and

paired-sample t-test were used to compare differences between

groups. Bonferroni correction was applied for pairwise

comparisons. A one-way test was used to assess the

unidirectional trend of TEG parameters. The Youden index was

used as the optimal cutoff value, and receiver operating
Frontiers in Immunology 03
characteristic (ROC) analysis was performed to evaluate the

potential of TEG parameters in distinguishing between benign

and malignant gastrointestinal tumors. A P-value < 0.05 was

considered statistically significant (two-sided). Next, stepwise

multivariate logistic regression analysis was used to identify

independent influencing factors for the malignancy of

gastrointestinal tumors. A ROC curve was constructed to assess

the predictive value of TEG-related indicators for the malignancy

and staging of gastrointestinal tumors, and the area under the

curve (AUC) and associated 95% confidence intervals (CI) were

derived. Finally, a network model structure suitable for our task

data was constructed based on residual networks. Our model

incorporates residual structures, hence named the Residual Fully

Connected Binary Classifier (RFCBC). To select the optimal

model, this model was compared with other commonly used

binary classification methods, such as logistic regression,

support vector machines, decision trees, random forests, K-

nearest neighbors, and naive Bayes.
3 Results

3.1 General information

Finally, two hundred sixty-seven cases were included (Figure 1,

excluding 10 cases with tumors in other parts of the body, 13 cases

with neoadjuvant therapy, and 10 cases on anticoagulant drugs).

Among them, 158 were malignant gastrointestinal tumors, and 109

were benign gastrointestinal tumors, all confirmed by pathology.

The main demographic and clinical characteristics of the included

patients are shown in Table 1. In short, the malignant tumor group
FIGURE 1

Flow chart of the study.
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TABLE 1 Clinical participant baseline characteristics.

Variable Malignant Tumor Group Benign tumor group P 95% CI

BMI 22.042 ± 4.451 22.650 ± 7.083 0.399 -1.999~0.783

Age 66.418 ± 10.872 55.458 ± 15.794 <0.001 7.747~14.171

Male 109 49
0.009

Female 58 51

Smoking

Yes 62 96
0.005

No 25 84

Drinking

Yes 56 102
0.601

No 35 74

Blood in the stool

Yes 29 127
0.031

No 9 96

Hypertension

Yes 77 81
0.211

No 44 65

TEG

R 4.309 ± 0.952 4.828 ± 1.126 <0.001 -0.770 ~-0.267

K 1.518 ± 0.529 1.815 ± 0.665 <0.001 -0.448~-0.146

Angle 68.434 ± 6.839 65.116 ± 6.964 <0.001 1.623~5.015

MA 60.379 ± 6.946 58.891 ± 5.811 0.034 -0.057~3.032

CI 1.420 ± 1.753 0.494 ± 1.775 <0.001 0.493~1.360

Thrombostatic hemostasis

PT 11.263 ± 1.577 11.027 ± 0.795 <0.001 -0.053~0.525

INR 0.933 ± 0.157 0.915 ± 0.085 0.003 -0.011~0.047

PTA 102.390 ± 20.164 110.411 ± 16.717 0.001 -12.485~-3.558

APTT 26.778 ± 5.139 27.251 ± 2.876 0.420 -1.444~0.498

FIB 8.528 ± 6.940 7.930 ± 6.977 0.489 -1.110 ~2.306

TT 11.363 ± 6.941 13.109 ± 11.339 0.405 -4.151~0.660

D-dimer 1.156 ± 2.044 1.173 ± 2.902 <0.001 -0.653~0.617

FDP 3.437 ± 6.362 3.429 ± 7.298 0.001 -1.693~1.709

AT-III 83.578 ± 18.685 87.762 ± 11.534 0.131 -8.144~-0.225

Other laboratory parameters

Albumin 36.914 ± 4.495 39.919 ± 4.613 <0.001 -4.120 ~-1.891

Globulin 25.832 ± 5.325 25.295 ± 3.821 0.635 -0.632~1.706

Platelet 211.581 ± 85.362 205.642 ± 61.376 0.844 -12.816~24.694

White blood cell 6.973 ± 5.308 6.281 ± 2.440 0.307 -0.259~1.643

Neutrophils 5.107 ± 7.424 4.600 ± 6.703 0.136 -1.243~2.257

(Continued)
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had higher levels of age, smoking, male proportion, R, K, PT, INR,

and FDP, and lower levels of angle, MA, CI, PTA, D-dimer,

albumin, red blood cells, and hemoglobin (P < 0.05).

The AUC values for R, K, a-angle, MA, and CI were 0.639,

0.644, 0.651, 0.576, and 0.658, respectively (P < 0.05). A comparison

of the areas under the ROC curves indicated that TEG parameters

were not proven to be superior to traditional laboratory indicators

in distinguishing between benign and malignant gastrointestinal

tumors (Figure 2, Table 2).
3.2 Influencing factors of TNM and
G staging

This study grouped patients with malignant gastrointestinal

tumors based on pathological results into TNM stages (I+II: 84

people, III+IV: 74 people) and G stages (G1+G2: 91 people, G3+G4:

67 people). Coagulation-related indicators were compared between

the groups (Table 3). We found that the levels of the five TEG

indicators differed significantly between the TNM and G stages. The

FIB level in the I+II group was lower than in the III+IV group

(7.468 ± 6.703 vs. 9.710 ± 7.033, P=0.043), while the APTT level in

the G1+G2 group was higher than in the G3+G4 group (27.573 ±

5.762 vs. 25.690 ± 3.934, P=0.016). No significant differences were

observed in other coagulation indicators in this study.

Next, logistic regression analysis was conducted on the TNM

and G groups. First, collinearity analysis was performed on the
Frontiers in Immunology 05
indicators with significance in univariate analysis and indicators

with strong collinearity were excluded (Supplementary Table S1: K,

a-angle, and CI values were excluded from TNM staging; K and a-
angle values were excluded from G staging). Previous studies have

shown that CI value is a composite indicator of R, K, a-angle, and
MA values, so the possibility of a mediating effect should be

considered before conducting multivariate regression. After

constructing the mediation effect model, we found that the CI

value was a complete mediator of the MA value and R-value in the

G stage (Figure 3, Table 4). Therefore, the mediator variable CI was

excluded during multivariate regression. Binary logistic regression

analysis finally showed that R and MA values are independent

influencing factors in both TNM and G groups (Table 5). Further

ROC curve analysis of the TNM and G groups showed that the five

TEG indicators (AUC values: R: 0.682; K: 0.731; a-angle: 0.736;
MA: 0.699; CI: 0.747) had better discrimination ability in the G

group compared to other coagulation indicators. However,

although the TNM group showed moderate discrimination

ability, they did not exhibit a significant advantage over other

indicators (Figure 4, Table 6).
3.3 Influencing factors of R and MA values

The binary logistic regression analysis results indicated that R

and MA values are independent influencing factors within TEG

indicators for both TNM and G groups. We conducted a more
TABLE 1 Continued

Variable Malignant Tumor Group Benign tumor group P 95% CI

Other laboratory parameters

Lymphocyte 1.726 ± 2.218 1.610 ± 0.724 0.345 -0.317~0.550

Erythrocyte 3.872 ± 0.696 4.290 ± 0.700 <0.001 -0.589~-0.247

Hemoglobin 111.342 ± 25.016 127.982 ± 20.977 <0.001 -22.390 ~-10.890
FIGURE 2

ROC curve analysis of TEG parameters and laboratory parameters for distinguishing the malignant tumor group from the benign tumor group (after
propensity score matching). (A) TEG parameters. (B) Laboratory parameters.
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detailed analysis by dividing the TNM and G stages into four groups

to explore further. The analysis revealed that in the TNM stages, the

R-value in stage I was higher than in stage III (P < 0.05), and the

MA value in stage IV was higher than in stage II (P < 0.05). In the G

stages, the R-value in stage G3 was lower than in stages G2 and G1

(P < 0.05), and the MA value in stage G3 was higher than in stages

G2 and G1 (P < 0.05) (Figure 5).

Single-factor analysis was used to identify the influencing

factors of R and MA values. Stepwise linear regression was then

employed to determine the independent influencing factors of R

and MA values. The independent influencing factors for R included

hemoglobin (B: 0.254; CI: 0.003-0.016; P: 0.005), carbohydrate

antigen 19-9 (B: 0.227; CI: 0.000-0.001; P: 0.003), and VTE

(Caprini) score (B: -0.240; CI: -0.166 to -0.035; P: 0.003). The

independent influencing factors for MA included globulin (B: 0.179;

CI: 0.057-0.366; P: 0.008), platelets (B: 0.374; CI: 0.017-0.036; P:

<0.001), hemoglobin (B: -0.307; CI: -0.109 to -0.042; P: <0.001), and

VTE (Caprini) score (B: 0.209; CI: 0.210-0.941; P: 0.002) (Table 7).
3.4 Construction of prediction models for
gastrointestinal tumor malignancy Using
TEG and other coagulation indicators
based on machine learning methods

The model structure follows: The input layer accepts the input

vector, which passes through the first fully connected layer (FC1),
TABLE 2 ROC analysis of TEG and laboratory markers to distinguish
between benign and malignant gastrointestinal tumors.

Variable AUC P 95%CI

TEG

R 0.639 <0.001 0.571~0.707

K 0.644 <0.001 0.578~0.710

A 0.651 <0.001 0.584~0.717

MA 0.576 0.034 0.508~0.645

CI 0.658 <0.001 0.592~0.724

Laboratory parameters

PT 0.638 <0.001 0.569~0.706

INR 0.613 0.002 0.544~0.682

PTA 0.613 0.002 0.544~0.682

D-dimer 0.649 <0.001 0.580~0.717

FDP 0.632 <0.001 0.562~0.702

Albumin 0.684 <0.001 0.619~0.749

Erythrocyte 0.671 <0.001 0.605~0.737

Hemoglobin 0.698 <0.001 0.635~0.761

CEA 0.679 <0.001 0.599~0.759

CA72-4 0.638 0.003 0.552~0.724
TABLE 3 Differences in coagulation-related markers under TNM and G stages.

Variable
TNM grouping

95%CI P
G grouping

95%CI P
I+II III+IV G1+G2 G3+G4

R 4.480 ± 0.927 4.114 ± 0.948 0.071~0.662 0.016 4.537 ± 0.953 3.985 ± 0.863 0.265~0.839 <0.001

K 1.660 ± 0.508 1.351 ± 0.508 0.148~0.468 <0.001 1.692 ± 0.553 1.282 ± 0.390 0.254~0.566 <0.001

Angle 67.157 ± 5.525 70.628 ± 5.349 -5.182 ~-1.760 <0.001 66.841 ± 5.884 71.357 ± 4.195 -6.181~-2.851 <0.001

MA 59.471 ± 6.165 62.327 ± 5.953 -4.762~-0.949 0.004 58.887 ± 6.046 63.054 ± 5.649 -6.019~-2.315 <0.001

CI 1.058 ± 1.535 2.026 ± 1.479 -1.441~-0.493 <0.001 0.923 ± 1.513 2.267 ± 1.319 -1.791~-0.897 <0.001

PT 11.130 ± 1.506 11.410 ± 1.650 -0.779~0.220 0.270 11.158 ± 1.505 11.388 ± 1.679 -0.742~0.282 0.376

INR 0.926 ± 0.135 0.942 ± 0.179 -0.067~0.034 0.517 0.929 ± 0.136 0.937 ± 0.184 0.045~-0.061 0.765

PTA 104.818 ± 19.649 99.850 ± 20.483 -1.363 ~11.298 0.123 104.763 ± 19.949 99.490 ± 20.351 -1.150~11.696 0.107

APTT 26.876 ± 3.952 26.670 ± 6.244 -1.466~1.877 0.808 27.573 ± 5.762 25.690 ± 3.934 0.358~3.408 0.016

FIB 7.468 ± 6.703 9.710 ± 7.033 -4.409~-0.074 0.043 8.007 ± 6.893 9.228 ± 6.999 -3.434~0.993 0.277

TT 12.306 ± 6.808 10.309 ± 6.964 -0.174~4.167 0.071 11.822 ± 7.031 10.747 ± 6.829 -1.126~3.275 0.336

D-dimer 0.896 ± 1.488 1.518 ± 2.584 -1.275~0.032 0.062 1.128 ± 2.287 1.192 ± 1.676 -0.686~0.559 0.841

FDP 3.130 ± 6.119 4.028 ± 6.934 -2.966 ~1.170 0.392 2.949 ± 4.585 4.090 ± 8.180 -3.343~1.059 0.306

AT-III 83.229 ± 20.420 83.970 ± 16.625 -6.568~5.085 0.802 84.126 ± 17.704 82.785 ± 20.038 -4.735~7.418 0.663
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expanding the feature dimension to 64. Then, the second (FC2),

third (FC3), and fourth (FC4) fully connected layers progressively

increase the feature dimension to 128, 256, and 512, respectively.

The fifth fully connected layer (FC5) reduces the feature dimension

to 256, allowing it to concatenate with the output of the first fully

connected layer. In the intermediate stage of the model, the output

of FC1 is first concatenated with the output of FC5 along the feature

dimension to form a new feature vector. The concatenated feature

vector is processed again through FC3 and FC4 to extract further

and integrate features. Finally, the output of FC2 is concatenated

with the reprocessed feature vector along the feature dimension for

a second time. The concatenated feature vector is then passed

through the last fully connected layer (FC6), which reduces the

feature dimension from 512 to 2, corresponding to the two

classification labels. The model structure is shown in Figure 6.

For all samples, the model’s inference results for the TEG five-item

data are shown in Figure 7, and for the Thromboelastogram Nine-

Item data, the inference results are shown in Figure 8. The RFCBC

prediction model performed better than other commonly used
Frontiers in Immunology 07
binary classification methods (TEG five items: 87.56%;

Thromboelastogram Nine Items: 88.6%).
4 Discussion

Current research indicates that coagulation-related

components mediate the progression of gastrointestinal

malignancies (13). The incidence of coagulation-related diseases

in cancer patients is higher than in those with benign diseases, with

thrombotic events occurring in 4.5% of gastric cancer patients and

2.3% of colon cancer patients (14). Moreover, patients with

advanced-stage, high-malignancy cancers, especially those with

metastatic disease, are at a higher risk of developing coagulation-

related diseases compared to patients with early-stage, low-

malignancy cancers (15–17). These tumor cell-mediated

hypercoagulable states further promote tumor cell proliferation

and metastasis. Therefore, routine screening of hematological

indicators such as Thromboelastogram Nine Items and blood

counts is usually conducted preoperatively for patients with

gastrointestinal malignancies to guide treatment (18, 19).

Currently, TEG, with its advantages of being rapid and dynamic,

is increasingly used for coagulation function detection in cancer.

However, its additional advantages over traditional coagulation

indicators in cancer are yet to be fully explored. Based on the above

conclusions and considering the characteristic that gastrointestinal

malignancies are generally detected at later stages, this study aims

to explore the relationship between coagulation indicators such as

TEG, Thromboelastogram Nine Items, blood counts, and common

tumor markers with the staging and malignancy of gastrointestinal

malignancies through various models constructed using machine

learning and logistics regression. It also seeks to establish

relevant prediction models to provide feasible methods and

approaches for the future non-invasive preoperative prediction of

gastrointestinal malignancies.
TABLE 4 Effect size and proportion of the mediating effect.

Effect
relationship

Effect
size

95%CI Effect
percentage

MA

Total effect 0.121 0.062~0.181

Direct effects -0.0415 -0.149~0.066 -0.343

Indirect effects 0.172 0.084~0.301 1.421

R

Total effect -0.701 -1.099~-0.202

Direct effects -0.172 -0.634~0.290 0.245

Indirect effects -0.561 -0.991~-0.292 0.800
FIGURE 3

Diagram of the mediating effect model under stage G. ***P < 0.001.
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Initially, 300 patients were included in the study, with 33

patients excluded based on exclusion criteria. The remaining

patients comprised 158 cases of malignant gastrointestinal tumors

and 109 cases of benign gastrointestinal tumors. Due to the study’s

retrospective nature and the need to confirm tumor staging and

malignancy through postoperative pathology, relatively few patients

were in the T1, T4, G1, and G4 stages. Therefore, TNM groups were

divided into T1+T2 and T3+T4, and G groups were divided into G1

+G2 and G3+G4 for comparison and analysis.

Previous studies have suggested that patients with malignant

tumors exhibit a hypercoagulable state compared to healthy

individuals (20), characterized by decreased R and K values and

increased MA, a-angle, and CI values. Therefore, we first
Frontiers in Immunology 08
investigated the differences in TEG and other indicators between

benign and malignant gastrointestinal tumors before exploring the

relationship between coagulation indicators and gastrointestinal

malignancies. Our analysis revealed that the differences in the five

TEG indicators were consistent with previous studies, confirming

that patients with gastrointestinal malignancies are in a

hypercoagulable state. Moreover, among the Thromboelastogram

Nine Items, differences in PT, INR, PTA, D-dimer, and FDP were

observed, indicating that the coagulation factors and fibrinolysis

systems in patients with gastrointestinal malignancies are in a

higher state of activation (21), consistent with previous research

results. Analysis of blood counts and general indicators also

revealed lower albumin and hemoglobin levels in patients with
TABLE 5 Univariate and multivariate analysis of laboratory indexes in different groups.

Variable

TNM G

Univariate Multivariate Univariate Multivariate

B 95%CI P B 95%CI P B 95%CI P B 95%CI P

TEG

R 0.650 0.455~0.929 0.018 0.654 0.451~0.949 0.025 0.496 0.333~0.738 0.001 0.633 0.415~0.967 0.034

K 0.267 0.127~0.560 <0.001 0.131 0.055~0.316 <0.001

Angle 1.130 1.059~1.207 <0.001 1.196 1.108~1.290 <0.001

MA 1.081 1.024~1.141 0.005 1.069 1.012~1.130 0.017 1.129 1.063~1.198 <0.001 1.092 1.092~1.027 0.005

CI 1.531 1.222~1.918 <0.001 1.925 1.483~2.500 <0.001

Thrombostatic hemostasis

PT 1.137 0.899~1.435 0.285 1.384 0.973~1.969 0.071

INR 2.013 0.249~16.257 0.512 2.462 0.14~42.361 0.535

PTA 0.987 0.971~1.004 0.129 0.982 0.963~1.001 0.070

APTT 0.992 0.933~1.055 0.802 0.799 0.695~0.919 0.002 0.890 0.763~1.039 0.141

FIB 1.049 1.001~1.098 0.043 1.046 0.996~1.097 0.070 1.030 0.984~1.079 0.208

TT 0.959 0.916~1.004 0.071 0.978 0.934~1.024 0.348

D-dime 1.200 0.974~1.477 0.086 1.021 0.875~1.191 0.794

FDP 1.022 0.971~1.076 0.398 1.030 0.976~1.087 0.280

AT-III 1.002 0.985~1.019 0.803 1.001 0.980~1.023 0.970

Other laboratory parameters

Albumin 0.953 0.888~1.023 0.184 0.936 0.871~1.007 0.075

Globulin 1.054 0.992~1.119 0.090 1.011 0.952~1.073 0.728

Platelet 1.002 0.998~1.006 0.301 0.997 0.993~1.001 0.183

White blood cell 0.995 0.937~1.056 0.874 1.004 0.947~1.065 0.889

Neutrophils 1.090 0.960~1.236 0.183 1.175 1.019~1.356 0.027

Lymphocyte 1.075 0.911~1.269 0.392 1.119 0.921~1.360 0.258
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gastrointestinal malignancies, likely related to difficulties in eating

and blood in the stool. Further analysis indicated that R, K, a-
angle, and CI could be potential indicators for distinguishing

between benign and malignant gastrointestinal tumors.
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Unfortunately, however, they did not perform better than

traditional indicators.

Given that previous studies have indicated that indicators like

MA are associated with lymph node metastasis in gastric cancer
FIGURE 4

ROC curve analysis of TEG and laboratory parameters to distinguish between TNM and G groups (after propensity score matching). (A) TNM. (B) G.
TABLE 6 ROC analysis of TEGs and laboratory markers was performed to distinguish the degree of malignancy of gastrointestinal tumors.

Variable
TNM G

AUC P 95%CI AUC P 95%CI

TEG

R 0.615 0.013 0.526~0.703 0.682 <0.001 0.598~0.766

K 0.682 <0.001 0.600~0.764 0.731 <0.001 0.653~0.810

A 0.680 <0.001 0.598~0.763 0.736 <0.001 0.658~0.814

MA 0.637 <0.001 0.550~0.723 0.699 <0.001 0.616~0.783

CI 0.683 <0.001 0.600~0.765 0.747 <0.001 0.671~0.824

Other laboratory parameters

PT 0.603 0.026 0.515~0.692 0.618 0.012 0.529~0.708

FIB 0.595 0.043 0.505~0.684 0.597 0.039 0.507~0.687

D-dime 0.665 <0.001 0.579~0.751 0.648 <0.001 0.561~0.734

FDP 0.619 0.010 0.532~0.707 0.619 0.011 0.531~0.708

Erythrocyte 0.695 <0.001 0.614~0.777 0.667 <0.001 0.582~0.752

Hemoglobin 0.705 <0.001 0.625~0.785 0.692 <0.001 0.610~0.773
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FIGURE 5

Comparison of the difference between MA value and R-value in TNM group and G group. (A) There was a difference in the expression of MA values
between II. and IV. in the TNM group. (B) There was a difference in the expression of the R-value between I and III. in the TNM group. (C) There
were differences in the expression of MA values between G1, G2, and G3 in the TNM group. (D) There were differences in the expression of R values
between G1, G2, and G3 in the TNM group. * 0.01≤P<0.05, ** 0.001≤P<0.01, *** P<0.001.
TABLE 7 Univariate and multivariate analysis of laboratory indexes in different groups.

Variable

R MA

Univariate Multivariate Univariate Multivariate

B 95%CI P B 95%CI P B 95%CI P B 95%CI P

Thrombostatic hemostasis

PT 0.026 -0.135~0.190 0.742 0.103 -0.363~1.750 0.196

INR 0.065 -0.759~1.833 0.415 0.064 -5.048~11.875 0.427

PTA 0.023 -0.008~0.010 0.772 -0.119 -0.104~0.014 0.137

APTT 0.229 0.017~0.088 0.004 0.130 -0.005~0.063 0.093 -0.197 -0.528~-0.063 0.013 -0.077 -0.303~0.080 0.252

FIB 0.088 -0.010~0.034 0.274 0.105 -0.047~0.236 0.188

TT -0.109 -0.037~0.007 0.173 -0.089 -0.224~0.062 0.264

D-dimer 0.011 -0.067~0.077 0.888 0.048 -0.329~0.612 0.553

FDP 0.115 -0.006~0.040 0.148 0.144 -0.012~0.287 0.072

(Continued)
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patients (13), we became interested in whether TEG and other

related coagulation indicators could be used to predict the

malignancy of gastrointestinal tumors. We first used stepwise

logistic regression analysis, excluding highly collinear indicators

and mediator variables, and identified R and MA values as

independent predictors in both TNM and G groups. The R-

value represents the clot reaction time, primarily reflecting the

combined effect of coagulation factors involved in coagulation

initiation, indicating the coagulation factors’ activity. The MA

value in TEG represents the maximum amplitude, which mainly
Frontiers in Immunology 11
reflects platelet aggregation function and the quality of

fibrinogen (22).

Further analysis of R and MA values revealed that the R-value

decreases as TNM and G stages progress, while the MA value

increases with advancing stages. This indicates that as the

malignancy of the tumor increases, the activity of coagulation

factors, platelets, and fibrinogen also increases. Previous research

has shown that activated platelets can significantly inhibit T-cell

proliferation and NK cell activity through the GARP/TGF-b
pathway (23). Similarly, the activation of fibrinogen also promotes
TABLE 7 Continued

Variable

R MA

Univariate Multivariate Univariate Multivariate

B 95%CI P B 95%CI P B 95%CI P B 95%CI P

Thrombostatic hemostasis

AT-III 0.118 -0.002~0.017 0.141 0.096 -0.025~0.101 0.232

Other laboratory parameters

Albumin 0.281 0.027~0.092 <0.001 0.089 -0.019~0.057 0.329 -0.131 -0.398~0.036 0.102

Globulin 0.093 -0.011~0.045 0.244 0.229 0.087~0.447 0.004 0.179 0.057~0.366 0.008

Platelet 0.045 -0.001~0.002 0.576 0.467 0.024~0.044 <0.001 0.374 0.017~0.036 <0.001

White blood cell -0.052 -0.038~0.019 0.513 0.103 -0.063~0.305 0.197

Neutrophils -0.081 -0.031~0.010 0.310 0.072 -0.072~0.192 0.372

Lymphocyte -0.045 -0.087~0.049 0.578 -0.019 -0.495~0.390 0.815

Erythrocyte 0.299 0.202~0.613 <0.001 -0.296 -3.976~-1.289 <0.001

Hemoglobin 0.378 0.009~0.020 <0.001 0.254 0.003~0.016 0.005 -0.410 -0.136~-0.065 <0.001 -0.307 -0.109~-0.042 <0.001

Tumor-related indicators

Tumor length -0.047 -0.110~0.061 0.577 0.167 0.007~1.165 0.047 0.053 -0.272~0.646 0.421

Tumor area 0.002 -0.013~0.013 0.981 0.160 -0.003~0.173 0.058

Alpha-fetoprotein -0.119 0.000~0.000 0.159 0.060 0.000~0.001 0.479

Carcinoembryonic
antigen

0.124 -0.001~0.004 0.141 0.143 -0.002~0.025 0.090

Carbohydrate
antigens 19-9

0.173 0.000~0.001 0.040 0.227 0.000~0.001 0.003 0.135 -0.001~0.008 0.110

CA72-4 0.149 0.000~0.008 0.077 0.154 -0.002~0.051 0.068

General indicators

Age -0.204 -0.031~-0.004 0.010 -0.030 -0.019~0.013 0.715 0.045 -0.065~0.116 0.578

BMI 0.065 -0.027-0.066 0.419 0.037 -0.232~0.372 0.647

VTE
(Caprini) score

-0.330 -0.201~-0.076 <0.001 -0.240 -0.166~-
0.035

0.003 0.301 0.410~1.234 <0.001 0.209 0.210~0.941 0.002

Nutritional
screening

-0.020 -0.128~0.099 0.805 0.087 -0.331~1.133 0.281
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FIGURE 6

Model diagram of the residual fully connected binary classifier (RFCBC).
FIGURE 7

Inference results of multiple models for the five items of TEG data.
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tumor proliferation and metastasis (24). We included relevant

tumor markers and performed stepwise linear regression to study

the factors influencing R and MA values. We found that

hemoglobin, carbohydrate antigen 19-9, and VTE scores are

independent predictors of the R-value, while globulin, platelets,

hemoglobin, and VTE scores are independent predictors of the MA

value. This analysis revealed that R and MA values in coagulation

indicators could effectively predict tumor malignancy, and there is a

close relationship between TEG and tumor VTE scores.

To further explore the application value of TEG and other

related coagulation indicators in distinguishing the malignancy of

gastrointestinal tumors, we first used ROC curve analysis. We found

that the TEG five items had better discrimination ability in the G

group than other coagulation indicators. In contrast, in the TNM

group, although the discrimination ability was moderate, it did not

show a significant advantage over other indicators. This finding

intrigued us, and to further compare the predictive power of the

TEG five items with the Thromboelastogram Nine Items in G

staging and construct a specific predictive model, we developed a

relevant deep learning model. Given the limited number of variables

in our data and the small sample size, using a network model

structure that is too complex could lead to overfitting.

In contrast, a sparse network structure could result in poor

convergence. Therefore, based on residual networks, we

constructed a network model structure suitable for our task

data. We incorporated residual structures into our model,

naming it the Residual Fully Connected Binary Classifier

(RFCBC). When compared with other commonly used binary
Frontiers in Immunology 13
classification methods, our model achieved the best experimental

results (the prediction accuracy for the TEG five items and the

Thromboelastogram Nine Items models were 87.56% and 88.6%,

respectively), providing a reliable method for identifying whether

a gastrointestinal tumor is malignant and assisting doctors in

making effective auxiliary diagnoses. Additionally, based on our

model, there was no significant difference in the predictive ability

between the TEG five items and the Thromboelastogram Nine

Items data.

In conclusion, this study found that R and MA values are

independent predictors of gastrointestinal tumor malignancy

among coagulation indicators. The TEG five items have better

discrimination ability for G staging than other hematological

indicators. Additionally, in experiments predicting gastrointestinal

tumor malignancy, the RFCBC model created in this study

outperformed other commonly used binary classification

methods, such as logistic regression, support vector machines,

decision trees, random forests, K-nearest neighbors, and naive

Bayes, offering a new model construction method and feasible

approach for future coagulat ion index predictions of

gastrointestinal tumor malignancy. However, this study has

limitations, such as a small sample size and a lack of multi-center

data to validate the model. Future research should include more

data to validate the results and model and incorporate more

variables to conduct coagulation index-level predictions.

Integrating machine learning methods into the prognosis and

prediction of gastrointestinal malignancies will lead to a more

comprehensive tumor treatment and prognosis prediction system.
FIGURE 8

Nine data on thrombosis and inference results of various models.
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