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Background: Lung adenocarcinoma (LUAD) is one of the most common

malignant tumors globally, characterized by poor prognosis and high mortality.

Abnormal fatty acid metabolism plays a crucial role in LUAD progression. This

study aims to develop a prognostic model based on fatty acid metabolism to

improve the overall prognosis of LUAD.

Materials and methods: Bioinformatics analyses were performed using TCGA

and GEO datasets, supplemented by cell experiments. A total of 309 fatty acid

metabolism-related genes were identified from MsigDB. Differentially expressed

genes were analyzed using the ‘limma’ R package. A prognostic model was

constructed using LASSO regression and validated with survival analyses via the

‘survminer’, ‘survival’, and ‘pROC’ R packages. The analysis included somatic

mutations, tumor mutation burden, clinical correlations, stemness analysis,

cytokine correlations, and enrichment analysis. Protein interaction networks

were constructed using STRING and Cytoscape, while immune cell infiltration

and immunotherapy responses were evaluated with the ‘oncoPredict’ R package.

Results were validated through cell experiments and immunohistochemistry

staining of lung tissues.

Results: We identified 125 differentially expressed genes related to fatty acid

metabolism, with 33 genes significantly associated with prognosis. Patients in the

high-risk group had poorer overall survival and progression-free survival, and the

risk score correlated with gender, N stage, clinical stage, and T stage. The risk

score was also associated with cancer stem cells, with a significantly higher

mRNAsi index in the high-risk group. Additionally, the risk score correlated with

various cytokine expressions and showed significant enrichment in cell cycle

pathways. Key genes like CDK1 were highly expressed in LUAD cell lines and

validated in clinical samples. The low-risk group showed better responses to

immune checkpoint inhibitors, with the risk score correlating with immune

checkpoint gene expression.
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Conclusion: This study successfully established a novel prognostic model based

on fatty acid metabolism, which provides valuable insights for the treatment

of LUAD.
KEYWORDS

lung adenocarcinoma, fatty acid metabolism, prognostic model, immune response,
drug sensitivity analysis
1 Introduction

Based on global cancer statistics for 2022, lung cancer (LC)

remains the most prevalent malignant tumor, ranking first in

incidence rate in the same year. Approximately 2.5 million new

LC cases are reported globally annually, accounting for 12.4% of

total tumor cases worldwide. Furthermore, LC is the leading cause

to cancer-related fatalities, with an approximated 1.8 million deaths

each year, representing 18.7% of all cancer-induced mortalities (1).

Non-small cell LC accounts for approximately 85% of all LCs, with

lung adenocarcinoma (LUAD) emerging as the most prevalent

subtype (2). LUAD is frequently characterized by nonspecific

early symptoms, which leading to delayed diagnosis in some

patients until advanced stages. Additionally, those with negative

driver gene mutations have a markedly higher likelihood of

experiencing recurrence and metastasis (3). The primary

therapeutic approaches for LUAD consist of surgery,

radiotherapy, chemotherapy, and targeted therapy (4, 5). These

treatments are often combined in multimodal strategies, showing

significant advancements in recent years (6). Nanomaterials have

shown great potential in the early screening, diagnosis, treatment,

and post-treatment monitoring of minimal residual disease (MRD)

in lung cancer, providing new opportunities to enhance therapeutic

outcomes. However, despite ongoing advancements in these

methods and technologies, treatment efficacy remains suboptimal

(7). Due to the molecular and pathological heterogeneity displayed

by cancer cells throughout tumor progression, gene mutations,

expression levels, and recombination events may vary among

patients, leading to differences in tumor development, metastatic

potential, and drug resistance. This variability greatly complicates

treatment efforts, highlighting the need for effective tumor-targeting

drugs (8).

Metabolic reprogramming refers to the process by which tumor

cells alter metabolic pathways to accommodate their rapid

proliferation and survival requirements. It is vital in the

pathogenesis and progression of LUAD, furnishing the energy

and materials essential for tumor cell proliferation and survival.

The amplification of the glycolysis pathway, commonly known as

the Warburg effect, has attracted significant attention in this

context. This hypothesis, introduced by Otto Heinrich Warburg,

posits that LUAD cells typically exhibit enhanced glycolysis

pathway, favoring energy (adenosine triphosphate, ATP)
02
production via glycolysis, even when oxygen is available. Such a

metabolic arrangement enables cancer cells to swiftly produce ATP

and create metabolic intermediates necessary for cell growth and

division (9). A strong connection exists between glycolysis and fatty

acid metabolism (FAM), as the metabolic intermediates and energy

generated through glycolysis are essential for fatty acid synthesis.

Simultaneously, the end products and energy status from FAM

provide feedback to regulate the glycolysis pathway (10). As a result,

alterations in FAM significantly impact on the initiation and

advancement of LUAD (11). Growing evidence suggests that

FAM undergoes modifications within LUAD tissues (12),

influencing the types, quantities, and regulatory mechanisms of

lipid signaling molecules (13). FAM undergoes regulation not solely

through internal oncogenic pathways but also via the tumor

microenvironment (TME), which comprises various cell types,

cytokines, growth factors, DNA, RNA, and nutrients, including

lipids (14). Additionally, aberrant FAM can disrupt oncogenic

signaling pathways in cancer cells and influence nearby normal

cells by secreting components, including lipids (15). Nonetheless,

the characteristics and functions of FAM-related genes in LUAD

remain insufficiently investigated.

Current research suggests that the overexpression of fatty acid

binding protein 5 has been correlated with a poor prognosis in

LUAD, indicating its potential as a novel target for therapeutic

target (16). The downregulation of fatty acid synthase has been

demonstrated to impede the progression of LUAD by modulating

glucose metabolism and suppressing the AKT/ERK signaling

pathway (17). Liang et al. suggested that overexpression of the

FAM enzyme-related genes influences the growth, differentiation,

and metastasis of LUAD cells through various signaling pathways

(18). These results illustrate that dysregulated FAM significantly

impacts on the development of LUAD. Hence, identifying and

validating FAM-related genes that exhibit significant differences

between LUAD patients and healthy individuals is essential for

formulating novel prognostic models and refining clinical

therapeutic approaches. In this study, we focused on the

alterations of FAM in LUAD patients. We utilized publicly

available clinical and whole-genome data to construct and

validate a LUAD prognostic model based on FAM-related genes.

Comprehensive analyses and experimental validations were carried

out on the model and key genes to promote the development of

clinical treatments for LUAD (Figure 1).
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2 Methodologies and materials

2.1 Dataset and preprocessing

RNA sequencing data and clinical details of LUAD patients

were retrieved from The Cancer Genome Atlas (TCGA) database

(https://www.cancer.gov/tcga/). Following the exclusion of patients

lacking survival data, a total of 524 LUAD samples, along with 58

adjacent normal tissue specimens, were utilized. For validation

purposes, the GSE68465 dataset was gathered from the Gene

E x p r e s s i o n Omn i b u s ( G EO ) d a t a b a s e ( h t t p s : / /

www.ncbi.nlm.nih.gov/geo/). This dataset provides extensive gene

expression profiles and survival data specific to LUAD patients. The

initial gene expression information was available in CEL files, which

also contained corresponding probe data.
2.2 Identification of FAM-related genes and
differentially expressed genes

FAM-related genes were sourced from the Molecular Signature

Database (https://www.gsea-msigdb.org/gsea/msigdb/), resulting in

the identification of 309 relevant genes. Differential gene expression

analysis between LUAD and adjacent normal tissues was executed

within the TCGA dataset employing the ‘limma’ R package,

applying |log2FC| > 0.585 and P < 0.05 as the filtering thresholds.

The intersection between the FAM-related genes and the DEGs in

LUAD was then determined, enabling the identification of FAM-

related DEGs for further investigation.
Frontiers in Immunology 03
2.3 Development of prognostic risk model

Univariate Cox regression analysis was applied to the screened

FAM DEGs utilizing the ‘survival’ R package to ascertain genes

linked to prognosis. Subsequently, the LASSO regression technique

was employed via the ‘glmnet’ R package to reduce overfitting and

develop the prognostic model. Risk scores (RS) for individual

patients were computed based on the regression coefficients (b)
obtained from LASSO regression in combination with gene

expression levels. The computation formula is presented below:

Risk Score =on
i=1Coefficient (b)i*Xi

Subjects were categorized into high-risk and low-risk cohorts

utilizing the median RS. Survival analysis was then executed

employing the ‘survminer’ and ‘survival’ R packages, while receiver

operating characteristic (ROC) curves were produced via the ‘pROC’ R

package to evaluate the model’s prognostic value. The stability of the

model was subsequently confirmed using the GEO dataset (GSE68465).
2.4 Mutation types analysis

The somatic mutation data for LUAD patients were obtained

from the TCGA database (https://www.cancer.gov/tcga/).

Disparities in somatic mutation profiles between high-risk and

low-risk cohorts were assessed and visualized through a waterfall

plot created utilizing the ‘maftools’ R package.

Tumor mutation burden (TMB), characterized as the number

of tumor mutations per megabase in individual specimens, was
FIGURE 1

Flow chart of the study.
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computed by applying the ‘TMB’ function from the ‘maftool’ R

package and subsequently underwent a logarithmic transformation

to facilitate visualization.
2.5 Clinical relevance analysis

Clinical data were integrated with the RS of LUAD patients, and

clinical correlation analyses were conducted for gender, age, N

stage, T stage, M stage, and overall clinical stage using the ‘ggpubr’ R

package. The outcomes were visualized through box plots. A

nomogram was subsequently established, along with calibration

curves, based on clinical characteristics, RS, and survival times.
2.6 Coherence analysis

The stemness index (mRNAsi score) was procured from stem

cell gene expression data obtained from TCGA-LUAD patients

utilizing the ‘TCGAbiolinks’ R package. A scatter plot was utilized

to depict the link between each patient’s RS and stemness index.

Following this, differential and correlation analyses were conducted,

with the corresponding results visualized.
2.7 Correlation analysis of cytokines

The cytokine gene catalog was procured from the NCBI gene

database (https://www.ncbi.nlm.nih.gov/gene/), and the

corresponding expression data were procured from the TCGA-

LUAD dataset. Subsequently, these data were classified into high-

risk and low-risk cohorts on the basis of RS, facilitating differential

expression analysis, followed by the generation of a heatmap.

Additionally, a CA between the RS of LUAD patients and

cytokine expression levels was conducted, leading to the creation

of a correlation scatter plot with trend lines.
2.8 Enrichment analysis

The ‘clusterProfiler’ R package was employed to conduct Gene

Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG),

and gene set variation analysis (GSVA) enrichment analyses on the

identified risk genes. A significance criterion of p-value < 0.05 and q-

value < 0.05 was employed to pinpoint pathways exhibiting significant

enrichment. This approach was aimed at uncovering the principal

enriched signaling pathways and biological functions between the high-

risk and low-risk cohorts.
2.9 Protein-protein interaction network

PPIs among the extracted genes were predicted using the

STRING database, with the resulting network visualized through

Cytoscape 3.10.1 (https://cytoscape.org). The Cytohubba plugin in
Frontiers in Immunology 04
Cytoscape was subsequently utilized to identify the top 7 genes with

the strongest correlations.
2.10 Immune cell infiltration analysis and
immunotherapy analysis

The CIBERSORT algorithm (with 1,000 permutations) was

employed to evaluate the prevalence of 22 tumor-infiltrating

immune cell types within the gene expression matrix of the

TCGA-BRCA dataset, and the findings were visualized via a

heatmap. Furthermore, the Wilcoxon test was utilized to assess

the expression levels of immune checkpoints between high- and

low-risk cohorts, aiming to anticipate the potential impact of

immunotherapy on the basis of survival analysis outcomes.

Immunotherapy analysis was carried out using The Cancer

Immunome Atlas (TCIA) (https://tcia.at). For drug sensitivity

analysis, the ‘oncoPredict’ R package was employed to estimate

the half-maximal inhibitory concentration (IC50) values for each

chemotherapeutic agent.
2.11 Patients and tissue samples

All patients were hospitalized at the Third Affiliated Hospital of

Harbin Medical University and diagnosed through pathological

examination. Pathological diagnoses were made per the 8th edition

of the American Joint Committee on Cancer guidelines. Informed

consent was procured from all participants, and the study protocol

was sanctioned by the Internal Audit and Ethics Committee of the

Third Affiliated Hospital of Harbin Medical University.
2.12 Cell lines and cell culture

The Beas-2B, A549, PC9, and H1299 CLs were procured from

the Stem Cell Bank of the Chinese Academy of Sciences. Beas-2B

and H1299 cells were cultivated in DMEM medium, supplemented

with 80 U/L penicillin and 0.08 mg/mL streptomycin, while A549

and PC9 cells were kept in RPMI-1640 medium comprising

identical antibiotic concentrations. All media were enriched with

10% fetal bovine serum. The CLs were kept under controlled

conditions at 37°C, with 5% CO2 and 99% relative humidity.
2.13 Real-time quantitative polymerase
chain reaction experiment

Total RNA from cells was procured utilizing a column-based

RNA extraction kit (RC112-01, Nanjing Vazyme Biotech Co., Ltd.,

Nanjing, China). The isolated RNA was then converted to cDNA

via reverse transcription (R202-02, Xinbei (Shanghai)

Biotechnology Co., Ltd., Shanghai, China). Following PCR

amplification (Q204-01, Xinbei (Shanghai) Biotechnology Co.,

Ltd., Shanghai, China), the RNA quantities were standardized in
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relation to b-actin RNA employing the relative Ct technique. The

primer sequences are depicted in Supplementary Table S1.
2.14 Western blot analysis

Beas-2B, A549, PC9, and H1299 CLs underwent lysis in a chilled

buffer containing 1% phenylmethylsulfonyl fluoride for 40 min. The

proteins were subsequently denatured through heating in a 100°C

water bath for 10 min and subsequently subjected to electrophoresis.

Following this, primary antibody incubation with anti-cyclin-

dependent kinase 1 (CDK1) (1:1000, Affinity Biosciences, Jiangsu,

China) was carried out overnight at 4°C. Secondary antibody

incubation followed for 1.5 h at 37°C (1:10000, Abclone, Wuhan,

China). The antibody interactions were detected using an enhanced

chemiluminescence kit (Wanlei, Shenyang, China).
2.15 Immunofluorescence staining

Tissue slides were exposed to primary antibodies against

CDK1 (Wanleibio, Shenyang, China, WL02373, 1:1500),

budding uninhibited by benzimidazoles 1 (BUB1) (Solarbio,

Beijing, China, K111585P, 1:300), Cyclin A2 (CCNA2)

(Solarbio, Beijing, China, K009488P, 1:300), Cyclin B1 (CCNB1)

(Solarbio, Beijing, China, K000505P, 1:300), cell division cycle 20

(CDC20) (Solarbio, Beijing, China, K108719P, 1:300), discs large-

associated protein 5 (DLGAP5) (Solarbio, Beijing, China,

K111149P, 1:300), and TTK (Solarbio, Beijing, China,

K007879P, 1:300) overnight at 4°C. Subsequently, secondary

antibody treatment was applied, and DAB staining, along with

hematoxylin counterstaining, was performed.
2.16 Statistical analysis

Statistical analyses were executed utilizing R4.3.1. Spearman and

Pearson correlation analyses were applied to evaluate the links between

RS, gene expression levels, immune scores, immune infiltration, and

immune cell populations. Kaplan-Meier survival analysis was

generated to contrast survival outcomes across diverse cohorts. The

model’s predictive capability was assessed via ROC curve analysis. A P-

value below 0.05 was deemed statistically significant.
3 Results

3.1 Identification of DEGs related to FAM
in LUAD

To screen out the differentially expressed FAM-related genes in

LUAD patients and provide key gene data for subsequent exploration

of the association between LUAD and FAM as well as research on

potential mechanisms. Genome-wide data, encompassing 524 LUAD

samples along with 58 corresponding adjacent normal tissue
Frontiers in Immunology 05
specimens, were sourced from the TCGA-LUAD cohort. A

differential expression analysis revealed 15,858 DEGs. These DEGs

were subsequently cross-referenced with FAM genes. As depicted in

Figure 2A, 125 overlapping genes were identified, comprising 78

genes that were upregulated and 47 that were downregulated.

Figures 2B, C illustrate the heatmap and volcano plot, respectively,

showcasing the differential expression of FAM-related genes. From

these, the top 50 FAM genes with the greatest |log2FC| values were

chosen to evaluate their correlations. The heatmap, presented in

Supplementary Figure S1A, clearly underscores the division of the

FAM genes into two distinct clusters.
3.2 Survival analysis of FAM-related DEGs
in LUAD and construction of
prognostic model

To provide a quantitative tool and basis for the evaluation of the

prognosis of LUAD patients, we constructed a prognostic model. The

gene expression patterns of FAM-related DEGs from the TCGA-

LUAD cohort were combined with corresponding survival data.

Univariate Cox regression analysis was executed on each gene, and

those markedly associated with prognosis were identified and

illustrated in a forest plot (P < 0.05). As depicted in Figure 3A, 33

genes related to prognosis were identified, including 11 classified as

high-risk and 22 as low-risk. CA of prognostic gene mutations was

subsequently performed (Figures 3B, C), revealing that the majority of

alterations were missense mutations, with ACSL1 showing the highest

mutation frequency. To develop a prognostic model, the TCGA-LUAD

dataset was utilized as the “training set”, while the GEO dataset was

employed as the “test set” (Supplementary Table S2 and

Supplementary Figure S2). RS and median risk values were

calculated, enabling classification into high-risk and low-risk cohorts

for survival analysis. As depicted in Figures 3D, E, and Supplementary

Figure S3A, patients with elevated RS in both the TCGA and GEO

datasets exhibited poorer overall survival (OS) and progression-free

survival (PFS) (P < 0.001). Independent univariate and multivariate

prognostic analyses further confirmed that the “RS” was an

independent predictor of OS (Supplementary Figures S3B, C). A

combined ROC curve, integrating RS with other clinical features, was

plotted, with the RS displaying the highest AUC value of 0.683

(Supplementary Figure S3D). An additional ROC curve was

generated to predict LUAD patients survival using the RS, as shown

in Supplementary Figure S3E, with AUC values of 0.729, 0.713, and

0.683 for estimating 1-year, 3-year, and 5-year survival, respectively.

These findings strongly indicate that the prediction model established

in this investigation effectively predicts LUAD prognosis.
3.3 Clinical relevance and coherence
analysis of the LUAD prognostic model

To explore possible differences in RS among patients with

differing characteristics, survival data were examined for clinical

correlations and represented using box plots, as illustrated in
frontiersin.org
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Supplementary Figure S4. Significant associations between RS and

gender (P = 0.021), N stage (P < 0.001), clinical stage (P < 0.001), and

T stage (P < 0.001) were identified. A nomogram was constructed by

integrating RS with clinical variables to estimate 1-, 3-, and 5-year

survival rates (Supplementary Figure S5A). The calibration plot

revealed a robust alignment between the predicted survival rates

from the nomogram and actual outcomes (Supplementary Figure

S5B). Following this, an independent prognostic analysis of the

nomogram was carried out. As depicted in Supplementary Figures

S5C, D, the nomogram showed a P-value below 0.001, signifying that

it could serve as an independent prognostic indicator for patient

survival, separate from other clinical factors.

An expanding corpus of research indicates that cancer stem

cells (CSCs), as a pivotal subset of cancer cells, markedly enhance

tumor cell heterogeneity (19). mRNAsi data from LUAD patients

were acquired to assess the mRNAsi index across different risk
Frontiers in Immunology 06
cohorts (Supplementary Figure S6A). The juxtaposition of mRNAsi

indices between high- and low-risk cohorts, illustrated in

Supplementary Figure S6B, revealed that the high-risk cohort had

a substantially elevated mRNAsi index relative to the low-risk

cohort. To further explore the association between the RS and the

mRNAsi index, a correlation plot was created (Supplementary

Figure S6C), which revealed a substantial positive association

between these two factors. This finding further highlights the

strong prognostic value of the constructed risk model.
3.4 CA between RS and cytokines

Cytokines are known to have a crucial function in tumor

initiation, advancement, spread, and immune modulation (20, 21).

Investigating cytokines in detail can aid in the development of
FIGURE 2

Differential expression analysis of FAM-related genes in LUAD. (A) Venn plot of FAM-related DEGs in the TCGA-LUAD cohort. (B) Volcano plot of
FAM-related DEGs in the TCGA-LUAD cohort. (C) Heatmap of FAM-related DEGs in the TCGA-LUAD cohort.
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innovative therapeutic approaches for tumors. Consequently, an

examination of the link between RS and cytokines was executed.

Initially, cytokine and receptor expression levels were contrasted

between high-risk and low-risk cohorts, and a heatmap illustrating

the differential expression was produced (Figure 4A). The findings

indicated notable variations in the expression of various chemokines

(such as CCL11, CCL16, CCR2, CX3CL1), interleukins (such as IL11,

IL12B, IL12RB2), interferons (IFNs) (such as IFNE, IFNG, IFNGR2),

and other cytokines (such as ARG1, CSF2RB, EPOR, IDO1) and their

corresponding receptors across the two cohorts. To further elucidate

the relationship between cytokines and RS, a CA was performed,

accompanied by correlation scatter plots. The analysis demonstrated

that CCL8, CCL20, CXCL10, IL-11, IL-23, IFNGR2, TGFBR1, and
Frontiers in Immunology 07
VEGFBR1 were positively correlated with RS, while CS3CR1, IL-10,

TGFBR, and IL-12B showed negative correlations with RS

(Figures 4B-M).
3.5 Risk difference analysis and
enrichment analysis

To clarify the gene expression differences between the high -

risk and low - risk groups and gain a deeper understanding of the

molecular mechanisms of LUAD. Differential gene expression

analysis between the high-risk and low-risk cohorts was executed,

leading to the identification of 473 risk-related genes. The top 50
FIGURE 3

Survival analysis and prognostic model of FAM-related DEGs. (A) Forest plot of DEGs linked to patient prognosis (P < 0.05). (B) Waterfall plot of
prognostic genes. (C) Co-mutation plot of prognostic genes. (D) OS curves for high-risk and low-risk patients in the TCGA dataset. (E) PFS curves
for high-risk and low-risk patients in the TCGA dataset.
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genes exhibiting the greatest |log2FC| values were chosen for CA, as

depicted in the heatmap in Supplementary Figure S1B. To

investigate the possible biological functions of these risk-related

genes in LUAD, functional enrichment evaluation was executed

utilizing GO and KEGG pathway analyses on all identified risk

genes (Figures 5A–F). The findings indicated that pathways linked

to the “humoral immune response”, “mitotic nuclear division”, and

“cell cycle” were markedly enriched in the high-risk cohort. In
Frontiers in Immunology 08
addition, to assess the variations in pathway activity between the

risk cohorts, gene set variation analysis (GSVA) was executed, with

the findings presented in Figure 5G. Pathways encompassing “cell

cycle”, “nucleotide excision repair”, “proteasome”, and “pyrimidine

metabolism” demonstrated notably higher activity in the high-risk

cohort relative to the low-risk cohort (P < 0.05). These observations

suggest that risk-associated genes are predominantly implicated in

biological mechanisms associated with the cell cycle.
FIGURE 4

CA between RS and cytokines. (A) Heatmap showing differential expression of cytokines in high- and low-risk cohorts. (B-M) Scatter plots depicting
the link between RS and the expression levels of CCL8, CCL20, CXCL10, IL-11, IL-23, IFNGR2, TGFBR1, VEGFBR1, CS3CR1, IL-10, TGFBR, and IL-12B.
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3.6 Development of PPI network

To clarify the gene expression differences between the high -

risk and low - risk groups and gain a deeper understanding of the

molecular mechanisms of LUAD. The PPI network was constructed

employing the Strings database (Supplementary Figure S7A).

Subsequently, the PPI network was visualized through Cytoscape
Frontiers in Immunology 09
software (Supplementary Figure S7B). The top 7 genes with the

highest degree of correlation were identified employing the

‘cytohubba’ algorithm, a plugin within Cytoscape. As depicted in

Figure 6A, CDK1 showed the strongest correlation with risk genes,

followed by DLGAP5, CCNA2, BUB1, CCNB1, TTK, and CDC20.

Additionally, robust associations were identified among these seven

genes. To further evaluate the prognostic significance of these genes,
FIGURE 5

Enrichment analysis of risk genes. (A) Clustering diagram of GO enrichment analysis. (B) Histogram of GO enrichment analysis. (C) Bubble plot of GO
enrichment analysis. (D) Clustering diagram of KEGG enrichment analysis. (E) Bar chart of KEGG pathway enrichment analysis. (F) Bubble plot of
KEGG pathway enrichment analysis. (G) Heatmap of GSVA enrichment analysis.
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a Kaplan-Meier analysis was conducted. The findings indicated that

elevated expression levels of CDK1, DLGAP5, CCNA2, BUB1,

CCNB1, TTK, and CDC20 were markedly linked to poorer OS (P

< 0.05), as illustrated in Figures 6B–H.
3.7 Key genes validation

To verify the differential expression of the seven target genes

between LUAD and normal lung cells, qRT-PCR analysis was

carried out. The findings revealed a substantial elevate in the

expression levels of CDK1, BUB1, CCNA2, CCNB1, TTK, CDC20,

and DLGAP5 in A549, PC9, and H1299 CLs, in comparison to the

Beas-2B CL (Figures 7A–G). Moreover, WB analysis was employed to

assess CDK1, the gene exhibiting the strongest correlation (Figures 7H,
Frontiers in Immunology 10
I). It was observed that CDK1 expression was considerably higher in

the three LUAD CLs relative to Beas-2B cells. To explore whether

similar expression patterns are present in vivo, immunohistochemistry

(IHC) staining was executed on tumor tissues and adjacent normal

tissues from LUAD patients. The results illustrated a notable

overexpression of CDK1, BUB1, CCNA2, CCNB1, CDC20,

DLGAP5, and TTK in LUAD tissues (Figures 7J–P).
3.8 CA between RS model
and immunotherapy

Immunotherapy is considered a vital therapeutic strategy for

patients with LUAD. Recent studies suggest that FAMmay modulate

tumor biological behavior by affecting the local TME (22).
FIGURE 6

PPI network and prognostic value of core genes. (A) PPI network diagram, where darker colors indicate stronger correlations with other genes. (B-H)
Kaplan-Meier plots for CDK1, BUB1, CCNA2, CCNB1, CDC20, DLGAP5, and TTK in high-risk and low-risk patient cohorts.
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Consequently, the relationship between the RS model derived from

FAM genes and the effectiveness of immune checkpoint inhibitors

(ICIs) was examined. First, the IC50 values for multiple anticancer

agents were predicted for each sample, and the variations between

high-risk and low-risk cohorts were assessed. The outcomes indicated
Frontiers in Immunology 11
that the IC50 values for most drugs (such as axitinib, BMS,

doramapimod, and ribociclib) were markedly lower in the low-risk

cohort relative to the high-risk cohort, as illustrated in Supplementary

Figure S8. Further analysis of the TCIA database (Figures 8A–D)

revealed that the low-risk cohort displayed notably higher
FIGURE 7

Expression profiles of seven genes in different CLs. (A–G) Relative expression levels of CDK1, BUB1, CCNA2, CCNB1, CDC20, DLGAP5, and TTK in
LUAD cells and normal cells were validated by PCR. (H, I) Relative expression levels of CDK1 in LUAD cells and normal cells were validated by WB.
(J–P) Immunohistochemical staining of CDK1, BUB1, CCNA2, CCNB1, CDC20, DLGAP5, and TTK in clinical samples, with images magnified 100x.
*P<0.05, **P<0.01, ***P<0.005.
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immunotherapy scores (IPS) and responses to anti-CTLA4 treatment

(P < 0.001), implying that individuals with lower RS may experience

enhanced benefits from ICIs. To substantiate the predictive capacity

of the RS in the context of immunotherapy, a Kaplan-Meier survival

analysis was conducted employing data from the IMvigor210

immunotherapy cohort. The findings confirmed that within the

IMvigor210 cohort, lower RS correlated with improved OS in

immunotherapy (Figure 8E).
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The abundance of immune checkpoint genes between the

high-risk and low-risk patient cohorts was further evaluated. As

depicted in Figure 8F, 27 genes exhibited differential expression

patterns. In contrast to the low-risk cohort, individuals in the

high-risk cohort displayed elevated levels of TNFRSF9, TNFSF9,

TNFSF4, CD274, CD276, and IDO1. Furthermore, the transcript

abundance of these genes demonstrated a negative association

with OS (Figures 8G-L).
FIGURE 8

Immune checkpoint analysis and prediction of immunotherapy response. (A–D) The impact of CTLA4/PD1 drug usage on IPS in high-risk and low-
risk patients. (E) Kaplan-Meier survival analysis of the IMvigor210 treatment cohort. (F) Expression of immune checkpoint genes in high-risk and low-
risk populations. (G–L) Kaplan-Meier survival curves for OS of four patient cohorts categorized by RS and expression levels of TNFRSF9, TNFSF9,
TNFSF4, CD274, CD276, or IDO1.
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Single-gene immune cell CA was executed for the seven key genes

included in the RS model, as presented in Supplementary Figure S9. All

seven genes showed positive correlations to CD8+ T cells, CD4+ T cells,

and regulatory T cells, while exhibiting negative links to B cells,

monocytes, dendritic cells, and mast cells.

These findings suggest that FAM-related genes could modulate

the TME by influencing immune cell infiltration and the expression

of immune checkpoint-related genes, thereby impacting the

effectiveness of immunotherapy.
4 Discussion

This study identified key genes through a prognostic model

utilizing FAM-related genes, elucidated the significant roles of these

seven genes in LUAD, and explored the impact of FAM on

immunotherapy, providing novel scientific evidence for LUAD

treatment. Cancer has become one of the most urgent worldwide

public health challenges, with LC being the leading cause of

mortality (23). Moreover, LUAD represents the most prevalent

subtype of LC (24). Despite advances in LUAD therapies, the

development of effective prognostic markers and molecularly

targeted treatments remains limited (25). A hallmark of cancer is

abnormal cell growth and proliferation, which necessitates large

quantities of protoplasmic components such as nucleic acids,

proteins, and lipids for its initiation and progression (26). FAM

plays a pivotal role in the metabolic transformation of nutrients,

which has drawn attention to its potential significance in tumor

therapy (27–29). Nonetheless, research on FAM in LUAD remains

scarce. In this study, 125 FAM genes linked to cancer progression

were detected using the TCGA-LUAD dataset. A prognostic model

was developed via LASSO regression and cross-validation,

demonstrating consistent predictive capability across multiple

datasets. Survival analysis demonstrated that LUAD patients with

higher RS had a poorer prognosis. Clinical CA revealed that the RS

was markedly associated with gender, N stage, clinical stage, and T

stage. Furthermore, univariate and multivariate Cox analyses

suggested that the RS could function as an independent

prognostic marker for LUAD. Additionally, the RS exhibited a

positive correlated to the mRNAsi index of CSCs, further

underscoring its role in prognostic assessment.

In recent years, the influence of cytokines on cancer has

attracted significant attention, with profound implications for

both clinical and translational medical research (30). Cytokines

can affect cancer progression, metastasis, and the immune

microenvironment through various pathways. For example, the

interleukin (IL) family promotes tumor development by

stimulating tumor cell proliferation, growth, and angiogenesis

(31), whereas IFNs inhibit tumor progression by restraining

cancer cell proliferation, inducing apoptosis, and modulating

immune responses. Accordingly, the link between RS and

cytokine expression was investigated, revealing notable variations

in the levels of multiple cytokines among high- and low-risk

cohorts. The results indicated that CCL8, CCL20, CXCL10,

IFNGR2, TGFBR1, and VEGFBR1 were positively correlated to
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RS, while CS3CR1, IL-10, TGFBR, and IL-12B exhibited negative

associations. CCL8, CCL20, and CXCL10 are key players in

regulating immune cell migration and inflammatory responses,

contributing essential roles in immune surveillance and TME

modulation (32, 33). IFNGR2 and VEGFBR1 also impact tumor

progression by modulating immune recognition, nutrient supply,

and the metastatic potential of tumor cells (34, 35). IL-10, one of the

earliest identified cytokines, has the ability to suppress cancer

development and metastasis by modulating inflammation and

immune responses (36). TGFBR is known to function as a cancer

inhibitor due to its ability to inhibit epithelial cell proliferation;

nevertheless, in advanced stages of the disease, TGFBR seems to

facilitate tumor advancement (37). In conclusion, these cytokines

and receptors serve crucial functions in governing the TME,

modulating immune responses, and serving as potential

therapeutic targets. Further research into their regulatory

mechanisms and interactions may offer new therapeutic strategies

and opportunities for personalized treatment.

Finally, a nomogram was developed utilizing factors like RS,

age, gender, and disease stage to predict patient survival,

demonstrating a high level of concordance with observed survival

outcomes. Differential risk analysis was executed using the

prognostic model, identifying 473 DEGs associated with risk.

Subsequent functional analysis of these genes suggested that in

the high-risk cohort, we discovered that high-risk genes were

significantly enriched in pathways associated with humoral

immune response and the cell cycle. Previous studies have shown

that NME4, a potential immunotherapeutic target, promotes

immune evasion in LUAD by suppressing CD8+ T cell

infiltration, and its overexpression is strongly correlated with

enhanced cellular proliferation, increased metastatic potential,

and poor clinical outcomes (38). These findings are consistent

with our results. Tumor cells, through surface-expressed

abnormal antigens, induce B cells to produce ineffective

antibodies and activate negative regulatory signals in B cells,

resulting in the failure of immune surveillance. Moreover, the B-

cell receptor signaling pathway is abnormal. Tumor cells aberrant

signaling nodes, prompting B cells to secrete immunosuppressive

factors, ultimately leading to immune escape and creating an

inflammatory microenvironment conducive to tumor growth and

metastasis. Regarding the cell-cycle-related pathways, gene sets

associated with cycle regulation, DNA replication, etc. are highly

enriched, manifested as the dysregulation of pathways such as Rb-

E2F and the abnormal activation of the CDK-cyclin complex. This

leads to uncontrolled cell proliferation and genomic instability.

Given the central role these key pathways play in the pathogenesis

of LUAD, developing drugs to block the abnormal interactions

between tumor cells and B cells or to regulate key molecules for the

humoral immune response pathways, as well as developing CDK

inhibitors or restoring the Rb-E2F pathway function through gene

therapy for the cell-cycle-related pathways, represents promising

therapeutic strategies for LUAD treatment.

Subsequently, seven genes (CDK1, DLGAP5, CCNA2, BUB1,

CCNB1, TTK, and CDC20) most strongly associated with risk genes

were selected for detailed analysis, revealing their substantial impact on
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LUAD patients survival. PCR and WB experiments verified that the

expression levels of these seven crucial genes were notably elevated in

LUAD CLs relative to normal lung cells. Furthermore, IHC confirmed

their elevated expression in tumor tissues of LUAD patients in contrast

to normal tissues. Importantly, these seven key genes have been

identified as positive regulators of the cell cycle in numerous cancer

studies, playing essential roles in cancer development (39–45). CDK1,

the only essential cyclin-dependent kinase in human cells, is vital for

cell growth, proliferation, and replication (46). It also acts as an

upstream regulator for BUB1, CCNB, and CDC20 (47–49).

Additionally, CDK1 promotes tumor development and enhances

drug resistance by influencing cell morphology, motility, and

apoptosis (39, 50, 51). It has been reported that CDK1 can bind

directly and phosphorylate acyl-CoA synthetase long-chain family

member 4 at the S447 site, thereby blocking the biosynthesis of lipid-

containing polyunsaturated fatty acids, inhibiting lipid peroxidation,

and preventing ferroptosis (50). Recent research has demonstrated that

CDK1 is over expressed in cancer and is intimately associated with

unfavorable outcomes in LUAD (52). DLG-associated protein 5

(DLGAP5) has been recognized as a cell cycle regulatory protein

(53) that enhances k-fiber stability and facilitates chromosome

alignment by influencing Kif18A localization and dynamics at

kinetochore microtubule plus ends (54). DLGAP5 is strongly

correlated with cancer occurrence and poor prognosis across

multiple cancer types (55). In osteosarcoma, DLGAP5 has been

demonstrated to promote tumor development via the IL-6/JAK2/

STAT3 signaling pathway (56). CCNA2 is a well-known cell

proliferation regulator and has been employed as a proliferation

marker for molecular diagnostics (57). Several investigations have

demonstrated that CCNA2 can alter cell proliferation and

differentiation by affecting various pathways, promoting tumor

formation and progression and contributing to adverse pathological

outcomes (41, 58, 59). BUB1 is a crucial protein-coding gene involved

in spindle assembly checkpoint signaling and proper chromosome

alignment (60). NingJiang et al. found that BUB1 kinase promotes the

advancement and multiplication of human bladder cancer (BCa) by

modulating the transcriptional activation of STAT3 signaling, making

it a potential target for BCa therapy (61). However, fewer studies have

explored the role of BUB1 in LUAD, warranting further research.

CCNB1, TTK, and CDC20 are recognized regulators of the cell cycle,

ensuring proper chromosome segregation during mitosis (62). Current

studies suggest that CCNB1, TTK, and CDC20 are overexpressed in

various cancers (63–65). These seven key genes are intimately linked to

the cell cycle, indicating a strong association between FAM alterations

and cell cycle dysregulation in LUAD. CDK1 has been shown to

activate Pah1 and Tgl4, promoting lipolysis and providing fatty acids

necessary for the completion of the late G1 phase of the cell cycle (66).

DLGAP5 and BUB1 exert regulatory effects on STAT3 (67), which can

bind to the FASN promoter region and promote de novo fatty acid

synthesis (67). CCNB1 is capable of stimulating fatty acid oxidation to

meet the increased metabolic demands of cancer cells by modulating

the p53 pathway (68). Furthermore, numerous studies have revealed

that tumor cells undergo metabolic reprogramming to meet their

heightened demands for rapid proliferation and survival, a process

that is significantly correlated with patient prognosis (69, 70). Thus,
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restoring the normal FAM environment in the body is of significant

importance for restraining the abnormal proliferation of LUAD cells

and impeding the progression of LUAD. Furthermore, dysregulation of

fatty acid metabolism is closely associated with the prognosis of LUAD

patients, underscoring the potential clinical value of modulating fatty

acid metabolic pathways to improve patient outcomes.

Immunotherapy, as an innovative approach to cancer treatment,

has garnered increasing attention in the clinical application of LUAD

management (71). Recent studies have shown that FAM can modulate

the tumor immune microenvironment (72, 73), and enrichment

analysis results indicate that genes within the high-risk cohort are

primarily linked to immune pathways. Consequently, drug sensitivity

analysis reveals that medications like axitinib, BMS, doramapimod, and

ribociclib exhibit markedly improved efficacy in the low-risk cohort

relative to the high-risk cohort. Findings from immunotherapy analysis

suggest that low-risk patients tend to respond more favorably to ICIs.

Validation through the IMvigor210 cohort corroborates this

perspective, underscoring the potential utility of the FAM prognostic

model to guide immunotherapy in LUAD. Subsequent examination

comparing immune checkpoint gene expression between high- and

low-risk cohorts indicated elevated expression of TNFRSF9, TNFSF9,

TNFSF4, CD274, CD276, and IDO1 in high-risk patients, potentially

affecting immunotherapy effectiveness and prognosis, and offering

valuable insights for personalized therapeutic strategies. Given the

significant role of immune checkpoints on the immune

microenvironment, single-gene immune cell CA was conducted on

seven pivotal genes, revealing their potential influence on tumor

immune cell infiltration. In this investigation, the expression of all

seven genes was positively correlated with CD8+ T cells, CD4+ T cells,

and regulatory T cell infiltration, while being negatively associated with

B cells, monocytes, dendritic cells, and mast cell infiltration. B cells

serve various functions within the human body, encompassing antigen

presentation and antibody production, supporting T cell responses and

related complement, macrophage, and natural killer cell mechanisms,

all of which possess significant prognostic relevance (74). Current

studies have shown that the synthesis of monounsaturated fatty acids

directly governs B cell differentiation (75). Additionally, germinal

center B cells, known for their high proliferation, do not rely on

glycolysis for energy but sustain their energy requirements through

fatty acid oxidation (76). Research on prostate cancer has demonstrated

that the depletion of CDC20 can enhance CD8 T lymphocyte

infiltration in a GSDME-dependent manner, thereby amplifying

antitumor immunity (77). This study elucidates the pivotal role of

seven key genes in tumor immune infiltration, particularly regarding

their impact on T cells and B cells, and underscores the significance of

FAM alterations. Thus, the FAM RS model could potentially influence

the efficacy of immunotherapy by regulating immune checkpoint gene

expression and immune cell infiltration.

Unlike traditional prognostic models that are primarily relying

on clinicopathological features and thus insufficiently consider the

molecular characteristics of tumors, as well as molecular prognostic

models that focus on a single signaling pathway or a certain

category of genes, the prognostic model we constructed based on

FAM genes commences from FAM-related genes. It delves into the

correlation between the tumor-intrinsic metabolic dysregulation of
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tumors and prognosis, providing a novel perspective. Moreover, it

comprehensively takes into account multiple genes that are closely

associated with fatty acid metabolism and the cell cycle. Its

predictive stability and accuracy have been validated across

different datasets, allowing it to more accurately reflect the

biological behavior of tumors. Furthermore, this model holds

great significance for treatment decision-making. For patients

with a high-risk score, which indicates a high degree of tumor

malignancy and poor prognosis, clinicians can adopt proactive

strategies such as intensified chemotherapy regimens, early-stage

immunotherapy, or combined targeted therapy to improve patient

survival outcomes. In contrast, for patients with a low-risk score,

the treatment intensity can be appropriately reduced on the premise

of ensuring treatment efficacy, so as to minimize unnecessary

treatment - related side effects and improve the patients’ quality

of life. The key genes screened by the model also offer potential

targets for the development of targeted drugs. In the future, further

prospective clinical studies will help verify its effectiveness and

reliability, thereby accelerating the translation of basic research

findings into clinical applications.

In conclusion, a prognostic model utilizing FAM genes has been

developed. The reliability and precision of this model were

confirmed through survival analysis and further validated in

additional datasets. When combined with patients’ clinical

profiles, it exhibited its significance as an independent prognostic

factor for predicting outcomes in LUAD patients. Furthermore, a

nomogram that integrates RS with several critical clinical

parameters was developed, offering a valuable tool for prognostic

evaluation in LUAD. Key genes were identified through differential

gene analysis employing RS. The clinical relevance and expression

profiles of seven key genes in LUAD patients were validated

through survival analysis and in vitro experiments. Additionally,

the associations between RS and the efficacy of immunotherapy,

expression of immune checkpoint-related genes, and immune cell

infiltration were investigated. In summary, this study provides

robust scientific evidence for exploring treatment strategies for

LUAD and establishes a foundation for future translational

clinical research.
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