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Sarcomas are heterogeneous mesenchymal malignancies classified as soft-

tissue sarcomas (STS) and bone sarcomas. Advanced cases respond poorly to

standard therapies, highlighting the need for novel strategies. Immunotherapies,

including PD-1/PD-L1 inhibitors, adoptive cellular therapies, vaccines, and

oncolytic viruses, have shown promise in specific sarcoma subtypes. This

review explores these approaches, emphasizing the prognostic significance of

immune cells within the tumor microenvironment (TME), such as tumor-

associated macrophages (TAMs) and tumor-infiltrating lymphocytes (TILs), and

their correlation with clinical outcomes. We also discuss challenges in

immunotherapy efficacy, the importance of biomarker-driven personalized

therapies, and the potential of a combination regimen with chemotherapy,

radiation, and cytokine agents. Overall, this review highlights the evolving role

of immunotherapy in advanced sarcomas, the critical influence of the TME, and

the need to optimize synergistic treatment approaches to enhance

patient outcomes.
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Introduction

Sarcomas are heterogeneous malignancies arising from mesenchymal precursors

encompassing bone, cartilage, fat, and muscle. Although rare in adults, comprising about

1% of global cancer diagnoses, sarcomas account for nearly 15% of pediatric malignancies

(1). The World Health Organization recognizes over 70 subtypes, typically classified into

two primary categories: soft-tissue sarcoma (STS) and bone sarcoma, each with unique
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biology and clinical behaviors (2, 3). For localized disease, the

current standard treatment is surgical resection often combined

with radiotherapy. Nevertheless, approximately half of patients with

high-grade tumors later develop metastasis, yielding a median

overall survival (OS) of 14–19 months (4). For unresectable or

advanced cohorts, standard first-line systemic therapy is

doxorubicin alone or in combination with the alkylating

drug ifosfamide (5). Second-line settings, such as novel

chemotherapeutic agents trabectedin (6), eribulin (7), and

tyrosine kinase inhibitors (TKIs) like pazopanib (8) are useful

therapy options for specific sarcoma subtypes. Notably, their

significance for enhancing OS remains uncertain. These therapies

only yield limited durable response, with objective response rates

(ORR) of 10-20% and median progression-free survival (PFS) of 4

months, highlighting the crucial need for more effective

treatment options.
Specific challenges in sarcoma
treatment

Immunotherapies, especially immune checkpoint inhibitors

(ICIs), have achieved considerable benefit in certain sarcoma

subtypes. Multiple trials are investigating ICI combinations with

other therapies. However, specific challenges remain due to

sarcoma heterogeneity, limited targetable antigens, and a lack of

subtype-specific trials. ICIs generally demonstrate lower efficacy in

sarcomas than in other solid tumors, with basket trials often grouping

diverse subtypes, which complicates the identification of effective

treatments for rare forms (9). Additionally, immunosuppressive

tumor microenvironments (TME), low tumor mutational burdens

(TMB), and weak immunogenicity of tumor-associated antigens

(TAAs) hinder treatment success. Despite these limitations,

combining ICI with other medications has shown promising

synergistic advantages. Emerging approaches, such as adoptive cell

transfer and oncolytic viruses (OVs), offer new opportunities to

address these challenges and may enhance therapeutic outcomes

for sarcoma patients.

This article reviews the current evidence supporting the utility

of immunotherapy in advanced sarcoma, as well as the existing

immunotherapy strategies (Figure 1), including anti-PD-1/PD-L1
Abbreviations: AS, Angiosarcoma; ASPS, Alveolar soft-part sarcoma; CAR,

Chimeric antigen receptor; CR, Complete response; CTLA4, Cytotoxic T-

lymphocyte-associated protein 4; DCs, Dendritic cells; FDA, Food and Drug

Administration; GIST, Gastrointestinal stromal tumor; HIV, Human

immunodeficiency virus; KS, Kaposi’s sarcoma; LAG-3, Lymphocyte activation

gene 3; MSI, Microsatellite instability; New York esophageal squamous cell

carcinoma 1 gene; ORR, Objective response rate; OS, Overall survival; PD-1,

Programmed cell death 1; PD-L1, Programmed death ligand 1; PFS, Progression

free survival; RCC, Renal cell carcinoma; SS, synovial sarcoma; STS, Soft-tissue

sarcoma; TCR, T cell receptor; TIL, Tumor-infiltrating lymphocyte; TLS, Tertiary

lymphoid structures; TMB, Tumor mutational burden; TME, Tumor

microenvironment; Treg cells, Regulatory T cells; T-VEC, Talimogene

Laherparepvec; UPS, Undifferentiated pleomorphic sarcoma.
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therapy, adoptive T-cell therapy (ACT), vaccines, oncolytic virus,

and cytokine-based immunotherapy.
Immunological characteristic in
different sarcoma subtype

Sarcomas are generally considered “immunological quiet”,

characterized by a low TMB, immunosuppressive TME, reduced

T-cell infiltration, and increased HIF-1a, macrophages, and

neutrophils. However, certain subtypes like alveolar soft-part

sarcoma (ASPS), synovial sarcoma (SS), and undifferentiated

pleomorphic sarcoma (UPS) display an immunologically “hot”

phenotype: higher TMB, elevated PD-L1 expression, and presence

of tertiary lymphoid structures (TLS), correlating with improved

responses to checkpoint inhibitors (10).

The sarcoma TME comprises immune cells, stromal cells

(including cancer-associated fibroblast, CAF), and endothelial

cells. These components interact with tumor cells, influencing

progression, immunotherapy response, and clinical outcomes.

The specific immune contexture in sarcoma is often marked by

predominate tumor-associated macrophages (TAM), dysfunctional

tumor-infiltrating lymphocytes (TIL) with reduced CD8+ T and

NK cell activity, increased regulatory T cells (Tregs), limited B cells,

and impaired dendritic cell (DC) function.
TAMs

TAMs are abundant myeloid cells in TME that contribute to

immune suppression, angiogenesis, and metastasis. They present

antigens via surface MHC molecules and secret immunomodulatory

cytokines, fostering a pro-tumoral milieu and enhancing vascular

remodeling (11). In sarcomas, TAM densities often exceed those of

TILs (12–14). These macrophages predominantly display an M2-type

(immunosuppressive), marked by high expression of SIRPa, CD47,
CD68, CD163, and CSF1R (14, 15–17), which collectively promote

phagocytosis resistance and immunosuppression.

Clinically, high TAM infiltration predicts poorer outcomes in

both soft−tissue and bone sarcomas (14, 18–20). In a cohort of 188

STS patients, high TAM levels were independently associated with

an increased risk of local recurrence (20). In 75 sarcoma specimens,

greater numbers of CD163+/CD204+ macrophages at tumor

margins correlated with reduced disease−free survival (18).

Similarly, undifferentiated leiomyosarcomas with dense CD163+/

CD68+ infiltration exhibited worse overall survival (19). In

chondrosarcoma, CD68+ CD163+ TAMs are the main immune

population (21), and a high CD68+/CD8+ ratio independently

forecasts metastatic presentation and poor prognosis.
TILs

STS generally have fewer TILs and exhibit lower CD4+/CD8+ ratios

compared to other immunoreactive cancer (22). High-grade sarcoma,
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such as leiomyosarcoma, exhibits higher infiltration of CD3+, CD8+,

and FOXP3+ T-cells (13), while infiltrating CD20+ B-cells, though

rarely detected in STS, are correlated to improved outcomes (23).
CD8+ T cells

CD8+ T cells are critical for antitumor immunity but become

dysfunctional in sarcoma through upregulation of inhibitory

receptors. In the primary UPS cohort, approximately one-third of

cases exhibit high CD3+/CD8+ densities associated with favorable

survival outcomes (24). In SS, greater CD8+ or FOXP3+ infiltration

corresponds to improved OS (25). However, in angiosarcoma, neither

PD-1/PD-L1 expression nor CD8+ levels predict outcomes,

underscoring the subtype-specific complexity (26). Although

gastrointestinal stromal tumor (GIST), myxofibrosarcoma, and

pleomorphic sarcoma all feature high CD8+ densities, but lack of

co−stimulatory ligands in GIST limits cytotoxic efficacy (27).

Correlative biomarker studies highlight that combined immune

parameters best predict clinical benefit. In the SARC028 trial, pre

−treatment densities of activated CD8+ T cells and PD-L1+ TAMs

correlated with pembrolizumab response (28). Co-presence of CD8+

TILs and neoantigens further improved survival compared to either

factor alone (29). Likewise, trials of interleukin-2 pathway agonists

plus nivolumab demonstrated that CD8+ infiltration together with

PD-1 expression correlated with increased ORR (23, 30).
Frontiers in Immunology 03
Tregs

Tregs facilitate tumor immune evasion by secreting IL-10 and

TGF-b, expressing CTLA-4 and PD-1, and thereby inhibiting

effector T cell responses. Treg infiltration varies across sarcoma

subtypes, with GIST showing the highest density of FOXP3+

density (36%) among sarcomas (12). The prognostic significance

of Tregs in STS is undefined due to the lack of sample number and

heterogeneity. In one cohort of 163 STS samples, 11.7% were PD-L1

positive and 25.2% showed high FOXP3+ infiltration, both metrics

independently predicted poor prognosis in multivariate analysis

(31). Another study linked high Treg levels with increased local

recurrence risk, regardless of surgical margin status (32).
Biomarkers of immunotherapy
response

TMB and dMMR

TMB correlates with ICI efficacy, as higher TMB generates more

neoantigen, enhancing immune recognition (33). The FDA defines

TMB-high as ≥ 10 mutations per megabase (Mb), which predicts a

stronger response to PD-1 blockade (34). However, most STS

subtypes exhibit median TMB below three mutations per Mb, and

only ~2% qualify as TMB-high, making it an impractical biomarker
FIGURE 1

Current cancer immunotherapy landscape in advanced sarcoma, including checkpoint monoclonal antibodies, chemotherapy, TKI, adoptive cellular
therapy, oncolytic virus & peptide, vaccine, and cytokine-based therapy.
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in STS (35, 36). Analysis of 1,407 sarcomas in the GENIE database

confirmed low TMB across sarcoma categories, with TMB-high in

3.8% of STS and 0.6% of bone sarcomas (37). Specific histologies

(e.g., angiosarcoma) exhibit higher TMB, with 63.4% of aggressive

cases meeting the high threshold (38, 39). Conversely,

translocation-driven subtypes (e.g., SS) typically display low TMB,

though rare high-TMB cases (~6.3%) have been reported (40).

A phase II trial (NCT02834013) of ipilimumab and nivolumab

in angiosarcoma reported a 25% ORR, rising to 60% in cutaneous

scalp and face tumors (41). Among seven TMB-evaluated patients,

only the single TMB-high case responded. Similarly, PD-1 blockade

benefits patients with cutaneous head and neck angiosarcomas,

regardless of TMB elsewhere, suggesting anatomical context may

outweigh mutational burden (42).

MMR deficiency (dMMR) machinery is associated with high

mutational load and predicts PD-1 blockade efficacy (39). However,

dMMR remains exceptionally rare (~1%) in STS, further

constraining its role as a predictive biomarker.
PD-L1 expression

Unlike many carcinomas, PD-L1 levels in sarcomas are highly

variable and only modestly predictive of ICI response.

Immunohistochemistry studies report PD−L1 positivity in 12-

23% of STS cases, depending on the subtype and antibody used

(12, 43). In SARC028, a higher density of PD-L1+TAMs and

infiltrating CD8+ T cell correlated with ICB response;

nonetheless, only 2 of 40 PD-L1+ sarcomas responded (28). PD-

L1 expression often increases as the tumor progresses and generally

portends a worse prognosis. One small SS series found lower PD-L1

in recurrent versus diagnostic specimens (44). Radiotherapy can

increase PD-L1 expression when given preoperatively (45). Overall,

dynamic and context−dependent PD-L1 regulation in the sarcoma

microenvironment limits its reliability as a stand−alone biomarker.
B cell and TLS

B cell subtypes in the TME play dual roles: antigen-presenting B

cells within TLS activate CD4+ and CD8+ T cells to mount

antitumor responses (46–48), whereas regulatory B cells secrete

immunosuppressive cytokines (49, 50). High-immune-infiltrate

STS samples are enriched for B-cell-rich TLS, which strongly

predicts better response rates and survival in pembrolizumab-

treated cohorts. TLS are organized immune cell clusters that

resemble secondary lymphoid organs. They play a critical role in

generating delayed immune response by recruiting TILs. The spatial

structure of TLS, including germinal centers, cellular composition,

and tumor location affects patient prognosis (51).

Transcriptomic profiling of STS has defined five immune

phenotypes, including immune-low, immune-high, and highly

vascularized groups (23). The immune-high/TLS-rich class

exhibited superior survival and a 30% ORR in Phase II

pembrolizumab trials, compared to 2.4% overall (52). Similar TLS
Frontiers in Immunology 04
−related benefits have been observed in melanoma, RCC, and other

ICI-treated malignancies, highlighting their potential as pan-cancer

predictors of ICB response (53–55).
IDO

Indoleamine 2,3-dioxygenase (IDO) catalyzes tryptophan to

kynurenine, creating an immunosuppressive niche that impairs

effector T cells and promotes Tregs activation (56, 57). In a study

of 371 primary STS patients, IDO was detected on endothelial cells

in 23% and on tumor cells in 41%; 56% of samples exhibited

elevated kynurenine (58). Higher kynurenine levels, but not PD-L1

expression, are associated with worse OS. A phase II trial of

pembrolizumab in selected STS subtypes achieved only a 6%

partial response. The reason was likely due to high baseline

infiltration of IDO1+ macrophages (59). The treatment further

increased the plasma kynurenine/tryptophan ratio, suggesting the

IDO1-mediated immunosuppression as a resistance mechanism.

Although combining the IDO1 inhibitor epacadostat with

pembrolizumab showed early promise in melanoma, the

subsequent phase III KEYNOTE-252 trial failed (60), possibly due

to compensatory upregulation of TDO or IDO2. A small phase II

study using the same combination in sarcoma also yielded limited

benefit (61). These results emphasized the need to elucidate the

IDO/kynurenine signal in the sarcoma TME and to refine dosing

and combinatorial strategies before deploying IDO pathway

inhibitors as clinical biomarkers or therapeutic partners.
Immune checkpoint blockage for
advanced sarcomas

ICI monotherapy or combined with
other ICIs

Early trials using ICI monotherapy demonstrate unsatisfactory

activity (62, 63). In the pioneering phase II SARC028 trial, 84 STS

patients treated with pembrolizumab had an ORR of 18%. The best

activity was observed in UPS of 40% and dedifferentiated liposarcoma

cohorts of 20%, while osteosarcoma showed only a 5% response (64).

A subsequent basket trial for rare sarcomas reported an ORR of 6.2%

in the pembrolizumab monotherapy group, with no complete

responses (65). Pooled analyses of anti-PD1/PD-L1 therapy in

advanced STS showed an ORR of 15.1% and a non-progression

rate (NPR) of 58.5% (66). The UPS and ASPS displayed the best

response, while leiomyosarcoma and osteosarcoma had the lowest

response rates. Nivolumab alone showed similarly modest activity,

with a 12% response rate in certain sarcoma subtypes. A combination

of nivolumab and CTLA-4 inhibitor ipilimumab demonstrated an

improved response. In the Alliance A091401 trial for metastatic

sarcoma, the combination therapy had a 16% ORR compared to

5% for nivolumab alone (67, 68) (Table 1).

Neoadjuvant nivolumab or ipilimumab also showed

significant efficacy in resectable high−grade sarcomas. In
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retroperitoneal dedifferentiated liposarcoma (DDLPS) and UPS,

89% of resected specimens showed pathologic response (69).

The two-year OS rate exceeded 80% in both cohort and

heightened intratumoral B cell infiltration correlated with
Frontiers in Immunology 05
superior survival. Similarly, a phase II study in classical

Kaposi sarcoma (cKS) achieved an 87% response rate (6/13

evaluable patients) with combined nivolumab and low-dose

ipilimumab (79).
TABLE 1 Key clinical trials of ICI monotherapy or combination in sarcomas.

NCT
number

Clinical Trial Phase
Study agent/
combination

Sarcoma subtype/
evaluable patients

ORR (%) Outcomes/details

ICI monotherapy or combination with other ICI

NCT02301039
Tawbi et al.
SARC028,
2017 (64)

Phase II pembrolizumab
40 STS cohort;
40 BS cohort

18% in STS
5% in BS

STS patients, PFS: 18 weeks;
OS: 49weeks.
BS patients, PFS: 8 weeks;
OS: 52weeks.

NCT03012620
Blay et al. AcSé
Pembrolizumab,
2023 (65)

Phase II
(basket
trial)

pembrolizumab
98 rare STS (34 chordoma, 14
ASPS, 12 SMARCA4-deficient, 8
DSCRT, 31 others)

6.2% at week 12 PFS 2.75 ms; OS 19.7 ms

NCT02500797
D’Angelo et al.
Alliance A091401,
2018 (68)

Phase II
nivolumab plus
ipilimumab
vs nivolumab

42 sarcomas (3 AS, 4 BS, 14 LMS, 2
LPS, 6 SCS, 2 SS, 6 UPS/MFH, 1
unspecified, 4 others);
43 sarcomas (5 BS, 15 LMS, 3 LPS,
2 unspecified, 5 SCS, 2 SS, 5 UPS,
6 others)

16% vs 5%
PFS: 4.1 ms vs 1.7 ms, OS:
14.3 ms vs 10.7 ms

NCT03307616
Roland et al.,
2024 (69)

Phase II

neoadjuvant
nivolumab or
nivolumab/
ipilimumab

17 DDLPS and 10 UPS
pathologic response
was 8.8% in DDLPS
and 89% in UPS

24-month relapse-free
survival was 38% in DDLPS
and 78% in UPS

NCT03141684
Chen et al.,
2023 (70)

Phase II atezolizumab 52 ASPS 37% PFS: 20.8 ms

ICIs combination with chemotherapy or TKI

NCT02888665
Pollack et al.,
2020 (71)

Phase I/II
pembrolizumab
plus doxorubicin

37 anthracycline-naive sarcoma (11
LMS and others)

13% for phase II
patients and
19% overall

PFS: 8.1ms, OS: 27.6 ms

N/A
Livingston et al.,
2021 (72)

Phase II
pembrolizumab
plus doxorubicin

30 STS 36.7% PFS: 5.7 ms; OS: 17 ms

N/A
Reichard et al.
NITRA-SARC,
2023 (73)

Phase II
nivolumab
plus trabectedin

Group A-lipo- or leiomyosarcomas:
43 STS (28 LMS and 15 LPS);
Group B-non-L-sarcomas: 49 STS
(12 UPS, 11 SCS, 6 FMS, 5 SS,
4 EpS)

overall PFS rate 6-
months: 47.6%
vs 14.6%

PFS: 5.5 ms vs 2.3 ms;
OS: 18.7 ms vs 5.6 ms

NCT03138161
Gordon et al.
SAINT, 2023 (74)

Phase I/II
nivolumab/
ipilimumab
plus trabectedin

26 LMS, 14 LPS, 9 UPS, 7 RMS, 5
SS, 24 others

6 CR, 14 PR, 49 SD,
25.3% best
response rate

PFS: 6.7ms, OS: 24.6 ms

NCT03899805
Haddox et al.,
2024 (75)

Phase II
pembrolizumab
plus eribulin

57 STS (19 LMS, 20 LPS, 18
UPS/other)

2 PR in LMS cohort; 3
PR in LPS; 1 CR and 5
PR in other cohort

12 week PFS rate was 36.8%
for LMS, 69.6% for LPS,
and 52.6% for UPS/other

NCT02636725
Wilky et al.,
2019 (76)

Phase II
Pembrolizumab
plus axitinib

33 STS (12 ASPS, 6 LMS, 5 High-
grade PS, 2 DDLPS, 8
other histotypes)

The overall 3-month
PFS rate: 65·6%

PFS: 4.7 ms; OS: 18.7 ms

NCT03277924
Martin-Broto et al.
IMMUNOSARC
2020 (77)

Phase I/II
nivolumab +
sunitinib

52 STS (9 SS, 8 UPS, 7 clear cell
sarcoma, 7 SFT, 7 EpS, 5 AS, 4
ESMCS, 4 ASPS, 1 EHET)

the 6-month PFS
rate: 48%

PFS: 5.6 ms; mOS: 24 ms

N/A
Liu et al.,
2022 (78)

Phase II
benmelstobart
(anti-PD-L1)
plus anlotinib

30 STS (12 ASPS, 7 SS, 5 UPS, 4
LMS, 2 others)

36.6%
PFS: 7.8 ms; OS:
not reached

NCT03798106
Cho et al.,
2024 (55)

Phase II
durvalumab
plus pazopanib

47 STS (12 LMS, 5 MPNST, 4 SS, 4
MFS, 4 UPS, 4 DSRCT, 14 others)

30.4%
PFS 7.7 ms, 1-year OS
of 71.7%
OS, Overall survival; PFS, Progression-free survival; STS, soft tissue sarcoma; BS, bone sarcoma; NPR, non-progression rate; N/A, unmentioned.
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Emerging novel PD−1/PD−L1 inhibitors have shown promising

efficacy in ASPS. Toripalimab, a high-affinity anti-PD-1 antibody,

demonstrated a 25.0% ORR in a phase I trial of advanced ASPS,

with a median PFS of 11.1 months and OS of 34.7 months (80).

Atezolizumab, an anti-PD-L1 agent, achieved a 37% ORR and 20.8

months median PFS in a phase II ASPS cohort (70). Though

combination strategies with CTLA−4 blockade increased toxicity,

pharmacodynamic analyses indicated that even tumors lacking

baseline PD-1/PD-L1 expression may convert to an ICI-

responsive phenotype during treatment. These data affirm that

dual−checkpoint approaches and novel agents can overcome

inherent sarcoma resistance, but also underscore the need for

refined biomarker−driven patient selection.
Combination of ICIs plus chemotherapy

Combination regimens of ICIs and chemotherapy have

demonstrated promising results in advanced sarcoma, particularly

in anthracycline−naive and high−grade subtypes. In the first phase

1/2 trial combining pembrolizumab with doxorubicin in

anthracycline-naive sarcoma, the study did not meet its primary

endpoint for ORR (19% overall), but achieved a PFS of 8.1 months

and OS of 27.6 months, both favorably compared with prior studies

(71). The following phase II trial in unresectable STS confirmed the

combination’s manageable safety profile, reporting a 36.7% ORR

and an 80.0% disease control rate (DCR) (72). PD-L1 expression

was linked to improved ORR, but not to PFS or OS.

Alkylating agent metronomic cyclophosphamide has also been

combined with PD-1 inhibitors. Despite strong preclinical synergy,

a phase II trial showed limited activity in STS, possibly owing to

IDO1-expressing TAMs (59). Combining IDO inhibition with

pembrolizumab yielded only a 3.3% ORR at 24 weeks (61).

Trabectedin is a marine-derived alkylating agent approved for

anthracycline-resistant liposarcoma or leiomyosarcoma. It can destroy

cancer cells and expose tumor neoantigens to immune recognition.

Trabectedin combined with low-dose cyclophosphamide modulates

macrophage polarization in the sarcoma microenvironment, reducing

M2 macrophages and increasing CD8+ T cells that correlated with

improved prognosis (81, 82). In a cohort of 92 patients, trabectedin

plus nivolumab extended median PFS to 9.8 months versus 4.4

months, and OS to 24.6 months versus 13.9 months compared to

earlier data (73). First−line regimens combining trabectedin with

ipilimumab/nivolumab achieved a best response of 25.3% and an

87.3% DCR (74). A seven−year follow−up confirmed durable safety

and efficacy, with 25% of participants alive at the study cutoff (83).

Finally, eribulin, a microtubule-binding agent, activates the

cGAS-STING signal and remodels immune infiltration. In

combination with pembrolizumab, eribulin produced a 12-month

PFS rate of 36.8% in leiomyosarcoma, 69.6% in liposarcoma, and

52.6% in UPS (75). High serum levels of IL-4 and IFN-a were

linked to therapeutic benefits. Collectively, these studies underscore

the potential of chemo−immunotherapy combinations to convert

immunologically “cold” sarcomas into more responsive tumors,

warranting further biomarker−driven optimization.
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Combination of ICI and TKI target therapy

Combining ICIs with anti-angiogenic TKIs has shown

synergistic effects in treating advanced sarcoma. This synergy is

partly attributed to the normalization of tumor vasculature, which

enhances the effector cell infiltration, and converts the suppressive

TME into an active state (84).

ASPS, a rare subtype resistant to cytotoxic therapy, often

harbors the ASPSCR1-TFE3 fusion, leading to upregulation of

HIF-1a and VEGF. TKI has been the most active option for

ASPS, whereas the majority could develop resistance. A phase II

trial combining pembrolizumab with the VEGF inhibitor axitinib in

advanced sarcoma reported an ORR of 25% and a median PFS of 4.7

months (76). Notably, ASPS patients achieved an ORR of 54.5% and

a median PFS of 12.4 months. The observed outcomes in ASPS

likely reflect the contribution of PD-1 blockade, as axitinib

monotherapy yielded no responses in four ASPS.

Sunitinib can activate immune cell subsets, inducing IFN-g-
producing effector T cells via DCs, and synergize with PD-1 blockade

(85). Sunitinib plus nivolumab (ImmunoSarc-I trail) demonstrated an

ORR of 21% and an 18-month OS rate of 100% (77). Due to high

toxicity, this regimen used a lower dose of sunitinib. A subsequent phase

II trial (NCT03277924) showed potential activity in several other

subtypes (86, 87). Angiosarcoma patients exhibited a higher efficacy,

with a PR rate of 33%, and a median PFS of 3.93 months.

Anlotinib is a multi-kinase angiogenetic inhibitor that is

recommended as a first-line treatment for metastatic ASPS (88).

A combination of anlotinib and novel PD-L1 antibody TQB2450

(Benmelstobart) exhibited a favorable efficacy in metastatic STS

patients unresponsive to chemotherapy (78). Among the 30

enrolled patients, the ORR was 36.7%, and median PFS was 7.8

months. In an expanded ASPS cohort, this combination showed an

ORR of 79.3%, including 3 CR and 20 PR (89). TLS emerged as a

potential predictive marker for immunotherapy efficacy in ASPS.

A phase II trial (NCT03798106) combining durvalumab with

pazopanib in metastatic STS met its pre-specified endpoint (55).

The ORR was 30.4% and mPFS was 7.7 months. High CD20+ B cell

infiltration and vessel density led to a longer PFS and improved

response. Infiltrated CD20+ B cell was identified as an independent

predictor of PFS.

To summarize, these combined regimens of anti-angiogenic

inhibitors and ICIs demonstrate synergistic anti-tumor effects and

promising activity in patients with ASPS and some vascular

subtypes. However, all these researches are limited by inadequate

sample sizes and the absence of controlled arms, which restrict the

ability to identify molecular markers of response. Further

investigations with larger, well-designed trials are required to

validate these findings and explore predictive biomarkers.
Real-world efficacy of ICI in advanced
sarcoma

Several retrospective studies have reported the real-world

efficacy of immunotherapy, in advanced STS, either alone or
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combined with anti-angiogenic therapy (90–93). These studies

reported variable outcomes, influenced by patient characteristics

and sarcoma subtypes. Liu et al. (90) reported a 19.4% ORR with

pembrolizumab monotherapy in advanced STS, alongside a median

PFS of 2.9 months and OS of 12.0 months. Although certain

subtypes like ASPS and UPS are considered more responsive to

ICIs, real-world data remain limited due to patients’ poorer health

status and extensive prior treatment. Notably, treatment duration

and ECOG performance status were independent predictors of PFS

and OS. In another study, Nasr et al. assessed the ICI efficacy in

metastatic UPS and other high-grade pleomorphic sarcomas (91).

The median PFS was 2.9 months, with a 6-month PFS of 32%, and a

median OS of 12.9 months. Prior radiotherapy and ICI type was

independently associated with PFS. These findings align with the

broader literature, suggesting the ICI effectiveness in advanced STS.

Combining ICIs with anti-angiogenic therapy has shown

enhanced efficacy. One real-world study (93) reported an ORR of

48.1% and a median PFS of 8.9 months with such a combination.

ASPS cohorts exhibited a higher PR rate (71.4%), indicating

significant benefit. Another analysis (92) confirmed the potential

of this combination, reporting an ORR of 17.6% and a median PFS

of 5.8 months. Patients with ASPS or clear cell sarcoma (CCS) had

significantly longer median PFS (16.2 months) compared to other

subtypes (4.4 months). Multivariate analyses identified ECOG

status and treatment line as key predictors of both PFS and OS.

Collectively, combined ICIs with anti-angiogenic therapy offer

promising clinical benefits for STS, particularly in subtypes like

ASPS and CCS. However, response rates vary due to patient

characteristics and treatment history. Factors like ECOG status

and treatment timing significantly influence outcomes. Challenges

remain in optimizing therapy sequencing, understanding synergetic

mechanisms, and tailoring strategies to specific patient subsets.

Current decisions often rely on clinical experience, emphasizing the

need for larger prospective studies and biomarker identification to

address STS heterogeneity and improve treatment outcomes.
Adoptive T-cell therapy

ACT represents a promising immunotherapeutic strategy that

harnesses engineered T cells to target TAAs expressed by cancer

cells. Three classical ACTs methods are clinically developed, TCR-

T, CAR-T, and TILs.
TCR-T

Letetresgene autoleucel (lete-cel) is an autologous engineered

TCR therapy targeting NY-ESO-1 antigen and specific HLA-A*02

alleles. In a phase II trial (NCT03967223) (94), 87 patients with

metastatic SS or myxoid round cell liposarcoma (MRCLS)

expressing NY-ESO-1 were treated with lete-cel at doses of 1-

15×109 transduced cells. The ORR was 39% for SS and 41% for

MRCLS, with a median response duration of 10.6 months. Another

phase I trial (NCT04318964) reported a novel TCR-T therapy
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targeting NY-ESO-1 in sarcoma (95). Twelve patients received

cell infusions and low doses of IL-2 injection post-adoptive

transfer. The ORR was 41.7%, with a median PFS of 7.2 months

and a median duration of 13.1 months. The regimen exhibited

favorable efficacy and safety profiles.

Afamitresgene autoleucel (afami-cel), an autologous TCR-T

product targeting MAGE-A4 in HLA-A*02-positive patients. In

the phase II SPEARHEAD-1 trial, afami-cel achieved an ORR of

43.2% with a median response duration of six months in patients

with unresectable or metastatic SS who had received prior

chemotherapy (96). Common adverse events included cytokine

release syndrome, nausea, and fatigue. Afami-cel received

accelerated approval from the U.S. FDA, making it the first TCR-

based cell therapy for rare sarcoma subtypes (97).

Although TCR-based therapies targeting cancer-testis antigens

(CTAs) show initial responses, many patients eventually experience

disease progression. Future research should focus on understanding

resistance mechanisms, overcoming HLA restrictions, and

expanding the repertoire of targetable TAA.
CAR-T

CAR-T cell therapy has shown remarkable success in

hematological malignancy, but faces challenges in solid tumors,

including sarcomas, due to issues with T-cell trafficking, tumor

heterogeneity, and the immunosuppressive TME. Current strategies

aim to improve long-term efficacy by targeting conserved antigens

that minimize toxicity to healthy tissues and enhancing CAR-T cell

homing and persistence.
B7-H3

B7-H3 (CD276) is overexpressed in many pediatric solid

tumors including pediatric sarcoma and neuroblastoma, with

limited expression in normal tissue. In an analysis of 156 sarcoma

specimens, 91% exhibited B7-H3 expression, with 61% showing

high levels (98).

Clinical trials of B7-H3 targeted therapies, such as MGA271

(Fc-optimized humanized anti-B7H3 mAb) and MGC018 (B7-H3

ADC), have demonstrated antitumor activity but also raised

concerns about toxicity (99).

B7-H3 CAR-T showed safety and good tolerability in early-

phase trials for relapsed pediatric cancers, but limited efficacy (100,

101). The STRIvE-02 trial (NCT04483778) (102) reported no

objective responses (n=9) after initial infusions. However, a single

patient achieved a response following a second infusion, possibly

due to prior radiation therapy enhancing CAR-T cell expansion.

Combining radiation with CAR-T may modulate the TME to

improve outcomes. Ongoing studies are exploring bispecific B7-

H3xCD19 CAR-T cells and combinations with PD-1 inhibitors to

enhance efficacy (103, 104).

To improve CAR-T cell homing, strategies involve engineering

cells to express chemokine receptors like CXCR2 and CXCR6n.
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Preclinical models have shown that CXCR2-modified B7-H3 CAR-

T cells exhibit enhanced trafficking to osteosarcoma sites and

improved cytolytic activity, leading to prolonged survival (105).
HER2

HER2 CAR-T cell therapy has demonstrated safety in advanced

sarcomas, but limited efficacy due to poor CAR-T cell expansion

and persistence. The HEROS 2.0 phase I trial allowed multiple

HER2 CAR-T infusions, resulting in a 50% (7/14) clinical benefit

(106). Three patients (21%) achieved complete remission, including

one with long-term remission. Current studies are exploring

combinations of HER2 CAR-T with ICIs like pembrolizumab or

nivolumab (NCT04995003) to enhance CAR-T expansion

and efficacy.
GD2

GD2 is highly expressed in neuroblastoma and pediatric tumors

like Ewing sarcoma and osteosarcoma but minimally in normal

tissues. GD2-targeting antibodies and GD2-targeted CAR-T cells

have shown promising activity in relapsed neuroblastoma (107,

108). A phase I trial (NCT02107963) of third-generation GD2

CAR-T cells demonstrated feasibility and safety in osteosarcoma

and neuroblastoma patients, but limited efficacy (109). Multi-omic

analyses indicated that baseline CXCR3+ monocytes correlated

with improved CAR T cell expansion, suggesting the peripheral

immune environment influences therapy efficacy. Further research

is needed to clarify myeloid-driven resistance mechanisms and

enhance GD2 CAR-T cell efficacy in pediatric sarcoma.

Collectively, CAR-T therapy holds promise for treating solid

tumors like sarcomas, despite the challenges exist. Strategies

incorporating chemokine receptor modification, targeting tumor

stroma, combination therapies, cytokine support, and metabolic

reprogramming are being explored to enhance CAR-T cell

persistence and antitumor activity (110). Continued research and

clinical trials are essential to optimize these approaches and

improve outcomes for sarcoma patients.
TILs therapy in sarcoma

TILs are immune cells within tumors capable of recognizing

various cancer-associated antigens. In metastatic melanoma, TIL

therapy has shown an ORR of 30-60% (111–113). For advanced STS

patients, several ongoing trials are exploring TIL monotherapy or

combination strategies, but fewer efficacy were reported (114, 115).
Oncolytic virus therapy

OVs therapy represents a novel immunotherapeutic strategy

that utilizes natural or genetically engineered viruses to selectively
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infect and lyse cancer cell. This approach remodels the TME,

enhances tumor immunogenicity, and can sensitize tumors to

other immunotherapies. Talimogene laherparepvec (T-VEC), an

oncolytic HSV-1 virus, is currently approved for treating recurrent,

unresectable melanoma. In STS, several OVs have demonstrated

efficacy in preclinical models, but few have advanced to clinical

trials. A phase II trial combining the oncolytic vaccinia virus JX-594

with low-dose cyclophosphamide in advanced STS showed no

clinical benefit, as all patients experienced disease progressing

within six months (116). Adding the PD-L1 inhibitor avelumab

provided limited additional benefit (117), with only one

angiosarcoma patient achieving a PR.

The success of T-VEC in melanoma has prompted

investigations into its potential in sarcomas. A Phase Ib trial

combining T-VEC with preoperative radiation in locally advanced

STS demonstrated tolerability but limited efficacy, with only 5 of 23

patients achieving pathological CR (118). In a Phase II trial, T-VEC

combined with pembrolizumab showed strong antitumor activity

across sarcoma subtypes, achieving a 30% ORR at 24 weeks, with

notable responses in angiosarcoma, where 71% of patients achieved

PR (119, 120). OH2 is an oncolytic HSV-2 expressing GM-CSF. A

combination of OH2 and anti-PD-1 therapy achieved a 16.7% ORR,

with one CR and durable disease control in angiosarcoma (121).

Oncolytic peptides, such as LTX-315, offer a non-viral approach

to oncolysis by triggering anticancer immunity through remodeling

the TME (122). A pilot trial evaluated LTX-315 in six heavily

pretreated sarcoma patients, with four proceeding to adoptive

cellular therapy (114). The treatment exhibited manageable

toxicity and induced systemic immune responses, leading to

disease stabilization in some patients. The best clinical response

was a long-lasting stable disease in one patient, with tumor-reactive

T cells detected in the blood. Further optimization is needed to

improve clinical benefit. Subsequent studies found that LTX-315

triggers anticancer immunity by promoting MyD88-dependent DC

maturation (115).
Vaccine therapy

Vaccine-based immunotherapy strategies are gaining

traction in sarcoma, particularly those targeting cancer-testis

antigens like NY-ESO-1. Personalized peptide vaccines have

shown potential. A phase II trial reported a median OS of 9.6

months in refractory sarcoma patients, slightly exceeding the 8-

month OS for second-line palliative chemotherapy. Some cases

experienced lung metastasis reduction and prolonged stable

disease (123). Combining long peptide antigen (LPA) vaccines

with TCR-T has shown efficacy in - preclinical models resistant

to checkpoint inhibitors (124). A phase I trial combining NY-

ESO-1-specific TCR-T cells with a lymph node-targeted LPA

vaccine in refractory SS showed durable tumor shrinkage lasting

over two years and sustained TCR-T cell persistence in one

patient (125).

DC vaccination could enhance antitumor immunity by

inducing CD8+ T-cell responses and has shown promise (126). In
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a phase I/II study of 35 advanced sarcoma patients, only one

exhibited a PR, six had stable disease, and increased IFN-g and

IL-12 levels were observed post-treatment (127). Case studies also

highlight durable responses, such as a pediatric Ewing’s sarcoma

patient surviving beyond two years post-DC vaccination, and a

refractory SS patient showing over 2.5 years of disease control with

NY-ESO-1-targeting lentiviral DC therapy (128, 129). DC vaccines

can also enhance CAR-T cell therapy by improving persistence,

tumor infiltration, and adaptive immune activation, and thereby

leading to increased tumor cytolysis (128, 130). Combining DC

vaccines with adoptive cellular therapy or ICIs offers potential

strategies to amplify antitumor efficacy, warranting further

exploration in sarcoma treatment.

CMB305 is a lentiviral-based prime-boost vaccine targeting

NY-ESO-1. In a phase Ib study of 79 sarcoma patients, CMB305

achieved a DCR of 61.9% and a median OS of 26.2 months,

although no objective responses were observed (131, 132). The

vaccine elicited NY-ESO-1-specific antibodies and T-cell responses

in half of the patients. In a phase II study, combining CMB305 with

atezolizumab yielded a median progression-free survival (PFS) of

2.6 months and OS of 18 months, with select patients

demonstrating anti-NY-ESO-1 responses and improved

outcomes (133).
Cytokine-based therapy for sarcoma

Cytokines are soluble proteins mediating cellular interaction

and immune response. Crucial cytokines like interleukins (ILs) and

interferons (IFNs) modulate immune activity, and have been

explored for their anti-tumor effects. IFNa was among the first

agents used to treat HIV-related KS, showing tumor suppression in

some patients (134). However, its clinical use is limited by low

response and toxicity (135). While novel agents like liposomal

doxorubicin and paclitaxel have supplanted IFNa as KS therapy,

it may still have a role when combined with agents targeted

angiogenic or HHV-8-encoded homologs (136).

IL-2 stimulates T and NK cells, promoting lymphocyte

proliferation and activating lymphocytes into lymphokine-

activated killer (LAK) cells, which can eradicate tumor cells

independent of histocompatibility (137, 138). High-dose IL-2 has

been approved for advanced melanoma but limited by severe

toxicity (139). Small studies in sarcoma have shown IL-2, even

conjunction with LAK cells or IFNs, offers limited antitumor effects

(140–142). Nevertheless, IL-2-induced immune activation suggests

potential efficacy for a subset of sarcoma.

IL-12, another potent anti-tumor cytokine, has shown promise

in treating T-cell lymphoma and AIDS-related KS (143, 144). Like

IL-2, the clinical application was limited by short half-life and

toxicity. Recent studies on engineered IL-2 and IL-12 have

demonstrated efficacy and safety in canine STS models by

localizing effects and reducing systemic toxicity (145).

Additionally, other cytokines like VEGFs, GM-CSFs, TGFs, and

IFN-g are under extensive study in clinical trials (146, 147).
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Conclusion and future direction

In conclusion, immunotherapy holds significant promise for

advanced sarcomas, yet many sarcoma subtypes remain poorly

responsive to ICIs due to their ‘cold’ immune microenvironment. In

this regard, a recent review highlights the need for amore refined selection

of patients based on immune biomarkers such as TLS and PD-L1

expression (148). TLS has garnered considerable interest as a predictive

biomarker of the response to ICI therapies, or possibly chemotherapy

(149). Some studies supported the presence of TLS in sarcoma associated

with enhanced T− and B−cell responses, underscoring their central role in

shaping the immune landscape (150, 151). Additionally, responders to

immunotherapy often exhibit higher PD−L1 levels on both TAMs and T

cells (65). Unfortunately, most clinical trials to date have not stratified

patients by these biomarkers, potentially leading to disappointing results.

Future trials should perform a better stratification of patients to optimize

outcomes across these heterogeneous tumors.

Moreover, it is also relevant to mention that combining

genomic profiling with immunotherapy may further help refine

patient selection and improve clinical outcomes in sarcomas (152–

154). Next−generation sequencing in STS can identify specific

molecular pathways linked to chemosensitivity, as shown in MFS

and UPS analyses (155). This combined approach promises to

personalize treatment and improve outcomes in heterogeneous

sarcoma populations.
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