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Background: Although immune checkpoint inhibitor (ICI) represents a significant

breakthrough in cancer immunotherapy, only a few patients benefit from it.

Given the critical role of Treg cells in ICI treatment resistance, we explored a

Treg-associated signature in melanoma, which had never been elucidated yet.

Methods: A new Treg signature, Treg.Sig, was created using a computational

framework guided by machine learning, utilizing transcriptome data from both

single-cell RNA-sequencing (scRNA-seq) and bulk RNA-sequencing (bulk-seq).

Among the 10 Treg.Sig genes, hub gene STAT1’s function was further validated in

ICI resistance in melanoma mice receiving anti-PD-1 treatment.

Results: Treg.Sig, based on machine learning, was able to forecast survival

outcomes for melanoma across training dataset and external test dataset, and

more importantly, showed superior predictive power than 51 previously

established signatures. Analysis of the immune profile revealed that groups

with high Treg.Sig levels exhibited immune-suppressive conditions, with

inverse correlations observed between Treg.Sig and anti-cancer immune

responses. Notably, among the 10 Treg.Sig genes, hub gene STAT1 mutation

harbored lower response rate in ICIs-treated cohort. Mechanistically, STAT1

impinged on ICI resistances by modulating the phenotypic switch in N2

neutrophil polarization in melanoma mice receiving anti-PD-1 therapy, which

affects overall survival.
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Conclusion: The study developed a promising Treg.Sig signature that predicts ICI

response of melanomas and could be used for selecting patients for

immunotherapy. Meanwhile, our study potentially paves the way for

overcoming immune resistance by targeting Treg-associated genes.
KEYWORDS

regulatory T cells, immunotherapy, scRNA-sequence, malignant melanoma,
prognosis signature
Introduction

Surgery is the main treatment option for most melanoma and

usually cures early-stage melanoma (1). Nevertheless, individuals

with inoperable melanoma or those who experience distant

metastasis (such as inoperable stage III, stage IV, or advanced

melanoma) face limited choices for treatment. Anti-CTLA4 and

anti-PD-1 antibodies, known as immune checkpoint inhibitors,

work by activating CD8-positive T cells to kill cancer cells by

targeting the malfunctioning immune system (2). The use of ICI

therapy has drastically transformed the care of numerous types of

cancer, especially advanced melanoma. In this type of cancer,

around 50% of patients can experience tumor shrinkage and

long-lasting responses to treatment for metastatic tumors, a

significant improvement compared to the less than 10% success

rate in the past (2). However, there are currently no precise

biomarkers that are highly sensitive and specific in predicting the

response to ICI treatment (3, 4). Limited clinical indicators, like

neutrophil-to-lymphocyte ratio, serum lactate dehydrogenase, and

BRAF mutation status, are utilized in choosing the first treatment

for advanced melanoma patients, highlighting the necessity of novel

biomarker researches to optimize patient selection (3, 5, 6).

Historically, biomarker studies have primarily concentrated on

examining whole exome sequencing (WES) or RNA sequencing

(RNA-Seq) from intact tumor tissue (bulk data), which only

provides the overall genetic characteristics among a diverse cell

population (7, 8). Consequently, predictive power of ICI biomarkers

identified in these investigations was limited. Nevertheless, the

advancement of scRNA-Seq technology allows the dissection of

gene expression at individual cells resolution, thus enabling new

biomarkers with improved predictive accuracy (9–11).

Regulatory T cells (Tregs), initially recognized by CD4+ CD25+

profile, dampen functions in anti-neoplastic immune cells, thus

promoting tumor invasion (12). Previous studies have revealed that

Tregs participate in cancer immune evasion and resistance (12–14).

And studies have demonstrated a direct engagement of

immunosuppressive CD4+ Tregs as a mechanism of immune

evasion favored in melanoma (15–19). However, no direct clinical

evidence has validated the negative association between Tregs and

ICI outcomes.

This research involved integrated analysis using both single-cell

RNA sequencing and bulk RNA sequencing to discover potential
02
therapeutic markers for targeting Tregs. Utilizing machine learning,

we developed a Treg.Sig tool to forecast the prognosis in skin

cutaneous melanoma (SKCM) patients. Then, the clinical relevance

of Treg.Sig was determined, and the PD-L1 expression, tumor

immune dysfunction and exclusion (TIDE) score, and immune

landscape underlying the Treg.Sig were further analyzed.

Thereafter, a negative association between Treg.Sig and ICI

outcomes in three ICI-treated cohorts was identified and

validated. Finally, hub gene STAT1 was identified to play essential

role in ICIs resistance. The discovery revealed that Treg.Sig has the

potential to predict ICI outcomes with greater accuracy. In addition,

our study provides new insights into the pathophysiology of SKCM,

which could guide the development of customized treatments and

potentially conquer immunotherapy resistance by targeting

Treg.Sig genes.
Methods

Data source and acquisition

A total of 25 SKCM samples with scRNA-seq data, previously

published by Li et al. (19), was downloaded for screening Tregs-

associated marker genes. Data from The Cancer Genome Atlas

(TCGA) bulk-seq and clinical data for 458 patients with SKCM

were obtained to identify survival-related genes and create a

signature. To confirm the predictive power of the developed

signature, separate groups of patients were obtained from the

GSE65904 datasets (n=209). Data from single-cell RNA

sequencing of melanoma patients treated with carfilzomib or ICI

were gathered from three separate datasets (GSE161801,

GSE120575, and GSE189125) to assess the effectiveness of

Treg.Sig in predicting the response to immunotherapy. The

research made use of publicly accessible datasets that had

received ethics approval from the original studies. The study was

conducted according to the Helsinki declaration.
Preprocessing of RNA-sequencing data

Analysis of single-cell RNA sequencing data was conducted

with the R software tool “Seurat” (version 4.0.5) (20). Merged
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individual data and excluded low-quality cells based on gene

detection criteria (nFeature_RNA >= 200 & nCount_RNA >=

500). Then, the “harmony” de-batching method was performed

on 30 cases of SKCM scRNA-seq data. Following that, the scRNA-

seq data that had been standardized underwent UMAP analysis for

dimension reduction and were grouped using the “Seurat” tool in R

software, with the parameters scale_factor=10000, nfeatures=3000,

npcs=50, dims=30, and resolution = 0.2. Cell types were annotated

based on markers using the SingleR package (version 1.0.0), and the

expression patterns of each marker gene within clusters were

analyzed with the “DotPlot” function in Seurat. Subsequently,

potential marker genes for the Tregs cell cluster were pinpointed

utilizing the FindAllMarkers feature.

To analyze bulk data, we used weighted co-expression network

analysis (WGCNA) on the differentially expressed genes (DEGs) to

find modules that are most relevant to Tregs. Initially, the

correlations between genes and genes were computed in order to

create a similarity matrix. Next, the optimal soft-thresholding

power b was chosen using the pickSoftThreshold function within

the “WGCNA” software package. By applying soft-thresholding, the

similarity matrix was transformed to create a scale-free topology.

Third, the adjacency matrix was transformed into a topological

overlap matrix by similarity, and the corresponding dissimilarity

was also calculated.

Finally, co-expression gene modules were determined by utilizing

the R software tool “Dynamic Tree Cut” with a deepSplit value of 2, a

minimum module size of 30, and a maximum block size of 20,000.

Modules that were very alike were combined if the module eigengene

height in the clustering was less than 0.25. As a result, the modules

were connected to clinical characteristics in order to pinpoint the

module with genes that were most pertinent to the Tregs.
Construction and validation of prognostic
Treg.Sig based on Tregs marker genes

A novel machine learning-guided computational framework

based on transcriptome data from scRNA-seq and bulk-seq was

developed for identifying Treg.Sig as follows (Figure 1):
Fron
i. Candidates for Tregs marker genes were identified from the

intersection cluster of bulk-seq and scRNA-seq.

ii. Prognostic Tregs marker genes were further screened out

through Univariate Cox regression analysis conducted with the

“survival” package in R software. Genes that had a P-value less

than 0.05 were determined to be prognostic.

iii. Six different machine learning models, such as LASSO,

Xgboost, SVM, Boruta, mRMR, and ReliefF, were employed to

narrow down the variables. Each algorithm was chosen for its

unique strengths and suitability for high-dimensional

biological data. Hyperparameters (e.g., XGBoost: learning

rate=0.1, max_depth=5, n_estimators=200; LASSO: a=0.032
via 10-fold cross-validation; SVM: C=1.0, g=‘scale’) were

optimized using grid search with 10-fold cross-validation.
tiers in Immunology 03
The final parameters minimized the cross-entropy loss for

survival prediction. All models were trained and validated

using nested 10-fold cross-validation to prevent data leakage.

Outer loops partitioned data into training/testing sets, while

inner loops optimized hyperparameters on the training

subset only.

iv. A risk formula was created based on selected genes

expression levels and weighting them with regression

coefficients in multivariate Cox analysis, which was

calculated as:
Treg:Sig =on
i=0Cof  i ∗TregsGene i

For performance evaluation:
i. Receiver operating characteristic (ROC) curve was created

with the “survivalROC” tool in R (v1.0.3) to assess the

predictive ability of Treg.Sig, measuring the area under the

curve (AUC) at 1, 3, and 5 years.

ii. The survival predictive ability of Treg.Sig was estimated by

generating a Kaplan Meier survival curve using the

“survminer” package in the R software (version 0.4.9).

iii. The “survival” package in R software was used to conduct

multivariate Cox regression analyses, which examined patient

age, gender, stage, and Treg.Sig to determine if Treg.Sig could

predict outcomes independently.

iv. The “timeROC” package in R software was utilized to create

a ROC curve that varied with time, with AUC being employed

to assess the predictive accuracy of Treg.Sig, age, and

tumor stage.
To be clinically useful, a nomogram was created using the

multivariate Cox regression coefficients for age, sex, cancer stage,

and Treg.Sig. The nomogram’s predictive performance was validated

by calculating the AUCs, examining the consistency between

predicted 1-, 3-, and 5-year overall survival (OS) probabilities and

actual observations with calibration curves, and measuring the

clinical utility of the nomogram with decision curve analysis (DCA).
Comparing Treg.Sig with other predictive
gene signatures

To further estimate the prognostic performance of Treg.Sig, we

compared Treg.Sig with other melanoma-specific signatures. 51

signatures were included (Supplementary Table S2), consisting of

lncRNA, miRNA, and mRNA signatures, for comparison of the 1-

year, 3-year, and 5-year AUC in external datasets GSE65904.
Immune profile of Treg.Sig

64 types of immune infiltrating cells were calculated. The

XCELL algorithm was used to quantify the infiltrating level of

immune cells. Furthermore, the potential immunotherapy value of
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Treg.Sig was assessed using the immune proportion score (IPS),

which measures the percentage of PD-L1 expression on immune

cells, and the TIDE score, which indicates the expression signature

of two main mechanisms of tumor immune evasion: T cell

dysfunction and T cell exclusion. These two biomarkers could

forecast the response to immune checkpoint inhibitors in

individuals with cancer (21). The IPS of each individual with

SKCM were acquired from The Cancer Immunome Atlas (TCIA)
Frontiers in Immunology 04
website (https://tcia.at/home), while the TIDE score was retrieved

from the TIDE web platform (http://tide.dfci.harvard.edu).

Kyoko encyclopedia of genes and genomes (KEGG) and Gene

ontology (GO) were used to analyze the immune enrichment of

Treg.Sig marker gene with the help of R software packages:

“ClusterProfiler” (version 4.0.5), “org.Hs.eg.db” (version 3.13.0),

“ggplot2” (version 3.3.5), and “enrichplot” (version 1.12.3). The R

software package “clusterProfiler” was utilized to conduct gene set
FIGURE 1

Workflow of the present study.
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enrichment analysis (GSEA) in order to explore the connection

between Treg.Sig and immune response.
Chemotherapeutic and immunotherapeutic
response prediction of Treg.Sig

Currently, advanced SKCM patients are primarily treated with

chemotherapy and ICI therapy. Our study selected four commonly

used chemotherapeutic agents of SKCM, including AP_24534,

Pazopanib, Paclitaxel, and Tivozanib. The half-maximal

inhibitory concentration (IC50) chemotherapy drugs was

estimated by utilizing the R software package “pRRophetic

algorithm” and “pRRophetic” with data from the Cancer Genome

Project (CGP) cell lines (22), in order to forecast the response to

chemotherapy in groups categorized as high- and low-Treg.Sig.

Furthermore, the ICI response was predicted using SKCM

patients from two GEO datasets (GSE120575 and GSE189125), with

both scRNA-seq data and ICI treatment results. Meanwhile, the

GSE161801 cohort comprised scRNA-seq data from pre-treatment

melanomas receiving carfilzomib therapy. These data was also used to

determine the potential value of Treg.Sig in predicting therapeutic

responsiveness. The AddModuleScore function in the Seurat package

was utilized to compute Treg.Sig scores in scRNA-seq data.
Analysis of key regulatory gene and
ICI response

Candidate differentially expressed genes (DEGs) were

submitted to the STRING online database for analysis of protein-

protein interactions (PPI), and the resulting network was visualized

and hub genes were identified using Cytoscape software. Data from

the HPA database (https://www.proteinatlas.org/) was used to

analyze the protein expression of the hub gene STAT1 in SKCM

tissues. To investigate the potential immunotherapy response of

STAT1, six immune cell types were evaluated: activated dendritic

cells (aDC), B cells, CD8 T cells, cytotoxic cells, macrophage cell,

and T helper cells; along with three immune checkpoint molecules:

PD-1, PD-L1, and PD-L2.

Moreover, the frequency of STAT1 mutations in melanoma was

determined by analyzing the TCGA PanCancer Atlas studies

(n=448) on cBioPortal (https://www.cbioportal.org/). In addition,

in order to investigate the connection between STAT1 mutation and

response to ICI treatment, data from clinical and tumor whole exome

sequencing (WES) of melanoma patients from two cohorts treated

with ICIs, including 38 samples from UCLA (Cell 2016) (23) and 64

samples from MSKCC (NEJM 2014) (24), were obtained for analysis.

Every individual in the cohort treated with ICIs has received treatment

with antibodies that target PD-1 and CTLA-4. In our research,

melanoma patients with any nonsynonymous mutations in STAT1,

such as missense, translation start site, nonstop, splice site, frameshift,

and nonsense variants, were categorized under STAT1 mutations

(STAT1 Mut). Conversely, patients without any STAT1 mutations

were classified as having the STAT1 wild-type (STAT1 Wt).
Frontiers in Immunology 05
Cell culture and treatment

The Servicebio Technology Institute provided the B16-F10

melanoma cell line. These cells were cultured in RPMI-1640

supplemented with 10% FBS, 1% penicillin-streptomycin. All cells

were grown in a 5% CO2 humid atmosphere at 37°C. For N1

neutrophils polarization, mouse primary neutrophils were treated

with 1ug/ml LPS and 20 ng/ml IFN-gamma. For N2 neutrophils

polarization, mouse primary neutrophils were isolated from femur

and tibia, then purified by using MACS-based neutrophil isolation

kit (Milteyni Biotec) following the manufacturer’s instructions, and

then co-cultured with B16-F10 melanoma cells. For STAT1

inhibition, mouse primary neutrophils were cultured with 10uM

Fludarabine (Flu, STAT1 inhibitor) or DMSO (vehicle).
Tumor models and treatments

To implant subcutaneous tumors, B16-F10 melanoma cells

were injected into the sides of 8- to 10-week-old mice using a

saline solution containing 5×105 cells in 150μl. The size of the

tumor was assessed weekly using a digital caliper and determined

using the formula: volume = ½ (length × width × width) in

millimeters cubed. Mice were sacrificed at end points of the study

to analyze tumor weight, following the method outlined in a

previous study (25). Mice received 200 μg of anti-PD-1 antibodies

or IgG control per mouse through intraperitoneal injection weekly

for specified weeks starting on day 7 post subcutaneous

implantation of tumor cells. Some mice were injected

intraperitoneally with Fludarabine (100 mg/kg per day) to inhibit

the phosphorylation of STAT1. To perform adoptive transfer of N2

neutrophils, the N2 phenotype was acquired as outlined in the “Cell

culture and treatment” section. The recipient mice were then given

intra-tumor injections of N2 neutrophils (5 × 106) that had been

suspended in ice-cold PBS at a volume of 200 μl. Mice were

sacrificed on the 28th day after implantation, and tumors were

harvested for further experiments.
Cell proliferation assays

To assess cell proliferation, the Cell Counting Kit-8 (CCK-8;

Vazyme, Nanjing, China) method was utilized. B16-F10 melanoma

cells were plated and then co-cultured with N2 neutrophils.

Following this, each well received 10ul of CCK-8 solution and

was incubated for 2 hours at 37°C, shielded from light. The viability

of the cells was determined by measuring the absorbance at 450 nm

with an enzyme-labeled meter (A33978, Thermo, USA), monitoring

the changes at 24, 48, 72, and 96-hour intervals.
Transwell assays

The transwell assay was conducted using a two-chamber

invasion assay. In the upper chamber, 5×104 B16-F10 melanoma
frontiersin.org
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cells were seeded. Additionally, a bottom chamber with 5×104 N2

neutrophils was available. Following incubation, the cells beneath

the filter were treated with 4% PFA, dyed with 0.1% crystal violet

solution (Beyotime, Shanghai, China), and observed under a light

microscope for counting.
Reverse transcription-quantitative PCR

RNA extraction utilized TRIzol reagent (Invitrogen, Carlsbad,

California), and the NanoDrop 2000 quantified the concentration

of total RNA. cDNA synthesis followed, employing the ReverTra

Ace qPCR RTMaster Mix with gDNA remover (FSQ-301; Toyobo).

The SYBR Green Kit (Vazyme, Nanjing, China) facilitated the

quantitative PCR, using GAPDH as the internal standard. Primer

designs were courtesy of Tsingke Biotech (Beijing, China), with

sequences detailed in Supplementary Table S3.
Western blotting and antibodies

Cell lysis was performed using RIPA buffer on ice, with protein

concentrations determined via the BCA assay (Beyotime, Shanghai,

China). Proteins from lysates underwent separation on 10% SDS-

PAGE, followed by PVDF membrane transfer. Blocking occurred in

5% non-fat milk for an hour at ambient temperature before

overnight primary antibody incubation at 4°C. Following triple

washes with TBST, membranes were exposed to secondary

antibodies for an hour at room temperature. Detection utilized an

ECL kit.
Immunofluorescence

Tissue sections that were fixed in formalin and embedded in

paraffin were processed by removing wax, rehydrating, and

retrieving antigens. In order to inhibit natural peroxidase activity,

the sections were exposed to 3% H2O2 and then blocked with 3%

BSA for a duration of 1 hour. Tissue samples were stained with anti-

mouse antibodies targeting iNOS, Arg-1, Ly6G, and p-STAT1

overnight at 4°C, followed by secondary antibodies for one hour

at ambient temperature, and DAPI to tag nuclei. An inverted

fluorescence microscope captured the staining results, measured

by ImageJ software.
Flow cytometry

Cell suspensions from cancer samples (n=3) were washed with

PBS and permeabilized using the eBioscience™ Foxp3/

Transcription Factor Staining Buffer Set for flow cytometry

analysis. Proceed with the steps outlined in the manufacturer’s

guidelines (catalog. 00-5523-00). Antibodies that had been

conjugated were introduced and left to incubate for one hour at

ambient temperature. The antibodies used included Alexa Fluor™
Frontiers in Immunology 06
700-CD11b (eBioscience, 56-0112-80, 1:100), FITC-Ly-6g

(eBioscience, 11-5931-82, 1:400), PE-iNOS (eBioscience, 12-5920-

80, 1:300), and APC-Arginase (eBioscience, 17-3697-80, 1:100). A

flow cytometry recorded cell fluorescence, with FlowJo software

analysis and appropriate control antibodies ensuring data accuracy.
Statistical analysis

Pearson correlation analysis assessed continuous variables,

while group differences were evaluated using two-tailed t-tests or

one-way ANOVA. Cox hazards regression model identified

independent prognostic factors, with significance set at p<0.05.

Data analysis and visualization were conducted with R software

version 4.1.0 (http://www.R-project.org).
Results

Identifying Tregs marker genes by scRNA-
seq and bulk-seq

Following the preprocessing of scRNA-seq data using strict

quality control measures as indicated (Supplementary Figure S1),

64,071 infiltrating immune cells of high quality were extracted from

30 individuals diagnosed with melanoma, encompassing patients at

different stages of the disease and with varied treatment

backgrounds. Subsequently, UMAP was performed using Seurat

to reduce the dimensionality and identified 12 cell clusters

(Supplementary Figure S2A), which was subsequently identified

as specific cell types through annotation using the SingleR package

in R. T-cells, myeloid cells, B-cells, fibroblasts, and NK cells were

identified as the main cell types in the study (Supplementary Figure

S2B). Furthermore, the accuracy of the automated Treg cell cluster

annotation was further confirmed by manually validating the Tregs

cluster using Treg cell markers (FOXP3, IL2RA, TIGIT, IKZF2,

BATF, TNFRSF4, and TNFRSF9) (26) (Supplementary Figures

S2C–F). Then, 1041 genes related to Tregs were obtained using

the Findmarkers function in Seurat, and were considered as

candidate genes for further analysis.

WGCNA is a useful bioinformatics technique for analyzing

gene correlation patterns in microarray or RNA sequencing data. It

detects modules containing genes that are closely related, establishes

connections between modules and external sample characteristics,

and pinpoints potential biomarkers or targets for treatment. The

soft-thresholding power value was a crucial parameter that

impacted the autonomy and average connectivity level of co-

expression modules. The optimal soft-thresholding exponent was

determined based on a scale-free topology fit index of 9

(Supplementary Figure S3A). A power value of 6 was selected,

which clustered all genes into 24 modules. The hierarchical cluster

tree displayed by Supplementary Figure S3B illustrated 24 modules

of co-expressed genes analyzed using WGCNA, where genes with

similar expression profiles were clustered together. Genes within the

identical color block exhibit comparable expression patterns and
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could potentially share functional relationships. Analyzing the

clinical data revealed a strong correlation between the blue

module and Tregs, with a Pearson correlation coefficient of 0.47

and a p-value of 6e-27 (Supplementary Figure S3C). Furthermore, a

strong relationship was observed between gene co-expression in the

blue module and two clinical features: OS state (Pearson

Correlation = -0.18, P=2e-04) and OS times (Pearson Correlation

= 0.13, P=0.007) (Supplementary Figure S3C). This indicates that,

among the 24 modules, genes in the blue module, consisting of 398

genes, are highly associated with Tregs and tumor recurrence.

Further analysis was conducted on the relationship between 398

module membership and gene significance for Tregs, showing a

Pearson correlation coefficient of 0.4 (P=1e-16) (Supplementary

Figure S3D). In conclusion, 398 candidate genes of Tregs were

obtained through the bulk sequence.

Finally, 130 intersected candidate genes were identified from

scRNA-seq and bulk-seq (Supplementary Figure S4A), and were

further used to screen out the most valuable Treg marker genes.
Development of Treg.Sig

Univariate Cox regression identified the prognostic value of 130

potential genes for feature selection. A total of 114 Tregs genes were

found to have a significant correlation with OS (P<0.05) in

Supplementary Table S1. Next, the most prognostic genes were

further screened out using six feature selection algorithms, all of

which were widely used in the machine learning literature. Ten hub

genes, including “GBP2”, “RAP1A”, “BTG1”, “IL27RA”, “STAT1”,

“TXNDC11”, “GBP4”, “ARID5A”, “CLEC2B”, and “SEL1L3”, were

identified for the construction of the prognostic model

(Supplementary Figure S4B).

Before modeling, we measured the reliability of above 10 hub

genes by GO and KEGG enrichment analyses. As illustrated in

Supplementary Figure S4C, these Tregs marker genes were

associated with immune characteristics, including positive

regulation of T-helper 1 type immune response, regulation of T-

helper 17 type immune response, and IL-17 production.

Supplementary Figure S4D displays the top 10 KEGG pathways

that are enriched, primarily related to immune functions, including

the NOD-like receptor signaling pathway, Th17 cell differentiation,

JAK-STAT signaling pathway, chemokine signaling pathway,

Kaposi sarcoma-associated herpesvirus infection, and

inflammatory bowel disease. Furthermore, unsupervised machine

learning (consensus clustering) indicated that for cluster k values of

2 or 3, analyses of OS rates showed different survival outcomes

among the subtypes (Supplementary Figures S4E, F). These

enrichment terms and unsupervised machine learning confirmed

that a combination of machine learning and scRNA- and bulk-

sequence data was reliable for Tregs marker screening.

Conducting a multivariate Cox analysis yielded the coefficients

associated with the development of Treg.Sig. The detailed formula

was as follows: Treg.Sig = (-0.0119 ∗expression value of GBP2) +

(-0.0839 ∗expression value of RAP1A) + (-0.0690 ∗expression value

of BTG1) + (-0.0829 ∗expression value of IL27RA) + (-0.0294
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∗expression value of STAT1) + (-0.1577 ∗expression value of

TXNDC11) + (-0.1128 ∗expression value of GBP4) + (-0.2128

∗expression value of ARID5A) + (-0.1169 ∗expression value of

CLEC2B) + (-0.0492 ∗expression value of SEL1L3).

Then, the Treg.Sig score for each patient was calculated using

the above formula. Patients were categorized into high-risk (n=229)

and low-risk groups (n=229) based on the median cutoff point of

0.03. Supplementary Figure S5A displays the distribution of risk

scores and survival status for each patient. The heatmap exhibited

detailed expression level of the enrolled ten genes (Supplementary

Figure S5B). In the TCGA-SKCM dataset, Kaplan-Meier survival

analysis indicated that patients at high risk had notably poorer OS

(P<0.001) (Supplementary Figure S5C). The prognostic accuracy of

Treg.Sig was confirmed by time-sensitive ROC curves showing

AUC values of 0.777, 0.762, and 0.721 for 1, 3, and 5 years of OS,

respectively (by DeLong’s test; Supplementary Figure S5C). The

performance of Treg.Sig was externally assessed in GSE65904

cohort to validate its robustness. Kaplan-Meier analysis showed

that patients with a low Treg.Sig score had notably improved OS

(P=0.0032) (Supplementary Figure S5D). The validation cohort also

demonstrated strong performance in the ROC curves of the risk

score (Supplementary Figure S5D). The Treg.Sig was identified as a

significant factor in the multivariate Cox regression model, with a

hazard ratio of 0.421 (95%CI 0.315–0.526, P<0.001), independent of

age, gender, and clinical stage (Supplementary Figure S5E).

Furthermore, Treg.Sig worked better than these factors in

comparative ROC curves (Supplementary Figure S5F).

To assist clinicians in predicting the OS of SKCM patients, a

nomogram was developed that integrated Treg.Sig with age, gender,

and tumor stage for practical use. The new nomogram evaluated the

chances of survival at 1, 3, and 5 years (Supplementary Figure S6A).

The ROC curves, calibration, and DCA plots were drawn to

evaluate the reliability of the nomogram. In the internal

validation cohort, the AUCs in the ROC curve for predicting OS

at 1, 3, and 5 years were 0.790, 0.809, and 0.815, as shown in

Supplementary Figure S6B. In the GSE65904 external validation

cohort, the values were 0.761, 0.756, and 0.738, respectively (by

DeLong’s test; Supplementary Figure S6C). Furthermore, the

calibration plots showed a line segment near the 45 degree,

suggesting a strong agreement between the prediction and

observation in the internal validation cohort (Supplementary

Figure S6D) and GSE65904 external validation cohort

(Supplementary Figure S6E). And the DCA showed that Treg.Sig

would offer a robust net benefit in internal validation cohort

(Supplementary Figure S6F) and GSE65904 external validation

cohort (Supplementary Figure S6G).
Comparison of prognostic value between
Treg.Sig and published signatures

Over the last couple of years, there has been an increase in the

development of various gene-expression signatures that have different

predictive abilities. The predictive power of Treg.Sig was examined

and compared to 51 signatures (Supplementary Table S2),
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1508638
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fan et al. 10.3389/fimmu.2025.1508638
encompassing both lncRNA- and mRNA-derived signatures, to

assess AUC at 1-, 3-, and 5-year OS. The 51 signatures showed

connections to various biological characteristics, such as immune cell

infiltration, cell death processes, cellular transformation, hypoxia,

genetic modifications, N6-methyladenosine, etc. The Treg.Sig

exhibited superior performance compared to all other signatures in

predicting 1-year and 3-year OS in the GSE65904 dataset (Figure 2).
Validation of the Treg.Sig in different
clinical subgroups

The Treg.Sig was further validated in several SKCM subgroups

stratified by different clinical characteristics, included genders, OS,

and tumor stages. In particular, the elevated risk score correlated

with higher clinical stage and OS status in SKCM (Supplementary

Figures S7A–C). Furthermore, the OS was notably poorer in the

high-risk cohorts compared to the low-risk cohorts, either in the

early clinical stage (P=2.3×10−4) (Supplementary Figure S7D) or

advanced clinical stage (P<0.0001) (Supplementary Figure S7E)

SKCM subgroups. Clark’s level of invasion significantly predicts

tumor invasion in melanoma (27). Likewise, we found that Treg.Sig

exhibited a robustly predictive power, whether in Clark 1, 2, and 3
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subgroups (P=0.0046) (Supplementary Figure S7F), or Clark 4 and

5 subgroups (P=0.0008) (Supplementary Figure S7G).
Treg.Sig is associated with immune profiles

The T lymphocytes were crucial in the immune response

against the tumor. Consequently, we examined how Treg.Sig is

associated with immune cell infiltration and immunotherapy

response in patients with SKCM. Initially, we examined how the

signature is connected to 64 different types of immune cells that

infiltrate. xCELL algorithms demonstrated that SKCM patients with

high-risk scores had a higher proportion infiltration of

mesenchymal stem cells, osteoblast, and NKT cells. Despite this,

their composition included fewer aDC cells, B cells, CD4+ memory

T cells, CD4+ naive T cells, CD8+ Tcm, CD8+ Tem, cDC cells, iDC

cells, M2 macrophages, memory B−cells, monocytes, pDC cell, Th2

cells, and Tregs, suggesting an inflamed yet somewhat

immunosuppressive environment (Supplementary Figure S8A).

In melanoma cancer, T cells that have infiltrated the tumor

exhibit anti-tumor immune responses. Therefore, utilizing T cell-

focused immunotherapy approaches could offer a novel

opportunity to enhance cancer treatment (28). Thus, we
FIGURE 2

Comparison between Tregs signature and previous models. The 1-year C-index (A), 3-year C-index (B), and 5-year C-index (C) of Tregs signature
and other models in the GSE65904 cohort.
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conducted additional analysis to explore the connection between

Treg.Sig and immunotherapy by examining the association between

Treg.Sig and established immunotherapy markers. Initially, we

utilized the TIDE online algorithm to forecast the likelihood of

response to ICI therapy. While low-Treg.Sig patients exhibited

higher TIDE scores (Chi-square test, P=0.0038; Supplementary

Figure S8B), this apparent paradox may reflect compensatory

immune evasion mechanisms in tumors with baseline low

immunosuppression. Considering the TIDE score’s predictive

performance is context-dependent, we included the immune

proportion score (IPS) in our analysis to provide a more

comprehensive assessment, as it is a more precise biomarker for

the protein expression of PD-L1. Predictably, patients with low risk

exhibited notably elevated levels of PD-L1 protein expression

compared to high-risk patients in the ctla4_neg_pd1_neg group

(P=0.011) (Supplementary Figure S8C), ctla4_neg_pd1_pos group

(P<0.0001) (Supplementary Figure S8D), ctla4_pos_pd1_neg group

(P<0.0001) (Supplementary Figure S8E), and ctla4_pos_pd1_pos

group (P<0.0001) (Supplementary Figure S8F). Overall, these

findings suggested that Treg.Sig correlated with the infiltration of

immune cells and the immune status of tumors in the

tumor microenvironment.
Biological pathways related to the Treg.Sig

Due to the immune-related characteristics of the Treg.Sig, we

then tended to dig into its underlying mechanism of action.

Initially, we conducted a correlation analysis to identify the genes

that are highly associated with the Treg.Sig. As illustrated in the

Supplementary Figures S9A and B, a total of 438 genes were found

to have a positive relationship, while 28 genes had a negative

relationship, including immune checkpoints such as CTLA-4,

LAG-3, TIGIT, CD8A, CD163, and more. Subsequently, GSEA

analysis was conducted on these genes using the R software package

“clusterProfiler”, indicating their involvement in immune-related

processes like allograft rejection, autoimmune thyroid disease,

leishmaniasis, systemic lupus erythematosus, and type I diabetes

mellitus (Supplementary Figure S9C). Taken together, our data

indicated that Treg.Sig participates in the immune related response.

Thus, studies to detect further potential value of Treg.Sig

are necessary.
Treg.Sig was predictive of chemotherapy
response and ICI resistance

Subsequently, we examined the feasibility of utilizing Treg.Sig to

inform systemic treatments. Initially, the pRRophetic algorithm was

utilized to estimate IC50 values in order to forecast the varying

responses to chemotherapy in Treg-associated high- and low-risk

groups. According to the Cancer Genome Project (CGP) database, a

decreased Treg.Sig risk score was associated with increased sensitivity
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to four different chemotherapy drugs (AP_24534, Pazopanib,

Paclitaxel, Tivozanib) based on the Wilcoxon test results (all

P< 0.0001) (Supplementary Figures S10A–D). Therefore, low

Treg.Sig score was correlated with high chemotherapy sensitivity.

We then confirmed the effectiveness in various immunotherapy

datasets, such as GSE161801 (carfilzomib), GSE120575 (anti PD1

or/and CTLA4), and GSE189125 (anti PD-1). Melanoma patients

exhibited lower Treg.Sig score after new proteasome inhibitors

therapy–carfilzomib (Wilcoxon test, P=1.2x10-7) in the

GSE161801 scRNA-Seq cohort (Supplementary Figures S10E, F).

Similarly, individuals who responded to anti PD1 or/and CTLA4

treatment (GSE120575) exhibited significantly lower Treg.Sig

scores than those who did not respond (Wilcoxon test, P<0.0001),

suggesting a negative correlation between Treg.Sig score and ICI

effectiveness (Supplementary Figures S10G, H). In the GSE189125

anti PD-1 cohort, the durable clinical benefit (DCB) group showed

significantly lower risk scores than the no durable benefit (NDB)

group (Wilcoxon test, P=0.048), suggesting that patients with lower

risk were more responsive to immunotherapy than those with

higher risk (Supplementary Figures S10I, J). The findings

indicated that individuals with low-Treg.Sig scores have a higher

chance of responding well to immunotherapy, suggesting that

Treg.Sig could serve as a valuable biomarker for identifying

SKCM patients who could benefit from immunotherapy.
Key Treg.Sig gene STAT1 is associated with
patient survival outcome and
immune checkpoint

Among the 10 Treg.Sig genes, the crucial one STAT1 was

predicted through PPI network, which was selected for further

analysis (Figure 3A). The protein expression levels of STAT1 in

SKCM were observed by analyzing the immunohistochemical

staining images in the HPA database. The levels of STAT1

expression were found to be elevated in SKCM tissue compared

to normal skin tissue, as shown in Figure 3B. Notably, patients

harboring higher STAT1 status had better survival than those with a

lower STAT1 status (Figure 3C). In order to delve deeper into the

underlying mechanism, we examined the connection between

STAT1 and tumor-infiltrating cells. Our analysis revealed a

positive correlation between STAT1 and the infiltration of

immune cells that target tumors, such as aDC, B cells, CD8 T

cells, cytotoxic cells, and macrophage cells (Figures 3D, E). Adding

further complexity, an analysis was conducted on immune

checkpoint proteins such as PD-1, PD-L1, and PD-L2. Likewise,

there was a strong connection found between STAT1 and the

primary immune checkpoint markers (PD-1 R=0.650, P<0.001;

PD-L1 R=0.829, P<0.001; and PD-L2 R=0.763, P<0.001)

(Figures 3F, G). These results indicated the genetic and

expression alteration landscape of STAT1 in melanoma,

suggesting dysregulating STAT1 participates in tumor immune

microenvironment in melanoma contexts.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1508638
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fan et al. 10.3389/fimmu.2025.1508638
STAT1 mutation analysis in melanoma

Subsequently, we explored weather STAT1 mutation was

correlated with ICI treatment response. Initially, we confirmed the

mutation rate of STAT in different types of cancers. Melanoma ranked
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1st with a mutation frequency of 24.32% among all 30 cancers, as

depicted in (Figure 4A), followed by mature B-Cell neoplasms and

Endometrial Carcinoma. Subgroup analyses revealed that the

occurrence rate of STAT1 mutations in melanoma was 3.87%

(Supplementary Figure S11A). Various clinical features of individuals
FIGURE 3

STAT1 is a potential target gene. (A) Hub genes STAT1 in the protein-protein interaction (PPI) network was identified using Cytoscape. (B) The protein
expression levels of STAT1 in Human Protein Atlas (HPA) database based on immunohistochemistry analysis. The left side of the image represents normal
skin tissue, which exhibits minimal STAT1 expression, as expected in healthy controls. The right side of the image shows a melanoma sample. The lower
part of the melanoma image, where STAT1 high expression is detected, corresponds to the tumor-infiltrating immune cells. (C) Kaplan-Meier survival
curve of overall survival, progress free survival, and disease free survival between patients with a high and low STAT1 expression in the TCGA-SKCM
patients. (D) Scatter plot and (E) immunogram radar plot showing the correlation between STAT1 and tumor infiltration cells, included aDC, B cell, CD8
T, Cytotoxic cell, Macrophage, and T helper cell. (F) Scatter plot and (G) box plot showing the correlation between STAT1 and immune checkpoint,
included PD-1, PD-L1, and PD-L2 in the TCGA dataset. ns indicates no significant difference; *P < 0. 05, **P < 0. 01; ***P < 0. 001.
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FIGURE 4

Association of STAT1 mutations with melanoma ICIs outcomes. (A) Mutational landscape of STAT1 across 30 cancers. (B) Association of STAT1
mutation and clinical characteristics in melanoma cohorts. Lollipop plot (C) and 3D landscape (D) showed the mutated structure of STAT1 in
melanoma. (E) Proportion of responders to ICIs in melanoma patients with FGFR mutations versus FGFR wild-type. Comparison of the proportion of
treatment response (E, F) and durable clinical benefit (complete response (CR), partial response (PR), stable disease (SD) and progression disease
(PD)) (G) between STAT1 Mut and STAT1 Wt in melanoma ICI-cohort.
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in the TCGA cohort, such as age, sex, survival rate, and tumor

mutation burden, were analyzed and are depicted in Figure 4B. The

Lollipop plot illustrates a total of 15 missense mutations (green) and 1

truncating (black) mutation in 750 amino acids long STAT1 protein

(Figures 4C, D). Importantly, there was a correlation between STAT1

mutation and response to ICI treatment, showing a higher response

rate in patients with STAT1-Wt compared to those with STAT1-Mut

(Figures 4E, F). In the meantime, the STAT1-Wt group exhibited

higher rates of complete response (CR) and partial response (PR), while

the STAT1-Mut group had a higher rate of progression disease (PD) as

shown in Figure 4G.
Blocking STAT1 leads to ICIs resistance and
defective N1 neutrophil polarization in
B16-F10 melanoma mice receiving
anti-PD-1

The anticancer role of STAT1 is thought to be essential in the

process of tumorigenesis, where it fosters the disruption of

transformed cells by the immune cells (29). Thus, we assessed the

effect of STAT1 blockage on anti-PD-1 efficacy in the context of B16-

F10 melanoma-bearing mice, thereby elucidating whether STAT1 is

associated with immunotherapy resistance. We first performed a

molecular docking analysis to assess the affinity of Flu for its target,

STAT1. The findings indicated that Flu attaches to STAT1 by

forming observable hydrogen bonds and robust electrostatic

interactions, resulting in a binding energy of -5.894 kcal/mol,

suggesting a very stable attachment (Figure 5A). Significantly, we

noticed increased suppression of tumor growth when using anti-PD-

1 therapy (Figure 5B). Nevertheless, tumors in the Flu treatment

group eventually acquired adaptive resistance to the anti-PD-1

treatment, reaching a primary tumor size comparable to the

controls by the fourth week (Figure 5B). We isolated neutrophils

from harvested tumor tissue by using MACS neutrophil isolation kit,

and analyzed whether cell phenotype of neutrophils is affected after

mice treated with Flu. As illustrated in Figures 5C, D, STAT1

phosphorylation of neutrophils in B16-F10 tumor tissues was

blocked in mice treated with Flu. Strikingly, blockade of STAT1 by

Flu reversed N1 polarization-induced elevation of iNOS, IL-1, and

TNF-a mRNA levels in neutrophils (Figure 5E). Furthermore, in

order to confirm these findings, we utilized siRNA technology to

knock down the expression of STAT1. The results suggested that

STAT1 siRNA significantly down-regulated the expression of STAT1

(Figure 5F), accompanied by immunofluorescence showing the

expression of N1-tagged iNOS was also reduced (Figure 5G).
Blocking STAT1 shifts more neutrophils to
N2 subtype and promotes tumor
progression in B16-F10 melanoma mice
receiving anti-PD-1

The above results which showing patients/mice with STAT1

mutation/inhibition harboring lower response rate during ICI
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resistance. We suspected that malfunction of STAT1 may increase

the susceptibility of neutrophils switching to a protumor suntype in

melanoma tumor microenvironment (TME). We first validated

whether STAT1 inhibition increase the infiltration of neutrophils.

As shown in Figures 6A, B, during anti-PD-1 therapy, treatment of

Flu in B16-F10 bearing mice did not alter the proportion of CD11b

+Ly-6G+ neutrophils, indicating that STAT1 inhibition did not

affect neutrophils infiltration into tumor tissue. As expect,

treatment of Flu decreased the phosphorylation of STAT1 in

neutrophils in B16-F10 melanoma tissue (Figure 6C).

Surprisingly, flow cytometry analysis showed that treatment of

Flu in B16-F10 melanoma bearing mice significantly promoted

the phenotype switch of neutrophils toward a N2 subtype (Arg-1+)

(Figures 6D, E). These results indicated that melanoma TME could

skew more neutrophis to N2 subtype when STAT1 was inhibited.

To further validated this, we used cell-cell coculture system to

explore weather B16-F10 melanoma cells could drive more

neutrophils toward N2 subtype in vitro. We isolated neutrophils

from bone marrow and detected the expression of N2 marker after

co-culture. The results showed neutrophils expressed Arg-1 after

cocultured with B16-F10 melanoma cells, and this trend was

intensified while STAT1 was inhibited by Flu (Figure 6F). Further

investigations were conducted into the tissue-specific chemokine

and cytokine profile influencing neutrophil recruitment and

polarization. It was discerned that within Flu treated B16-F10

melanoma sites, there were no alteration in the levels of CCL2,

CCL3, and CCL5, which are pivotal in mediating neutrophil

recruitment (Figure 6G). Nevertheless, there were noticeable

increased in the concentration of IL-4 and IL-13, cytokines

crucial for the polarization towards an N2 neutrophil phenotype,

whereas the levels of IFN-gamma, a cytokine essential for N1

neutrophil programming, were decreases (Figure 6H).

In order to study the immediate impact of these N2-neutrophils

on tumor progression in vivo, we conducted the transfer of N2-

neutrophils (Ly-6G+Arg-1+), which were extracted from the bone

marrow of healthy mice without tumors and then co-cultured with

B16-F10 melanoma cells (Figure 7A). We employed fluorescent

tracer technology to track intra-tumor injected N2 neutrophils. As

shown in Figure 7B, PKH67-labeled N2 neutrophils remained in the

tumor tissue 1 day post injection. Surprisingly, in the context of

anti-PD-1 treatment, administering Flu to mice with B16-F10

melanoma notably reduced their OS compared to the control

group (Figure 7C). Furthermore, the decline in OS was

exacerbated by the introduction of N2-neutrophils through

adoptive transfer (Figure 7C). Flow cytometry analysis was used

to examine the expression of pertinent N1 and N2-neutrophil

markers in B16-F10 melanoma allografts. In our study, we

observed that both Flu and adoptive transfer of N2-neutrophils

led to a rise in N2-neutrophil (Arg-1+) levels in B16-F10 melanoma

allografts when compared to the DMSO control group, which

predominantly showed N1- neutrophil infiltration (iNOS)

(Figure 7D). To figure out the underlying mechanisms that

STAT1 regulated melanoma resistance, we analyzed the

correlation between STAT1 and epithelial-mesenchymal
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transition (EMT). As an important mechanism by which cancer

cells obtain highly invasive phenotype, EMT is a process acquiring

mesenchymal features in epithelial cells. It was demonstrated that

immune cells within the tumor microenvironment play a crucial

role in influencing this plasticity of tumor cells (30). Correlation

analyses were conducted to examine the impact of STAT1

on these processes, revealing a negative correlation between

STAT1 and EMT markers (Figure 7E). To verify this result, we

examined the expression of epithelial (E-cadherin) marker by

immunohistochemical staining. As shown in Figure 7F, both Flu

and adoptive transfer of N2-neutrophils resulted in elevated levels

of E-cadherin expression.
The N2 subtype neutrophils induced by
B16-F10 melanoma cells can in turn
promote melanoma cell invasion,
proliferation, and epithelial-
mesenchymal transition

Based on the aforementioned in vivo findings, we conducted in

vitro studies to examine how N2 neutrophils impact melanoma

EMT, invasion, and proliferation. In order to achieve this goal,

melanoma B16-F10 cells were cultured with N2 neutrophils

(Figure 8A). As shown in Figures 8B, C, B16-F10 cells co-

cultured with N2 neutrophils showed higher epithelial markers

(Ecadherin, EpCam, Krt18) expression but lower mesenchymal

markers (Vimentin, N-cadherin, ZEB1). Additionally, N2

neutrophils increased the invasion of B16-F10 cells as shown in

transwell assays (Figures 8D, E). Likewise, in CCK-8 experiments, it

was noted that the presence of N2 neutrophils led to a notable

enhancement in the proliferation ability of B16-F10 melanoma cells

as opposed to the control group (Figure 8F). Collectively, these

findings indicate that the absence of STAT1 is associated with the

pro-tumor activity of N2 neutrophils and resistance to melanoma

immune checkpoint inhibitors.
Discussion

Advancements in cancer immunotherapy have led to the

ongoing discovery of predictive biomarkers for response to

immunotherapy. Extensive research has been conducted on how

the tumor microenvironment (TME) affects the effectiveness of

cancer immunotherapy, with a particular emphasis on biomarkers

associated with TME (31, 32). Nevertheless, there is a scarcity of

reliable biomarkers derived from the TME of tumorigenesis to

predict the response to immunotherapy and prognosis in SKCM.

Advancements in single-cell RNA sequencing techniques have

made it easier to analyze the molecular features of immune cells

that have invaded tumors in the TME (33–35). This study utilized

machine learning to analyze scRNA-seq and bulk-seq data,

revealing ten Tregs marker genes showing significant expression

changes in SKCM tissue. A novel prognostic Treg.Sig was further

constructed based on the Tregs marker genes. An independent risk
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factor for SKCM patients was identified in the form of this Treg.Sig.

Then, the prognostic performance of Treg.Sig was validated,

revealing that Treg.Sig held predictive power even beyond other

established signatures. Examination of biological pathways showed

that genes associated with Treg.Sig were significantly present in

immune profiles, with unique proportions of immune cells and

immune-suppressive conditions identifying patients with a high-

risk Treg.Sig score. Moreover, a low Treg.Sig risk score was found to

be correlated with various chemotherapy and immunotherapy

markers, suggesting that low-risk individuals may benefit more

from ICI treatment. The pivotal gene STAT1 was confirmed to

demonstrate its essential function in tumor immunogenicity. The

research indicated that Treg.Sig could be a valuable predictor for

prognosis and response to immunotherapy in patients with SKCM.

The Treg.Sig had ten Treg cell marker genes, including GBP2,

RAP1A, BTG1, IL27RA, STAT1, TXNDC11, GBP4, ARID5A,

CLEC2B, and SEL1L3. In the signature model, some genes

presented protective or negative functions on the prognosis of

SKCM patients. For example, an important positive relationship

was observed between GBP2 and the infiltration of CD8+ T cells

(36). GBP2, a member of the GTP superfamily, suppresses

mitochondrial fission and cell invasion in various types of

tumors. Herein, there was a favorable response in melanoma

patients with higher GBP2 expression than those with low GBP2

expression (37). In addition, several cancer types involve EPAC/

cAMP-RAP1A signaling axis in cell proliferation, differentiation,

and cell-cell junction (38). Decreased survival was observed in

primary melanoma cells following RAP1A knockdown, while

metastatic melanoma cells showed increased proliferation rates

(39). These data indicate that RAP1A plays a two-fold function in

the survival and growth of melanoma cells, serving as a key factor in

determining how primary and metastatic melanoma cells react to

cAMP (39). As for the STAT1, it has previously been reported to be

a tumor suppressor in hepatocellular carcinoma (40) and in

esophageal squamous cell carcinoma (41). Melanoma research has

shown that the eIF4F-STAT1-PD-L1 axis plays a role in controlling

tumor immune evasion (42). In the present study, STAT1 was

found to be associated with patient prognosis and tumor immunity.

Mechanically, we identified that STAT1 was associated with tumor

resistance and N2 neutrophil polarization during ICIs treatment.

Therefore, the rise in STAT1 protein levels supports its potential as

an anticancer agent in SKCM, suggesting that the genes identified in

this research could be valuable targets for further investigation in

the lab to uncover the molecular mechanisms behind

SKCM resistance.

We validated the predictive performance of our Treg.Sig by

comparing it to 51 previously published melanoma-related

signatures in terms of 1-year, 3-year, and 5-year overall survival

rates. The Treg.Sig we created stands out for its strong ability to

predict prognosis and could be very useful in the future. The

performance of the Treg.Sig was further validated in different

clinical subgroups. Our signature was found to show statistically

significant overall survival stratification for SKCM patients across

all clinicopathologic subgroups. The Treg.Sig had strong predictive

capability prompting investigations to determine its potential
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underlying mechanism of action. A total of 438 positively related

genes and 28 negatively related genes strongly correlated with

Treg.Sig were determined using correlation analysis. The GSEA

analysis revealed that the associated genes were predominantly

enriched in Treg cell-related biological processes, including

allograft rejection, autoimmune thyroid disease, leishmaniasis,

systemic lupus erythematosus, and type I diabetes mellitus. The
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enrichment of Treg-related pathways (allograft rejection, SLE, type I

diabetes) aligns with recent findings that tumor-educated Tregs co-

opt autoimmune-associated transcriptional programs to suppress

antitumor immunity (43, 44). This molecular mimicry could

explain why high Treg.Sig tumors exhibit both autoimmune-like

inflammation and functional immunosuppression. Furthermore,

we examined the discrepancy in immune cell infiltration between
FIGURE 5

Inhibiting STAT1 impedes neutrophils polarization to the N1 phenotype. (A) The docking results of STAT1 with Fludarabine. (B) anti-PD-1 (200 µg per
mouse), IgG control, or anti-PD-1 plus Fludarabine were intraperitoneally injected into mice once a week beginning on day 7 after B16-F10 cells
were subcutaneously implanted. Tumors were measured once a week for 4 weeks. The tumor growth curves are shown in the left panel. Tumor
weight at week 4 shown on right panel. (C, D) Western blot results of phosphorylation of STAT1 and total STAT1 expressions in macrophages
neutrophils incubated with Fludarabine or DMSO. (E) Relative mRNA expression of N1 markers (iNOS, IL‐1, TNF‐a) in response to Fludarabine in N1
neutrophils (qRT‐PCR, n=3). (F) Mouse primary neutrophils were treated with STAT1 siRNA and STAT1 expressions were examined by qRT-PCR.
GAPDH was used as a normalization control (n=3). (G) Changes in the expression of iNOS in N1 polarization by immunofluorescence. ns indicates
no significant difference; *P < 0. 05, **P < 0. 01; ***P < 0. 001.
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FIGURE 6

Melanoma TME converts more neutrophils to the N2 phenotype when STAT1 is inhibited. (A) Schematic diagram of the experimental procedure
showing the injection of DMSO or Fludarabine into mice bearing B16-F10 melanoma allografts. (B) Flow cytometry analyzed the proportion of total
neutrophils (CD11b+Ly-6G+). (C) Representative immunofluorescence images of Ly6G+pSTAT1+ neutrophils in B16-F10 melanoma allografts from
DMSO or Fludarabine treated mice. (D) Flow cytometry analyzed the proportion of N2 phenotype neutrophils (Ly-6G+Arg1+). (E) Quantitative
analysis of the results in (D). n=3. (F) Co-culturing DMSO- or Fludarabine-treated neutrophils with B16-F10 melanoma cells, followed by
immunofluorescence detection of N2 (Arg-1+) neutrophils. (G) Expressions of chemokine CCL2, CCL3, and CCL5 in B16-F10 melanoma allografts
were examined by qRT-PCR. GAPDH was used as a normalization control (n=3). (H) Expressions of cytokines IL-4, IL-13, and IFN-gamma in B16-F10
melanoma allografts were examined by qRT-PCR. GAPDH was used as a normalization control (n=3). ns indicates no significant difference; *P < 0.
05, **P < 0. 01; ***P < 0. 001.
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high- and low-risk SKCM patients, taking into account the

influence of the tumor microenvironment on tumor prognosis.

High-risk SKCM patients exhibited a reduced percentage of CD8+

T cells and NK cells, indicating an immunosuppressive tumor

microenvironment. Part of the explanation for this could be that

Tregs are able to directly suppress not just CD4+ helper T cells and

CD8+ cytotoxic T cells, but also NK cells after cancer treatment

(45). Additionally, Tregs and cancer cells work together to remodel
Frontiers in Immunology 16
the extracellular matrix, creating a barrier that prevents tumoricidal

immune cells from penetrating solid tumors and delivering

anticancer agents (45). Interestingly, the pRRophetic algorithm

indicated that SKCM patients with low-Treg.Sig were more

responsive to traditional chemotherapy drugs with diverse

mechanisms of action—including the VEGFR inhibitor

Pazopanib, microtubule depolymerizer Paclitaxel, and multi-

targeted kinase inhibitor Tivozanib—compared to high-Treg.Sig
FIGURE 7

Inhibition of STAT1 induces more N2 neutrophils and thus promotes B16-F10 melanoma growth. (A) Schematic diagram of the experimental
procedure showing the induction of N2 neutrophils (step1) and adoptive transfer of N2 neutrophils into mice bearing B16-F10 melanoma (step2).
(B) Immunofluorescence showing the injection of PHK67-labeled N2 neutrophils into B16-F10 melanoma allografts. (C) Quantification of N1 (iNOS+)
and N2 (Arg-1+) neutrophils for the panel. (D) Overall survival in mice implanted with B16-F10 melanoma allografts and further treated with DMSO,
Fludarabine, or adoptive transfer (ADT) of N2 neutrophils. (E) Scatter plot revealing the correlation between STAT1 and epithelial to mesenchymal
transitions (EMT). (F) Representative IHC images for E-cadherin in B16-F10 melanoma allografts derived from the experiment in (D). ns indicates no
significant difference; *P < 0. 05, **P < 0. 01; ***P < 0. 001.
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pa t i en t s . P r i o r s t ud i e s s u gg e s t t h e s e d rug s e x e r t

immunomodulatory effects beyond their canonical mechanisms.

For instance, Pazopanib reduces immunosuppressive Tregs and

myeloid-derived suppressor cells (MDSCs) while upregulating PD-

1 expression on cytotoxic T cells, thereby augmenting tumor cell

killing capacity (46). While our data associate low-Treg.Sig with

improved drug sensitivity, we emphasize that these agents likely act

through pleiotropic mechanisms: Pazopanib combines anti-

angiogenic effects with Treg suppression, whereas Paclitaxel
Frontiers in Immunology 17
disrupts microtubules while synergize with pre-existing cytotoxic

T cell populations. Critically, the predictive value of Treg.Sig may

reflect a permissive TME in low-Treg.Sig tumors, where reduced

immunosuppre s s ion enab le s chemotherapy- induced

immunostimulatory effects (e.g., antigen release, T cell priming)

to dominate. Future studies combining Treg-specific depletion

models with pharmacogenomic profiling are warranted to

disentangle direct Treg modulation from broader immune

contexture-driven responses.
FIGURE 8

N2 neutrophils promotes B16-F10 EMT, invasion and proliferation. (A) Schematic diagram of the experimental procedure showing the induction of N2
neutrophils (step1) and N2 neutrophils promote B16-F10 melanoma EMT, invasion, and proliferation (step2). (B) B16-F10 melanoma cells were co-
cultured with the N2 neutrophils. Cells were then examined for the expression of epithelial (E-cadherin, EpCam, Krt18) and mesenchymal (Vimentin,
N-cadherin, ZEB1) markers (qRT‐PCR, n=3). (C) B16-F10 melanoma cells were co-cultured with the N2 neutrophils. Cells were then examined for the
expression of epithelial (E-cadherin) and mesenchymal (Vimentin) markers by western blot. (D) Transwell assays were carried out to evaluate the
invasive potentials of B16-F10 melanoma cells. (E) Quantification of invasive cell number in transwell assay. (F) CCK-8 assays were carried out to
evaluate the proliferative potentials of B16-F10 melanoma cells. ns indicated no significant difference; *P < 0. 05, **P < 0. 01; ***P < 0. 001.
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The discrepancy in immune cell penetration and inflammatory

functions among different risk groups prompted our investigation into

the predictive potential of Treg.Sig for immunotherapy response. Prior

research has indicated that the expression of PD-L1 can predict how

patients will respond to inhibitors targeting PD-1/PD-L1 (47).

Moreover, TIDE is a recently identified predictor for

immunotherapy that has shown superior predictive capabilities

when compared to other biomarkers or indicators (48). We

examined if Treg.Sig could serve as a biomarker for immunotherapy

response by studying its correlation with the mentioned biomarkers.

The results revealed that Treg.Sig low-risk patients had significantly

higher TIDE scores and IPS scores. Typically, a lower TIDE score or a

higher IPS score indicates a more favorable reaction to

immunotherapy (49) . A high IPS signifies increased

immunogenicity, while a high TIDE score indicates a greater chance

of tumor immune evasion. This research found that low-risk tumors

exhibited greater IPS/immunogenicity but also had higher TIDE

scores than the high-risk group. As a result, the reliability of

Treg.Sig as a predictor should be confirmed in additional

immunotherapy datasets. By examining the predictive power of

Treg.Sig in three immunotherapy groups (GSE161801, GSE120575,

GSE189125), we found that patients with a low risk profile were more

responsive to ICI treatment. Consistent with these results were the

findings of immune cell infiltration, indicating that the influence of the

quantity and effectiveness of tumor-infiltrating T cells on the response

to immunotherapy is more significant than that tumor

immunogenicity (50, 51). The robust discrimination of Treg.Sig and

favorable predictive metrics position it as a clinically actionable tool.

Integrating Treg.Sig with existing biomarkers could enable precision

stratification – for instance, combining it with PD-L1 status may

identify ‘double-negative’ patients (low Treg.Sig/PD-L1+) who derive

maximal benefit from PD-1/CTLA-4 combination therapy.

The interplay between STAT1 signaling and neutrophil

polarization toward the N2 phenotype presents a compelling avenue

for cancer therapeutic exploration. Emerging evidence suggests that

STAT1 activation in neutrophils drives pro-inflammatory N1

polarization, characterized by enhanced ROS production and pro-

tumorigenic cytokine secretion (52, 53). Conversely, inhibition of

STAT1 may skew neutrophils toward the N2 phenotype, which

exhibits anti-inflammatory and tissue-repair properties, potentially

attenuating tumor-associated inflammation and metastasis. For

instance, subclinical LPS-induced activation of STAT1/STAT5 in

neutrophils exacerbates inflammatory polarization, implying that

targeted STAT1 suppression could reverse this phenotype (52).

Although this study yielded important results, several limitations

were warrant cautious interpretation. First, the retrospective nature of

public datasets introduces inherent selection biases – for example,

TCGA-SKCM overrepresents treatment-naïve primary tumors (73%)

compared to metastatic cases routinely seen in clinics. Second,

technical variability in Treg quantification (e.g., xCELL vs.

CIBERSORT algorithms) may confound immune infiltration

analyses, though we mitigated this through multi-algorithm

validation. Third, the selected genes were Tregs specific marker

genes, yet the TME is highly spatially heterogeneous (54). Hence,

the prognosis-prediction ability of the signature may be limited.
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Finally, the risk signature based on Tregs was created by analyzing

historical data from publicly available databases. Therefore, it should

be validated in further prospective and multi-center SKCM cohorts in

the future.
Conclusions

We offer the initial concrete clinical proof that a signature

relying on Treg cells is linked to resistance to immunotherapy in

patients with SKCM. By utilizing machine learning to merge single-

cell and bulk RNA sequencing data, we created a gene expression

profile called Treg.Sig that surpasses existing signatures in

forecasting survival rates for patients with SKCM. Additional

examination of genes within Treg.Sig uncovered several possible

targets for therapy. The research introduces a hopeful approach to

identifying individuals who may respond well to immunotherapy,

and suggests potential solutions for overcoming resistance to ICI by

focusing on Tregs marker genes to enhance the body’s ability to

fight against tumors.
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