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Transcriptomic analysis after
SARS-CoV-2 mRNA vaccination
reveals a specific gene signature
in low-responder hemodialysis
patients
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Fabio Fiorino1,2, Gabiria Pastore1, Margherita Sambo3,4,
Marialetizia Lusini5, Francesca Montagnani3,4,
Annalisa Ciabattini1, Francesco Santoro1*,
Guido Garosi5 and Donata Medaglini1

1Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies,
University of Siena, Siena, Italy, 2Department of Medicine and Surgery, LUM University “Giuseppe
Degennaro”, Bari, Italy, 3Department of Medical Biotechnologies, University of Siena, Siena, Italy,
4Infectious and Tropical Diseases Unit, University Hospital of Siena, Siena, Italy, 5Nephrology, Dialysis,
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Introduction: Individuals with comorbidities, such as chronic kidney disease and

hemodialysis patients (HDP), are particularly susceptible to severe COVID-19 and

to its complications. Furthermore, their immune response to vaccines is

impaired, requiring tailored vaccination strategies. In this study, we investigated

through transcriptomic profiling the immune response heterogeneity of HDP

vaccinated with two doses of mRNA BNT162b2 vaccine.

Methods: Transcriptomic analyses were conducted in peripheral blood

mononuclear cells (PBMC) collected from HDP and healthy controls (HC)

before and 7 days after each dose. The HDP were stratified into high- and

low-responders based on their humoral response after the second dose.

Results: Significant differences in gene expression related to B cell abundance and

regulation, CD4 T cell proliferation, and inflammation pathways were observed at

baseline and day 7 between HDP-low responders and HC, while the HDP high-

responders displayed an intermediate expression profile for these genes.

Discussion: Results were consistent with the known immunologic alterations

occurring in HDP cohorts related to lymphopenia, chronic inflammation, and

dysregulated proliferation of CD4+. Our analyses identified an early

transcriptional signature correlated with a diminished immune response in HDP

low-responders, highlighting the importance of conducting a characterization of

immunocompromised cohorts.
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Introduction
The SARS-CoV-2 pandemic has had a profound global impact

since its outbreak. Advanced age, male gender, and underlying

comorbidities such as hypertension, diabetes, immunodeficiency,

and kidney diseases are primary risk factors for severe outcomes (1).

Individuals with chronic kidney disease (CKD) and those requiring

dialysis are particularly susceptible to SARS-CoV-2 infection, often

experiencing a severe course of COVID-19 and higher mortality (2).

CKD is commonly associated with immunodeficiency, leading

to reduced vaccine efficacy against various pathogens, including

HBV and Streptococcus pneumoniae (3–5). Immunological

alterations in CKD patients include reduced B cell counts and

altered T cell phenotypes (6, 7). CDK patients and in particular

hemodialysis patients (HDP) exhibit a diminished immune

response to vaccines, necessitating modifications in vaccination

strategies such as adjusting the dosage or dosing interval to

enhance immunogenicity (8).

As observed for other immunocompromising pathologies (9–

11), the humoral immune response following SARS-CoV-2

vaccination in HDP is heterogeneous and delayed compared to

healthy subjects (12), with lower antibody levels and faster

antibody decline (13). Notably, the humoral response in HDP

after two vaccine doses is lower compared to other fragile CKD

cohorts, such as patients undergoing peritoneal dialysis (14) or

CKD patients not undergoing hemodialysis (15) and they require

three or four doses to reach antibody titers comparable to the

general population (16).

Moreover, cell-mediated immunity, including T cell-mediated

cytokine induction (17) and antigen-specific CD4+ and CD8+ T cell

responses (18), is also diminished in HDP compared to healthy

controls (HC) and other vulnerable cohorts (19).

Systems vaccinology and transcriptomics have emerged as

powerful techniques for identifying gene signatures associated with

immune activation or suppression, providing insights into the

biological pathways involved in vaccine immunogenicity (20–22).

In this study, we aimed to identify early differences in

gene expression and pathways predictive of vaccine immune

responsiveness, and characterize at transcriptional level the

immune response in HDP who received two doses of the

BNT162b2 mRNA vaccine. Immunological data, including anti-

Spike IgG titers and ACE2/RBD binding inhibition, were used to

stratify HDP into high- and low-responders.
Abbreviations: BTM, Blood Transcription Module; CERNO, Coincident

Extreme Ranks in Numerical Observations; CKD, Chronic Kidney Disease;

COVID-19, COronaVIrus Disease 19; DGE, Differential Gene Expression;

ESRD, End-Stage Renal Disease; EPO, erythropoietin; FDR, False Discovery

Rate; GO, Gene Ontology; HC, Healthy controls; HDP, Hemodialysis patients;

HDP-high, Hemodialysis patient high responders; HDP-low, Hemodialysis

patient low responders; IQR, Interquartile range; PBMC, peripheral blood

mononuclear cells; SARS-CoV-2, Severe Acute Respiratory Syndrome

Coronavirus 2; sVN, Surrogate Virus Neutralization Test; UMAP, Uniform

Manifold Approximation and Projection.
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Methods

Study cohort

Blood samples were obtained from adult HDP and from adult HC,

who received two doses of mRNA vaccine Comirnaty BNT162b2

(Pfizer-BioNTech), 3 weeks apart, according to national schedules. A

total of 20 HDPwere enrolled in the context of the PatoVac_COV study,

while 9 HCs were enrolled in the IMMUNO_COV study. All

participants were recruited at the Infectious and Tropical Diseases

Unit and at Nephrology, Dialysis, and Transplantation Unit, Azienda

Ospedaliera Universitaria Senese (Siena, Italy), where they provided

written informed consent before joining the study. Inclusion criteria were

age ≥ 18 years and adherence to the COVID-19 vaccination campaign

(for both studies), hemodialysis treatment (only for PatoVac_COV

study). Exclusion criteria were pregnancy, withdrawal of consent or

refusal to participate (for both studies), clinical problems for collecting

additional blood samples beyond the amount required for routine care

and participation to other clinical studies (for PatoVac_COV study),

being affected by any immunocompromising condition (congenital,

acquired, or drug-related; for IMMUNO_COV study).
Study approval

The studies were performed in compliance with all relevant

ethical regulations and the protocol was approved by local Ethical

Committee for Clinical experimentation of Regione Toscana Area

Vasta Sud Est (CEAVSE; protocol code 19479 PatoVac_COV v1.0

of 03 Mar 2021, approved on 15 Mar 2021 for HDP and protocol

code 18869 IMMUNO_COV v1.0 of 18 Nov 2020, approved on 21

Dec 2020 for HC).
Sample and data collection

Venous blood samples were collected in heparin-coated blood

tubes (BD Vacutainer) at the baseline (day 0), at days 7, 21 after the

first vaccine dose, 7 days after the second dose (day 28). PBMCs were

isolated by density-gradient sedimentation, using Ficoll-Paque

(Lymphoprep, Stemcell technologies, USA). Approximately 2-3x106

PBMCs were mixed in 1 ml of QIAzol Lysis Reagent (Qiagen,

Netherlands), incubated for 1 h at room temperature (RT) and then

stored at -80°C for RNA extraction. Plasma samples were stored at

-80°C. Clinical parameters, including age, gender, comorbidities,

albumin levels, and mobility, were collected to calculate a health

state score using the Couchoud method (23). Although Couchoud

method is validated for patients older than 75 years, clinicians

routinely use it in real life for prognostic purposes and we therefore

assume it as a suitable score for the statistical analyses.

Weekly erythropoietin (EPO) dosage was also collected, both

before the first vaccine dose and as an average over the six months

preceding the initial dose, for subsequent integrative analyses.

Clinical data collection and management were carried out using

the software REDCap (Research Electronic Data Capture,

Vanderbilt University, TN, USA).
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Enzyme-linked immunosorbent assay

Anti-Spike IgG production after SARS-CoV-2 mRNA

vaccination was tested by ELISA, as previously described (24).

Maxisorp microtiter plates (Nunc, Denmark) were coated

overnight at 4°C with wild type SARS-CoV-2 full spike protein

(S1+S2 ECD; Sino Biological), at a concentration of 1 mg/ml in PBS

(Sigma-Aldrich). Plates were blocked at room temperature (1h, RT)

with blocking solution (5% skimmed milk powder, 0.05% Tween 20,

1 × PBS). Plasma samples were titrated in two-fold dilutions in

diluent buffer (3% skimmed milk powder, 0.05% Tween 20, 1 ×

PBS) and added in duplicate. After 1 h at RT, anti-human IgG

horseradish peroxidase (HRP)-conjugated antibody (diluted

1:6,000; Southern-Biotech, Birmingham, AL, USA) was added for

1 h a t RT . P l a t e s we r e dev e l op ed w i th 3 , 3 ’ , 5 , 5 ’ -

Tetramethylbenzidine (TMB; Thermo Fisher Scientific) for 10

min at RT, followed by the addition of 1 M stop solution

(Thermo Fisher Scientific). Absorbance at 450 nm was

immediately measured on a Multiskan FC Microplate Photometer

(Thermo Fisher Scientific). A WHO international positive control

(plasma from a vaccinated donor; NIBSC) and negative control

(plasma from an unvaccinated donor; NIBSC) were added in

duplicate to each plate as internal control for reproducibility.

Antibody endpoint titers were calculated as the reciprocal of the

last sample dilution that doubled the OD450 value compared to

the background.
Surrogate virus neutralization test

ACE2/RBD binding inhibition was tested with a SARS-CoV-2

surrogate virus neutralization test (sVN) kit (cPass™ SARS-CoV-2

Neutralization Antibody Detection Kit; Genscript, Piscataway, NJ,

USA) according to the manufacturer protocol, as previously

described (25). Briefly, plasma samples, positive and negative

controls were diluted 1:10, mixed with HRP-RBD (wild type

variant RBD) and incubated for 30 min at 37°C. Mixtures were

added to an ACE2-coated 96-well plate and incubated for 15 min at

37°C. After washing, TMB solution was added and the plate was

developed for 15 min at RT. The reaction was quenched by adding

1M stop solution, and the OD450 was read with Multiskan FC

Microplate Photometer (Thermo Fisher Scientific). Results were

expressed as follows: percentage inhibition = (1 − sample OD value/

negative control OD value) × 100. Inhibition values ≥30% were

considered as positive results, and values <30% as negative results,

as established by Tan et al. (26) and indicated by the manufacturer.
RNA extraction, library preparation and
sequencing

PBMCs frozen in QIAzol were thawed at RT and RNA was

extracted with a phase separation using 200 µl chloroform (15s

vortex, then incubated 3 minutes at RT, then centrifuged 15’ 12,000

× g at 4°C). Aqueous phase was transferred in 500 µl isopropanol,
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vortexed, incubated at RT for 10’ and centrifuged for 15 minutes at

12,000 × g at 4°C. The supernatant was discarded and the pellet

washed with 1 ml of 75% ethanol. The pellet was suspended in 350

µl RLT solution (Qiagen) and total RNA was extracted using the

RNeasy mini kit on a QIAcube instrument (Qiagen). RNA

quantification was performed using Qubit 4 Fluorometer

(Thermofisher) with Qubit RNA High Sensitivity assay kit

(Invitrogen). RNA integrity was assessed using the 2100

Bioanalyzer instrument (Agilent) with the Agilent RNA 6000

Nano Kit (Agilent).

50 ng of total RNA were used as a template for the preparation

of sequencing libraries using the Illumina Stranded Total RNA Prep

Ligation with Ribo-Zero Plus (Illumina) following manufacturer’s

instructions. Libraries were quantified with NEBNext® Library

Quant Kit for Illumina® (New England Biolabs) and with the

Qubit DNA High Sensitivity kit (Invitrogen). Average library size

was measured using Agilent DNA 1000 Kit (Agilent) on the 2100

Bioanalyzer instrument (Agilent). A paired-end sequencing was

performed using the NovaSeq 6000 System (Illumina) on a S4

flowcell (200 cycles).
Pre-processing and data analysis

Pre-processing steps were performed in a Linux environment

using FASTQC v0.11.9 and MultiQC v1.13 for the quality control.

Trimming and removal of low-quality reads was performed with

Trimmomatic v0.39 using the fol lowing parameters :

SLIDINGWINDOW 4:5, MINLEN:36. STAR v2.7.3 was used to

align reads to reference Grch38 human genome while htseq v.2.0.2

to count the reads of annotated genes.

Data analysis was conducted on R v.4.2.2, an open-source

coding platform. For all analyses, the whole dataset was split into

four smaller datasets each containing only samples from one time

point. Gene counts were filtered to exclude low or not expressed

genes applying a filter of at least 1 count per million (CPM) in at

least 10 libraries, then DESeq2 package v1.36.0 (27) was used to

normalize gene expression and the vst function (variance stabilizing

transformation) was used to transform and export normalized

counts (28).

Non-linear dimensionality reduction techniques were applied

to each normalized and z-score transformed dataset using Uniform

Manifold Approximation and Projection (29) with UMAP R

package v0.2.10, in a umap-learn configuration, to better visualize

differences between the cohorts. Quantitative separation was

assessed using the unsupervised K-means clustering algorithm

with the kmeans function (setting centers = 3) on the

dimensionality-reduced space and was compared with

experimental group labels in terms of accuracy (number of

correctly classified as a fraction of total samples).

Differential gene expression (DGE) analysis was performed

following DESeq2 function pipeline (27), p-values were adjusted

for multiple testing employing Benjamini-Hochberg method, and

significant genes were selected as p.adjust<0.05. Enrichment

analysis was conducted with tmod v0.50.11 library (30) using
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CERNO test (31) to assess the enrichment in Blood Transcription

Modules (BTMs) (32).

Modular gene co-expression Network analysis was carried out

with CEMiTool v1.20.0 (33), able to perform such analysis in an

unsupervised manner by automatically detecting best ad hoc soft

thresholding power BETA. For co-expression analysis with

CEMiTool, a unique dataset including samples from all time

points was used. Module enrichment analysis, relying on

hypergeometric tests, was conducted to assess the enrichment of

each identified module in BTMs. A score for each module was also

calculated as the mean z-score of genes within each module and

statistical differences among mean z-scores of various groups were

computed using non-parametric Mann-Whitney test.

Feature selection was performed with DaMirSeq v2.12.0 (34), by

applying a backward variable elimination in Partial Least Squares

method (bve-PLS) and a multivariate filter technique. Portions of

features used for the analysis were selected at the Elbow Point of the

graph Variance explained. Only genes selected by both CEMiTool

and DamirSeq feature selections were kept in the final output.

Further enrichment analyses were performed using gene ontology

(35) and Web-based Cell-type-Specific Enrichment Analysis of

Genes (WebCSEA) (36) databases.
Statistics

The statistical significance of ELISA titers, ACE2/RBD

inhibition, and clinical parameters were assessed with Mann-

Whitney U test. Fisher exact test was used for binary variables.

DGE analysis was performed following DESeq2 function pipeline

(27), p-values were adjusted for multiple testing employing

Benjamini-Hochberg method, and significant genes were selected

as p.adjust<0.05. The statistical significance of CEMiTool scores

were assessed with Mann-Whitney U test. All tests were two-tailed.
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Analyses were performed using GraphPad Prism v9 (GraphPad

Software, CA, USA) and in R programming environment.
Results

In this study, we conducted a transcriptomic profiling of PBMCs

from 20 HDP and 9 HC, who received the BNT162b2 SARS-CoV-2

mRNA vaccine. Gene expression analysis was performed on total

PBMCs at baseline (day 0), days 7 and 21 after the first vaccine dose,

and 7 days after the second dose (day 28) and transcriptomic data were

integrated with immunological parameters. This comprehensive

approach aimed to provide a robust comparison of the immune

responsiveness observed in HDP versus HC. Furthermore, the spike-

specific IgG response, including antibody titers and ACE2/RBD

binding inhibition, was analyzed at day 28 and utilized to stratify the

HDP cohort in the transcriptomic analysis. The experimental design

and analysis workflow are summarized in Supplementary Figure 1,

while cl inical and demographic data are reported in

Supplementary Table 1.
Immunological profile of HDP and vaccine
antigen-specific antibody response

Analysis of the spike-specific antibody response, measured

seven days after the second vaccine dose, revealed a significantly

lower response in HDP compared to HC (Figure 1A). To assess the

functionality of spike-specific IgG antibodies in inhibiting ACE2/

RBD binding, we employed a surrogate virus neutralization test

(sVN). The results were reported as percentages of ACE2/RBD

inhibition, with values ≥30% considered positive (Figure 1B). Nine

out of 20 HDP patients (45%) had a neutralizing activity lower than

30%, while all HC were above this threshold (Figure 1B). By plotting
FIGURE 1

HDP cohort stratification. (A) Spike-specific IgG analyzed by ELISA in plasma collected at day 28 after the first dose of the BNT162b2 mRNA vaccine
in hemodialysis patients (HDP) and healthy controls (HC). Antibody titers are expressed as the reciprocal of the dilution of sample reporting an OD
value double respect to the background. Data are shown as box and whisker plot where box represents the interquartile range (IQR), horizontal line
represents the median value and whiskers represent higher and lower values. Individual values are reported as dots. (B) Surrogate virus neutralization
assay (sVN) performed on plasma collected at day 28. Data are reported as ACE2/RBD binding inhibition percentage with box and whisker plots. A
threshold (dotted red line) was placed at 30% inhibition percentage to discriminate between positive and negative samples in HDP and HC.
(C) Bivariate plot showing Anti-Spike IgG titers (X axis) and ACE2/RBD binding inhibition percentage (Y axis) in HC (in green) and HDP-high and -low
(blue and red, respectively). The non-parametric Mann-Whitney Test was used to assess significant differences (*p-value<0.05, **p-value<0.01,
***p-value<0.001).
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the antibody titers against the inhibition activity, the HDP cohort

was stratified into two groups: (i) HDP who tested positive for the

sVN test and showed spike-specific IgG levels comparable to those

of HC (HDP-high group), and (ii) HDP negative for the sVN test

and with lower IgG levels compared to the HCs (HDP-low

group) (Figure 1C).
Transcriptomic profiles of hemodialysis
patients in response to mRNA vaccination

Transcriptome sequencing was performed to characterize

differences at the baseline level and in response to mRNA

vaccination in the HDP-low and HDP-high groups, compared to

HC. Unsupervised dimensionality reduction analysis was
Frontiers in Immunology 05
performed, at each time point, with the Uniform Manifold

Approximation and Projection (UMAP) algorithm. At day 0 and

7 days after the first vaccine dose, UMAP revealed a distinct

separation between HDP-high and HDP-low samples, as well as

between the hemodialysis cohort and HC (Figure 2). However,

when the analysis was conducted at day 21 (pre-second dose) and

day 28 (7 days after the second dose), the main separation was

between HDP and HC, with lower or no separation between the

HDP-high and HDP-low samples (Supplementary Figure 2). k-

Means unsupervised clustering was used to confirm the better

separation in the UMAP dimensionality-reduced space among the

three cohorts at days 0 and 7 compared with the days 21 and 28

(Supplementary Table 2).

To examine gene expression differences among the three

cohorts at each time point, a differential gene expression (DGE)
FIGURE 2

UMAP dimensionality reduction at day 0 and day 7. Normalized and z-score transformed gene counts were dimensionally reduced using the UMAP
(Uniform Manifold Approximation and Projection) algorithm. Each dot represents a sample in the two new surrogate dimensions (UMAP1 and
UMAP2). Each color represents an experimental group. Colored ellipses represented 75% confidence intervals.
TABLE 1 Differential gene expression analysis.

Day Contrast Up-regulated genes
Down-regulated
genes

Unaffected genes

Day 0 HDP-low vs HDP-high 21 9 19564

HDP-high vs HC 82 10 18743

HDP-low vs HC 1524 1813 16257

Day 7 HDP-low vs HDP-high 64 51 16440

HDP-high vs HC 9 1 16166

HDP-low vs HC 632 546 18416

Day 21 HDP-low vs HDP-high 283 57 19254

HDP-high vs HC 893 184 18517

HDP-low vs HC 1403 626 17565

Day 28 HDP-low vs HDP-high 300 98 17677

HDP-high vs HC 408 551 18635

HDP-low vs HC 1541 1120 16933
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analysis was performed using DESeq2 and results are summarized

in Table 1 and Supplementary Table 3. A high number of

statistically significant DEGs was observed at each time point

when comparing HCs with HDP-low, while a lower number of

DEGs was detected between HDP-high responders and HC,

particularly at day 0 and day 7, confirming UMAP results where

HDP-high were clustered near HC (Figure 2).
Frontiers in Immunology 06
Enrichment analyses were conducted to assess the enrichment of

blood transcription modules (BTMs) (32) for each DGE analysis in

order to obtain an overview of the functional roles of the genes

identified through DGE analysis. A selection of statistically significant

enriched BTM at days 0 and 7 is displayed in Figure 3, full results of

enrichment analysis are reported in Supplementary Figure 3. At all

the time points, pie plots clearly show the upregulation of modules
FIGURE 3

Enrichment analysis. Activation of blood transcription modules by BNT162b2 vaccination in healthy controls (HC) and hemodialysis patients stratified
in high- and low-responders groups (HDP-high and HDP-low, respectively). Each column represents a comparison. Only comparisons from day 0
and day 7 are shown. Activation of modules was tested using tmod CERNO test on the false discovery rate (FDR)-ranked lists of genes generated by
DESeq2. Rows indicate different blood transcription modules, which were significantly (FDR < 0.01) activated in at least one comparison. Each
module is represented as a pie plot in which the proportion of significantly upregulated and downregulated genes is shown in red and blue,
respectively. The grey portion of the pie represents genes that are not significantly differentially regulated according DGE analysis. The significance
of module activation is proportional to the color intensity of the pie, while the effect size (Area Under the Curve) is proportional to its size.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1508659
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lucchesi et al. 10.3389/fimmu.2025.1508659
involved in erythrocyte differentiation, cell cycle, and heme

biosynthesis when comparing both HDP-low and HDP-high with

HC. Additionally, modules associated with T cells, cell cycle, and

proliferation were significantly upregulated in HDP, especially in

HDP-low, at day 0 and day 21. Conversely, B cell modules were
Frontiers in Immunology 07
downregulated in HDP-low compared to HC at each time point. The

comparison betweenHDP-low andHDP-high at day 7 resulted in the

significant enrichment of two unannotated modules (LI.M177.0 and

LI.M201); of those, LI.M177.0 included 4 genes belonging to GIMAP

family, which is involved in B and T cells survival (37, 38).
TABLE 2 CEMiTool modules. For each module, the number of genes, the hub genes and the enrichment analysis are reported.

Module Number of genes Hub genes Enriched BTMs

M1 417 RNF10, RIOK3, MKRN1, GSPT1, ASCC2 heme biosynthesis (I) (M171) [9], erythrocyte differentiation (M173)
[7], transcription regulation in cell development (M49) [11], heme
biosynthesis (II) (M222) [6], enriched in cell cycle (M167) [6],
enriched in membrane proteins (M124) [6], enriched in activated
dendritic cells (II) (M165) [7], antiviral IFN signature (M75) [5]

M2 188 C19orf38, BST1, LRRC25, GLT1D1, SIGLEC9 enriched in monocytes (II) (M11.0) [59], cell cycle and transcription
(M4.0) [48], Monocyte surface signature (S4) [23], TLR and
inflammatory signaling (M16) [12], myeloid cell enriched receptors
and transporters (M4.3) [10], immune activation - generic cluster
(M37.0) [32], formyl peptide receptor mediated neutrophil response
(M11.2) [6)

M3 178 TUBB1, CTTN, SH3BGRL2, PDE5A, ARHGAP6 platelet activation - actin binding (M196) [11], platelet activation &
blood coagulation (M199) [9], cell adhesion (M51) [12], enriched in
myeloid cells and monocytes (M81) [11], cell movement, Adhesion
& Platelet activation (M30) [8], G protein mediated calcium
signaling (M159) [3]

M4 150 NAMPT, TRIB1, B3GNT5, CXCL8, LUCAT1 putative targets of PAX3 (M89.0) [9], chemokines and inflammatory
molecules in myeloid cells (M86.0) [9], enriched for TF motif
TTCNRGNNNNTTC (M172) [5], putative targets of PAX3 (M89.1)
[5], cell cycle and growth arrest (M31) [5], growth factor induced,
enriched in nuclear receptor subfamily 4 (M94) [5], AP-1
transcription factor network (M20) [5], myeloid, dendritic cell
activation via NFkB (I) (M43.0) [5], enriched in activated dendritic
cells/monocytes (M64) [5], CCR1, 7 and cell signaling (M59) [4]

M5 136 CD22, FCRL1, LINC00926, FCRL2, NIBAN3 enriched in B cells (I) (M47.0) [32], enriched in B cells (II) (M47.1)
[22], enriched in B cells (VI) (M69) [15], B cell surface signature
(S2) [21], plasma cells & B cells, immunoglobulins (M156.0) [12],
enriched in B cells (III) (M47.2) [8]

M6 79 KCNJ15, LIMK2, TNFRSF10C, LRRC4, DGAT2 enriched in neutrophils (I) (M37.1) [23], immune activation -
generic cluster (M37.0) [19], TLR and inflammatory signaling (M16)
[8],recruitment of neutrophils (M132) [4], Monocyte surface
signature (S4) [5]

M7 67 IGKV4-1, IGKV3-20, IGKC, MZB1, IGKV1-5 plasma cells, immunoglobulins (M156.1) [10], plasma cells & B cells,
immunoglobulins (M156.0) [7], enriched in B cells (III) (M47.2) [2],
enriched in B cells (IV) (M47.3) [2]

M8 64 CEACAM6, CEACAM8, CAMP, ABCA13, BPI immune activation - generic cluster (M37.0) [31], extracellular
matrix (II) (M2.1) [9], extracellular matrix, complement (M140) [4],
enriched in membrane proteins (M124) [4], cell division (stimulated
CD4+ T cells) (M46) [3]

M9 40 ENSG00000283994, POU5F2,
ENSG00000271204,
LINC01619, ENSG00000286786

none

M10 37 NR4A2, NR4A3, TNFAIP3, CREM, ZNF331 putative targets of PAX3 (M89.0) [4], putative targets of PAX3
(M89.1) [3], growth factor induced, enriched in nuclear receptor
subfamily 4 (M94) [3], chemokines and inflammatory molecules in
myeloid cells (M86.0) [2]

M11 36 UTY, USP9Y, KDM5D, DDX3Y, TXLNGY chromosome Y linked (M240) [5], NK cell surface signature (S1) [5],
enriched in NK cells (KIR cluster) (M61.1) [3], enriched in NK cells
(receptor activation) (M61.2) [3], enriched in NK cells (II)
(M61.0) [3]
The number of genes within each BTM is reported in square brackets.
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Co-expression analysis reveals differences
in transcriptional response following
BNT162b2 mRNA vaccination in HDP-low

To further investigate the transcriptional perturbation induced

by BNT162b2 vaccination, a modular gene co-expression network

analysis was conducted using the unsupervised algorithm

CEMiTool. In our dataset, 1438 genes were selected as relevant by

unsupervised gene filtering and assigned to 11 modules (named M1

to M11) of co-expressed genes (Table 2). The full gene list is

reported in Supplementary Table 4, while Table 2 reports the

number of genes within each CEMiTool module, the top 5 co-
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expressed/representative hub genes, and the top statistically

significant enriched BTMs.

The expression level of the modules, calculated as the mean z-score

of genes within each module, was used to assess statistically significant

differences. Module M10 displayed a distinct trend in mean z-scores at

day 7, capable of differentiating the response between HDP-high and

HDP-low (Figure 4). However, it showed poor enrichment in BTMs,

mainly associated with a few genes of the PAX3 transcriptional factor

putative targets. Among the 37 genes of module M10 there are 4DUSP

familymembers (DUSP2,DUSP4,DUSP5, andDUSP8). Gene ontology

(GO) analysis detected enrichment in B cell homeostasis (GO:0001922;

HIF1A and TNFAIP3) and negative regulation of B cells (GO:0050869;
FIGURE 4

CEMiTool analysis. A CEMiTool analysis was performed on the normalized gene counts to group genes with similar expression and characterize
different expression patterns. Eleven co-expressed modules were identified; here, 5 modules were selected for their significant differential
abundance at early time points (day 0 and day 7). Each module was represented as a mean z-score of the genes included in the module. The
module score in different groups at different time points was represented as a box and whiskers plot where the box represents the IQR, the
horizontal line represents the median value, and whiskers represent higher and lower values. Individual values are reported as dots. Dashed lines
represent the mean value for each module. The non-parametric Mann-Whitney Test was used to assess significant differences (*p-value<0.05, **p-
value<0.01, ***p-value<0.001).
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TNFAIP3, TNFRSF21, and SAMSN1). The B cell-related enriched M5

was significantly higher in HCs compared to HDP-low at all time

points (Figure 4 and Supplementary Figure 4), while M7, enriched in

immunoglobulins and plasma cells modules, was up-regulated in HC at

day 28 (Supplementary Figure 4). M3, enriched in platelet-related

genes, blood coagulation, and cell adhesion modules, was significantly

higher at day 0 in HDP-high compared to HDP-low, while M1, a large,

heterogeneous module including genes related to erythrocytes and

heme biosynthesis, cell cycle, dendritic cells, and IFN signature, and

M10 were significantly up-regulated in HDP-low at day 7 (Figure 4).

M8, enriched in a generic immune activation module and extracellular

matrix related genes, exhibited a similar pattern, with lower expression

in HC at all time points.
Integration with clinical data

Since we detected a baseline enrichment of red blood cells-

related modules in HDP, especially in HDP-low, we investigated

whether there were differences in erythropoietin (EPO) dosage

between HDP-high and HDP-low groups. EPO is commonly

administered to hemodialysis patients to increase hemoglobin

levels, given the dialysis-induced anemia (39). While the

therapeutic efficacy of EPO is typically observed over several

months of treatment, changes in gene expression can occur

within a few days (40). We compared the weekly EPO dosage

before the first vaccine dose and the average weekly dosage in the six

months before the first dose; age was also included in the analysis.

The average EPO dosage was significantly higher in HDP-low

compared to HDP-high (Supplementary Figures 5A, B), while

there was no significant difference when comparing the age
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between the groups (Supplementary Figure 5C). We then

speculated that the EPO dosage before vaccination could be a

proxy of the overall clinical state of the HDP cohort and

therefore we calculated the health state score of all the patients

with the Couchoud method, which takes into account different

clinical and demographic parameters, and is proportional to the

three-month risk of mortality (23). Analysis of the health state score

indicated that the HDP-low cohort had a significantly higher three-

month mortality risk (median: 12.8%, IQR 6-14.2%) compared to

the HDP-high cohort (median: 3.0%, IQR 1.9-4.2%), confirming

that the HDP-low group exhibited a more unfavorable clinical

profile before vaccination (Supplementary Figure 5D). All clinical

variables analyzed are reported in Supplementary Table 5.
Feature selection identifies an early gene
signature of immunogenicity in HDP
cohorts

Feature selection was conducted with the DaMirSeq package to

identify an early gene signature that could distinguish the different

cohorts. To refine the gene signature, we only included genes that

were selected by both CEMiTool and DaMiRseq. The results of the

feature selection for day 0 and day 7 are reported in Figure 5,

revealing the identification of a gene signature (32 genes for day 0

and 15 for day 7) that exhibited discriminatory potential between HC

andHDP groups, as well as between high- and low-responders within

the HDP cohort. A distinct expression pattern of the selected genes

between the HDP-low and HC cohorts is evident, with a subset of

genes showing higher expression in the HDP-low cohort and another

subset of genes exhibiting higher expression in the HC cohort while
frontiersin.or
FIGURE 5

Feature selection to identify a predictive signature of immunogenicity. DaMiRseq algorithm was used to identify a gene signature able to discriminate
among cohorts. The output was filtered to include only genes previously selected by the CEMiTool analysis. Normalized expression levels of (A) the
32 predictive genes identified for day 0, and (B) the 15 predictive genes for day 7, visualized as a heatmap. Samples and genes are ordered by
hierarchical clustering according to gene expression levels, the upper line shows sample group.
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the HDP-high cohort displayed an intermediate expression level.

Some of the day 0 genes had previously been identified as

differentially expressed in studies on dialysis and kidney diseases

(NOG, FCGBP, CXCL5, FAT4, SOCS3, ITGA9, AREG, TUBB2A,

OSBP2, ENC1) (41–49). On the other hand, among the 15-gene

signature selected for day 7, only EGR3 had previously been

implicated in immune functions in patients with end-stage renal

disease (50). Enrichment analysis performed with WebCSEA

database identified 4 of the genes upregulated in HDP-low

(U2AF1L5, RGS1, HDC, and MS4A3) as expressed in mast cells.
Discussion

This study investigated the gene expression patterns following

vaccination against SARS-CoV-2 with the BNT162b2 mRNA

vaccine in HDP. Although transcriptomic analyses of immune

gene pathways elicited by SARS-CoV-2 vaccination in healthy

subjects have been previously published (22, 51), there is

currently a lack of data for HDP. A recent study by Chang et al.

(52) identified a positive correlation between an upregulation in

interferon-related genes 2 days after second dose and antibody titers

in HDP. Similar correlations were also observed in HC vaccinated

against SARS-CoV-2 and other pathogens (53, 54).

In our analysis, using a data-driven approach, we first stratified

patients according to their serological response to vaccination, we

then focused on assessing differences between low- and high-

responders at each time point, both before and 7 days after the

first and second doses. These time points allowed for the analysis of

both the innate and adaptive responses, as well as baseline gene

expression levels that could be predictive of a later

serological response.

The main differences between HDP-high and -low responders

were detected at early time points (days 0 and 7). B cell-related

genes consistently exhibited lower expression levels in the dialyzed

subjects. This difference was particularly pronounced when

comparing HDP-low with HCs. These findings align with

previous observations of B cell lymphopenia in hemodialysis

patients (6) and with the correlation between low levels of B cells

and increased risk of mortality from COVID-19 (55). HDP

exhibited an upregulation of cell cycle-related genes in CD4+ T

cells when compared with HC, particularly at day 0 and day 21.

These modules also showed higher expression in the HDP-low

compared with both HDP-high and HC. Previous studies reported

differences in T cell frequency and phenotype between HDP and

healthy cohorts (6, 56). The activation of cell cycle-related modules

may be attributed to impaired proliferation of activated CD4+ T cell

subsets, as observed in patients with end-stage renal failure (57).

CEMiTool modules M1 andM8, enriched in cell cycle, dendritic cell

signature, and IFN signature (M1) and generic immune activation

and cell cycle (M8), were highly expressed especially in the HDP-

low, possibly reflecting higher levels of chronic inflammation,

which is commonly observed in CKD and hemodialysis (58, 59).

M1 was also enriched in heme biosynthesis and erythrocyte-related
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genes: alterations in erythrocyte counts are well-known in HDP,

and EPO treatment is commonly used to address anemia in these

individuals. Interestingly, 32 genes from the M1 module were

reported to be up-regulated by EPO treatment (40). We assessed

the EPO dosage and found it significantly higher in HDP-low,

suggesting a potential correlation with immune response.

Thrombocytopenia, a condition observed in some hemodialysis

patients (60), could be reflected by a low expression at each time

point in HDP-low of M3 module, enriched in platelet modules. Day

7 revealed a statistically significant modulation of the unannotated

module LI.M177.0, which included a high number ofGIMAP family

genes, involved in the survival of B and T lymphocytes (37, 38).

Even if not significant in DGE analysis (FDR>0.05), all these genes

showed a down-modulation in HDP-low. The correlation of down-

modulation of GIMAP family genes with the more severe

lymphopenia in HDP-low cohort should be further investigated.

The CEMiTool M10 module was upmodulated in HDP-low at day 7

and it is enriched in GO terms related to the negative regulation of B

cells (GO:0001922 and GO:0050869), suggesting a dysregulation of

these pathways in HDP-low. Notably, the TNFRSF21 gene within

M10 acts as a proapoptotic gene in lymphocytes (61). B and T cell

lymphopenia and T cell activation in HDP has been associated with

increased apoptosis due to uremia (6, 57), but no research to our

knowledge has explored the negative regulation of B cells following

vaccination in HDP. Our findings indicate a potentially

dysregulated response of these pathways after the primary

response in low-responder subjects. M10 also included four

members of the DUSP family which are involved in processes

ranging from inflammation to adaptive immune responses and

IgE-mediated mast cell degranulation and are dysregulated in

different kidney diseases (62). Interestingly, our analyses revealed

a hyper activation of some members of the DUSP family at day 7 in

the HDP-low cohort. CXCR4, included in M10, plays a vital role in

numerous biological processes. It acts as a receptor for extracellular

ubiquitin (63), which is upregulated in HDP (64). In our dataset,

UBB (Ubiquitin B, included in M1 module) was indeed upregulated

in HDP-low individuals. This gene is also upregulated upon EPO

treatment (40). Limited data are available regarding the effect of

EPO treatment on the immune response to vaccination, however it

influences both innate and adaptive immune responses (65). Some

studies suggest that EPO may enhance the humoral response in

fragile subjects vaccinated with influenza or hepatitis B vaccines (66,

67). Our data contrasts with these findings. However, the higher

dosage of EPO in the HDP-low cohort could simply reflect the

compromised clinical state of these subjects, as supported by the

higher Couchoud score in HDP low responders. Nevertheless, the

EPO receptor plays a significant role in B cell development and

activation, and ubiquitin is involved in B cell activation and B cell

receptor regulation (68, 69).

Our feature selection identified an early gene signature at day 0

and day 7 that could discriminate between healthy and HDP

cohorts, as well as between HDP-high and -low responder

groups. These genes generally exhibited opposite expression

patterns in the healthy control and HDP-low individuals. At day
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1508659
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lucchesi et al. 10.3389/fimmu.2025.1508659
0, a set of 32 genes differentiates our three cohorts, of those genes,

10 had previously been identified as differentially expressed in

studies on kidney diseases. This kidney disease-associated profile

could support the observation that the HDP-low cohort includes

individuals with a worse clinical state compared with the other

cohorts, as indicated by their higher Couchoud risk score before

vaccination. Among the 15-gene signature of day 7, 4 genes were

expressed in mast cells and these were overexpressed in the HDP-

low cohort. Increased plasmatic histamine, correlated with an

increase in HDC (Histidine Decarboxylase), has been associated

with an increase in mast cells in a subgroup of HDP (70).

Our study has some limitations: the small sample size, which

may limit the generalizability of our findings; the inclusion of

participants with a wide age range, which was not matched

between cohorts and showed a statistically significant difference

between healthy and fragile subjects; the classification of HDP-high

and -low responders based on antibody levels measured right after

the second vaccine dose, that may not represent the peak of the

acute immune response or long term memory (19).

In conclusion, our study identified genes and pathways that were

differentially expressed in HDP-low compared to HC and HDP-high

at baseline and 7 days after primary vaccination, potentially related

with their impaired immune response the BNT162b2mRNA vaccine.

HDP-low represented 45% of the HDP cohort and were characterized

by alterations in genes associated with pre-existing chronic

inflammation, cell cycle, EPO-related pathways, reduced expression

of B cell-related genes at baseline, and genes potentially correlated

with renal disease, while further differences emerged in genes

involved in B cell regulation and survival at day 7. Our analyses

also highlighted the importance of conducting a characterization of

immunocompromised cohorts to identify predictive biomarkers of

vaccine immunogenicity and dysregulated pathways affecting

vaccine responsiveness.
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49. Plé H, Maltais M, Corduan A, Rousseau G, Madore F, Provost P. Alteration of
the platelet transcriptome in chronic kidney disease. Thromb Haemost. (2012) 108:605–
15. doi: 10.1160/TH12-03-0153

50. Dai H, Zhou J, Zhu B. Gene co-expression network analysis identifies the hub
genes associated with immune functions for nocturnal hemodialysis in patients with
end-stage renal disease. Med (Baltimore). (2018) 97:e12018. doi: 10.1097/
MD.0000000000012018

51. Aldén M, Olofsson Falla F, Yang D, Barghouth M, Luan C, Rasmussen M, et al.
Intracellular reverse transcription of pfizer bioNTech COVID-19 mRNA vaccine
BNT162b2 in vitro in human liver cell line. Curr Issues Mol Biol. (2022) 44:1115–26.
doi: 10.3390/cimb44030073
Frontiers in Immunology 13
52. Chang Y-S, Huang K, Lee JM, Vagts CL, Ascoli C, Amin M-R, et al. Altered
transcriptomic immune responses of maintenance hemodialysis patients to the
COVID-19 mRNA vaccine. eLife. (2024) 13:e83641. doi: 10.7554/eLife.83641

53. Severa M, Rizzo F, Sinigaglia A, Ricci D, Etna MP, Cola G, et al. A specific anti-
COVID-19 BNT162b2 vaccine-induced early innate immune signature
positively correlates with the humoral protective response in healthy and multiple
sclerosis vaccine recipients. Clin Transl Immunol. (2023) 12:e1434. doi: 10.1002/
cti2.1434

54. Blengio F, Hocini H, Richert L, Lefebvre C, Durand M, Hejblum B, et al.
Identification of early gene expression profiles associated with long-lasting antibody
responses to the Ebola vaccine Ad26.ZEBOV/MVA-BN-Filo. Cell Rep. (2023)
42:113101. doi: 10.1016/j.celrep.2023.113101

55. Gygi JP, Maguire C, Patel RK, Shinde P, Konstorum A, Shannon CP, et al.
Integrated longitudinal multiomics study identifies immune programs associated with
acute COVID-19 severity and mortality. J Clin Invest. (2024) 134:e176640. doi: 10.1172/
JCI176640

56. Xiaoyan J, Rongyi C, Xuesen C, Jianzhou Z, Jun J, Xiaoqiang D, et al. The
difference of T cell phenotypes in end stage renal disease patients under different
dialysis modality. BMC Nephrol. (2019) 20:301. doi: 10.1186/s12882-019-1475-y

57. Meier P, Dayer E, Ronco P, Blanc E. Dysregulation of IL-2/IL-2R system alters
proliferation of early activated CD4+ T cell subset in patients with end-stage renal
failure. Clin Nephrol. (2005) 63:8–21. doi: 10.5414/cnp63008

58. Yao Q, Axelsson J, Stenvinkel P, Lindholm B. Chronic systemic inflammation in
dialysis patients: an update on causes and consequences. ASAIO J Am Soc Artif Intern
Organs. (2004) 50:lii–lvii. doi: 10.1097/01.mat.0000147958.87989.eb

59. Stenvinkel P, Ketteler M, Johnson RJ, Lindholm B, Pecoits-Filho R, Riella M,
et al. IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of
uremia–the good, the bad, and the ugly. Kidney Int. (2005) 67:1216–33. doi: 10.1111/
j.1523-1755.2005.00200.x

60. Daugirdas JT, Bernardo AA. Hemodialysis effect on platelet count and function
and hemodialysis-associated thrombocytopenia. Kidney Int. (2012) 82:147–57.
doi: 10.1038/ki.2012.130

61. Zeng L, Li T, Xu DC, Liu J, Mao G, Cui M-Z, et al. Death Receptor 6 Induces
Apoptosis Not through Type I or Type II Pathways, but via a Unique Mitochondria-
dependent Pathway by Interacting with Bax Protein*. J Biol Chem. (2012) 287:29125–
33. doi: 10.1074/jbc.M112.362038

62. Li H, Xiong J, Du Y, Huang Y, Zhao J. Dual-specificity phosphatases and kidney
diseases. Kidney Dis. (2021) 8:13–25. doi: 10.1159/000520142

63. Saini V, Staren DM, Ziarek JJ, Nashaat ZN, Campbell EM, Volkman BF, et al.
The CXC chemokine receptor 4 ligands ubiquitin and stromal cell-derived factor-1a
function through distinct receptor interactions. J Biol Chem. (2011) 286:33466–77.
doi: 10.1074/jbc.M111.233742

64. Okada M, Miyazaki S, Hirasawa Y. Increase in plasma concentration of
ubiquitin in dialysis patients: possible involvement in beta 2-microglobulin
amyloidosis. Clin Chim Acta Int J Clin Chem. (1993) 220:135–44. doi: 10.1016/0009-
8981(93)90042-3

65. Cantarelli C, Angeletti A, Cravedi P. Erythropoietin, a multifaceted protein with
innate and adaptive immune modulatory activity. Am J Transplant. (2019) 19:2407–14.
doi: 10.1111/ajt.15369

66. Oster HS, Prutchi-Sagiv S, Halutz O, Shabtai E, Hoffman M, Neumann D, et al.
Erythropoietin treatment is associated with an augmented immune response to the
influenza vaccine in hematologic patients. Exp Hematol. (2013) 41:167–71.
doi: 10.1016/j.exphem.2012.10.011

67. Sennesael JJ, van der Niepen P, Verbeelen DL. Treatment with recombinant
human erythropoietin increases antibody titers after hepatitis B vaccination in dialysis
patients. Kidney Int. (1991) 40:121–8. doi: 10.1038/ki.1991.189

68. Drake JR. The immunobiology of ubiquitin-dependent B cell receptor functions.
Mol Immunol. (2018) 101:146–54. doi: 10.1016/j.molimm.2018.05.022

69. Sujashvili R. Advantages of extracellular ubiquitin in modulation of immune
responses. Mediators Inflamm. (2016) 2016:e4190390. doi: 10.1155/2016/4190390

70. Weisshaar E, Dunker N, Domröse U, Neumann KH, Gollnick H. Plasma
serotonin and histamine levels in hemodialysis-related pruritus are not significantly
influenced by 5-HT3 receptor blocker and antihistaminic therapy. Clin Nephrol. (2003)
59:124–9. doi: 10.5414/cnp59124
frontiersin.org

https://doi.org/10.1038/ni.2789
https://doi.org/10.1186/s12859-018-2053-1
https://doi.org/10.1093/bioinformatics/btx795
https://doi.org/10.1093/nar/gkaa1113
https://doi.org/10.1093/nar/gkac392
https://doi.org/10.3389/fimmu.2021.679739
https://doi.org/10.1002/eji.201344375
https://doi.org/10.1681/ASN.V103610
https://doi.org/10.1681/ASN.V103610
https://doi.org/10.1038/s41598-021-00608-9
https://doi.org/10.1111/hdi.12051
https://doi.org/10.1038/ki.2015.150
https://doi.org/10.4161/epi.26931
https://doi.org/10.1016/j.jprot.2018.07.008
https://doi.org/10.1016/j.jprot.2018.07.008
https://doi.org/10.1016/j.ejphar.2008.07.013
https://doi.org/10.1016/j.ejphar.2008.07.013
https://doi.org/10.1016/j.celrep.2023.112550
https://doi.org/10.1681/ASN.2019030321
https://doi.org/10.1155/2022/6575052
https://doi.org/10.1160/TH12-03-0153
https://doi.org/10.1097/MD.0000000000012018
https://doi.org/10.1097/MD.0000000000012018
https://doi.org/10.3390/cimb44030073
https://doi.org/10.7554/eLife.83641
https://doi.org/10.1002/cti2.1434
https://doi.org/10.1002/cti2.1434
https://doi.org/10.1016/j.celrep.2023.113101
https://doi.org/10.1172/JCI176640
https://doi.org/10.1172/JCI176640
https://doi.org/10.1186/s12882-019-1475-y
https://doi.org/10.5414/cnp63008
https://doi.org/10.1097/01.mat.0000147958.87989.eb
https://doi.org/10.1111/j.1523-1755.2005.00200.x
https://doi.org/10.1111/j.1523-1755.2005.00200.x
https://doi.org/10.1038/ki.2012.130
https://doi.org/10.1074/jbc.M112.362038
https://doi.org/10.1159/000520142
https://doi.org/10.1074/jbc.M111.233742
https://doi.org/10.1016/0009-8981(93)90042-3
https://doi.org/10.1016/0009-8981(93)90042-3
https://doi.org/10.1111/ajt.15369
https://doi.org/10.1016/j.exphem.2012.10.011
https://doi.org/10.1038/ki.1991.189
https://doi.org/10.1016/j.molimm.2018.05.022
https://doi.org/10.1155/2016/4190390
https://doi.org/10.5414/cnp59124
https://doi.org/10.3389/fimmu.2025.1508659
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Transcriptomic analysis after SARS-CoV-2 mRNA vaccination reveals a specific gene signature in low-responder hemodialysis patients
	Introduction
	Methods
	Study cohort
	Study approval
	Sample and data collection
	Enzyme-linked immunosorbent assay
	Surrogate virus neutralization test
	RNA extraction, library preparation and sequencing
	Pre-processing and data analysis
	Statistics

	Results
	Immunological profile of HDP and vaccine antigen-specific antibody response
	Transcriptomic profiles of hemodialysis patients in response to mRNA vaccination
	Co-expression analysis reveals differences in transcriptional response following BNT162b2 mRNA vaccination in HDP-low
	Integration with clinical data
	Feature selection identifies an early gene signature of immunogenicity in HDP cohorts

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


